I'm trying to implement Bresenham algorithms to have something like :
So in my main, I tested a lot of algorithm something like :
line(ushort x0, ushort y0, ushort x1, ushort y1, const Color couleur)
int dx = abs(x1-x0);
int dy = abs(y1-y0);
int sx,sy;
sx=sy=0;
if(x0 < x1) sx = 1;
else sx = -1;
if(y0 < y1) sy = 1;
else sy = -1;
int err = dx-dy;
while(1)
{
pixel(x0, y0) = couleur;
if(x0 == x1 && y0 == y1) break;
int e2 = 2* err;
if(e2 > -dy)
{
err = err - dy;
x0 = x0 + sx;
}
if(e2 < dy)
{
err = err + dx;
y0 = y0 + sy;
}
}
Or
ushort x=x1;
ushort y=y1;
int longX=x2-x1;
int longY=y2-y1;
if(longY<longX)
{ // 1er Octant
const int c1=2*(longY-longX);
const int c2=2*longY;
int critère=c2-longX;
while(x<=x2)
{
DessinePoint(x,y,couleur);
if(critère>=0)
{ // changement de ligne horizontale
y++;
critère=critère+c1;
}
else
// toujours la même ligne horizontale
critère=critère+c2;
x++; // ligne suivante, et recommence
}
}
else
{ // 2eme Octant
const int c1=2*(longX-longY);
const int c2=2*longX;
int critère=c2-longY;
while(y<=y2)
{
DessinePoint(x,y,couleur);
if(critère>=0)
{ // changement de ligne verticale
x++;
critère=critère+c1;
}
else
// toujours la même ligne verticale
critère=critère+c2;
y++; // ligne suivante, et recommence
}
}
for two octants.
I also tried what we can find in wikipedia, but nothing special.
A last function I tried to implement :
line(ushort xi, ushort yi, ushort xf, ushort yf, const Color couleur)
{
int dx,dy,i,xinc,yinc,cumul,x,y ;
x = xi ;
y = yi ;
dx = xf - xi ;
dy = yf - yi ;
xinc = ( dx > 0 ) ? 1 : -1 ;
yinc = ( dy > 0 ) ? 1 : -1 ;
dx = abs(dx) ;
dy = abs(dy) ;
pixel(x,y)= couleur;
if ( dx > dy )
{
cumul = dx / 2 ;
for ( i = 1 ; i <= dx ; i++ )
{
x += xinc ;
cumul += dy ;
if ( cumul >= dx )
{
cumul -= dx ;
y += yinc ;
}
pixel(x,y) = couleur ;
}
}
else
{
cumul = dy / 2 ;
for ( i = 1 ; i <= dy ; i++ )
{
y += yinc ;
cumul += dx ;
if ( cumul >= dy )
{
cumul -= dy ;
x += xinc ;
}
pixel(x,y) = couleur ;
}
}
So , someone know any solution ?
http://tech-algorithm.com/articles/drawing-line-using-bresenham-algorithm/
void LineBresenham(int x,int y,int x2, int y2, int color)
{
int w = x2 - x ;
int h = y2 - y ;
int dx1 = 0, dy1 = 0, dx2 = 0, dy2 = 0 ;
if (w<0) dx1 = -1 ; else if (w>0) dx1 = 1 ;
if (h<0) dy1 = -1 ; else if (h>0) dy1 = 1 ;
if (w<0) dx2 = -1 ; else if (w>0) dx2 = 1 ;
int longest = abs(w) ;
int shortest = abs(h) ;
if (!(longest>shortest))
{
longest = abs(h) ;
shortest = abs(w) ;
if (h<0) dy2 = -1 ;
else if (h>0) dy2 = 1 ;
dx2 = 0 ;
}
int numerator = longest >> 1 ;
for (int i=0;i<=longest;i++)
{
PlotPixel(x,y,color) ;
numerator += shortest ;
if (!(numerator<longest))
{
numerator -= longest ;
x += dx1 ;
y += dy1 ;
} else {
x += dx2 ;
y += dy2 ;
}
}
}
The octant can be generalized by some extra variables dx0, dy0, dx1, dy1.
if (error < delta)
{
x += dx0;
y += dy0;
} else {
x += dx1;
y += dy1;
}
Depending on the octant, one of dx0, dy0 is zero; also the "delta variables" can have negative values.
Related
As the title suggests I'm having an issue with my windows console application in c++. So far I've created a class, Console, to represent all of the functions I repeatedly use to construct a windows console.
I implemented a line drawing algorithm and had up to 500 fps when filling the screen with magenta characters and drawing a line in white.
However, I implemented a triangle drawing algorithm next (just three line drawing calls consecutively) and was surprised to find out that the frame rate dropped to about 20. I removed this code again but the bad frame rate persisted. I really don't know why this has happend because I've essentially ended up not changing anything.
For reference, here is the Console code (without header):
Console::Console(int width, int height):
m_handle(GetStdHandle(STD_OUTPUT_HANDLE)),
m_width(width),
m_height(height),
m_screen({ 0, 0, 1, 1 }),
m_title(L"Demo"),
m_buffer(new CHAR_INFO[(size_t)m_width * (size_t)m_height])
{
memset(m_buffer, 0, sizeof(CHAR_INFO) * m_width * m_height);
}
Console::~Console()
{
if (m_buffer)
delete[] m_buffer;
}
int Console::Construct(int char_w, int char_h)
{
if (m_handle == INVALID_HANDLE_VALUE)
return BAD_HANDLE;
if (!SetConsoleWindowInfo(m_handle, true, &m_screen))
return WINDOW_INFO_ERROR;
COORD screen_coord = { (short)m_width, (short)m_height };
if (!SetConsoleScreenBufferSize(m_handle, screen_coord))
return SCREEN_BUFFER_SIZE_ERROR;
CONSOLE_FONT_INFOEX cinfo;
cinfo.cbSize = sizeof(cinfo);
cinfo.dwFontSize.X = (short)char_w;
cinfo.dwFontSize.Y = (short)char_h;
cinfo.FontFamily = FF_DONTCARE;
cinfo.FontWeight = FW_NORMAL;
cinfo.nFont = 0;
wcscpy_s(cinfo.FaceName, L"Consolas");
if (!SetCurrentConsoleFontEx(m_handle, false, &cinfo))
return CONSOLE_FONT_ERROR;
CONSOLE_SCREEN_BUFFER_INFO cbuffinfo;
if (!GetConsoleScreenBufferInfo(m_handle, &cbuffinfo))
return GET_BUFFER_INFO_ERROR;
if (cbuffinfo.dwMaximumWindowSize.X < m_width)
return HORIZONTAL_SIZE_TOO_LARGE_ERROR;
if (cbuffinfo.dwMaximumWindowSize.Y < m_height)
return VERTICAL_SIZE_TOO_LARGE_ERROR;
m_screen = { 0, 0, (short)m_width - 1, (short)m_height - 1 };
if (!SetConsoleWindowInfo(m_handle, true, &m_screen))
return WINDOW_INFO_ERROR;
if (!SetConsoleCtrlHandler((PHANDLER_ROUTINE)HandleClose, true))
return CLOSE_HANDLER_ERROR;
return OK;
}
void Console::Start()
{
active = true;
std::thread t(&Console::DoLoop, this);
t.join();
}
void Console::DoLoop()
{
if (!OnCreate())
active = false;
std::chrono::high_resolution_clock::time_point t1, t2;
t1 = std::chrono::high_resolution_clock::now();
t2 = t1;
while (active)
{
t2 = std::chrono::high_resolution_clock::now();
std::chrono::duration<float> diff = t2 - t1;
t1 = t2;
float dt = diff.count();
if (!OnUpdate(dt))
active = false;
wchar_t title_buff[256];
swprintf_s(title_buff, L"Console Application - %s - FPS: %3.2f", m_title.c_str(), 1.0f / dt);
SetConsoleTitle(title_buff);
WriteConsoleOutput(m_handle, m_buffer, { (short)m_width, (short)m_height }, { 0, 0 }, &m_screen);
}
finished.notify_one();
}
void Console::Fill(int x, int y, short glyph, short color)
{
if (x < 0 || y < 0 || x >= m_width || y >= m_height) return;
CHAR_INFO& ci = m_buffer[y * m_width + x];
ci.Char.UnicodeChar = glyph;
ci.Attributes = color;
}
void Console::Fill(int x1, int y1, int x2, int y2, short glyph, short color)
{
if (x1 < 0) x1 = 0;
if (y1 < 0) y1 = 0;
if (x1 >= m_width) return;
if (y1 >= m_height) return;
if (x2 >= m_width) x2 = m_width - 1;
if (y2 >= m_height) y2 = m_height - 1;
if (x2 < 0) return;
if (y2 < 0) return;
for (int x = x1; x <= x2; x++)
{
for (int y = y1; y <= y2; y++)
{
CHAR_INFO& ci = m_buffer[y * m_width + x];
ci.Char.UnicodeChar = glyph;
ci.Attributes = color;
}
}
}
void Console::Clear(short glyph, short color)
{
for (int x = 0; x < m_width; x++)
{
for (int y = 0; y < m_height; y++)
{
CHAR_INFO& ci = m_buffer[y * m_width + x];
ci.Char.UnicodeChar = glyph;
ci.Attributes = color;
}
}
}
void Console::Line(int x1, int y1, int x2, int y2, short glyph, short color)
{
int dx = x2 - x1;
int dy = y2 - y1;
int adx = dx > 0 ? dx : -dx;
int ady = dy > 0 ? dy : -dy;
int dy2 = dy + dy;
int dx2 = dx + dx;
int adx2 = dx2 > 0 ? dx2 : -dx2;
int ady2 = dy2 > 0 ? dy2 : -dy2;
if (adx > ady)
{
if (x1 > x2)
{
int x = x1;
x1 = x2;
x2 = x;
dx = -dx;
dx2 = -dx2;
int y = y1;
y1 = y2;
y2 = y;
dy = -dy;
dy2 = -dy2;
}
int sy = dy > 0 ? 1 : dy < 0 ? -1 : 0;
int err = ady;
for (int x = x1, y = y1; x <= x2; x++)
{
Fill(x, y, glyph, color);
err += ady2;
if (err > adx2)
{
err -= adx2;
y += sy;
}
}
}
else
{
if (y1 > y2)
{
int x = x1;
x1 = x2;
x2 = x;
dx = -dx;
dx2 = -dx2;
int y = y1;
y1 = y2;
y2 = y;
dy = -dy;
dy2 = -dy2;
}
int sx = dx > 0 ? 1 : dx < 0 ? -1 : 0;
int err = adx;
for (int x = x1, y = y1; y <= y2; y++)
{
Fill(x, y, glyph, color);
err += adx2;
if (err > ady2)
{
err -= ady2;
x += sx;
}
}
}
}
void Console::Triangle(int x1, int y1, int x2, int y2, int x3, int y3, short glyph, short color)
{
Line(x1, y1, x2, y2, glyph, color);
Line(x2, y2, x3, y3, glyph, color);
Line(x3, y3, x1, y1, glyph, color);
}
BOOL Console::HandleClose(DWORD evt)
{
if (evt == CTRL_CLOSE_EVENT)
{
active = false;
std::unique_lock<std::mutex> ul(lock);
finished.wait(ul);
}
return true;
}
Here is the very short main code:
class Game : public Console
{
public:
Game(int width, int height):
Console(width, height)
{
}
bool OnCreate() override
{
return true;
}
bool OnUpdate(float dt) override
{
Clear(GLYPH_SOLID, FG_BLACK);
//Triangle(20, 20, 300, 40, 150, 200);
return true;
}
};
int main()
{
Game game(400, 300);
int err = game.Construct(2, 2);
if (err == Console::OK)
game.Start();
}
The error constants are just defined integer codes in the header file.
If any additional code is needed please let me know. Thanks in advance!
EDIT:
I'm translating Python's version of 'page_dewarper' (https://mzucker.github.io/2016/08/15/page-dewarping.html) into C++. I'm going to use dlib, which is a fantastic tool, that helped me in a few optimization problems before. In line 748 of Github repo (https://github.com/mzucker/page_dewarp/blob/master/page_dewarp.py) Matt uses optimize function from Scipy, to find the minimal distance between two vectors. I think, my C++ equivalent should be solve_least_squares_lm() or solve_least_squares(). I'll give a concrete example to analyze.
My data:
a) dstpoints is a vector with OpenCV points - std::vector<cv::Point2f> (I have 162 points in this example, they are not changing),
b) ppts is also std::vector<cv::Point2f> and the same size as dstpoints.
std::vector<cv::Point2f> ppts = project_keypoints(params, input);
It is dependent on:
- dlib::column_vector 'input' is 2*162=324 long and is not changing,
- dlib::column_vector 'params' is 189 long and its values should be changed to get the minimal value of variable 'suma', something like this:
double suma = 0.0;
for (int i=0; i<dstpoints_size; i++)
{
suma += pow(dstpoints[i].x - ppts[i].x, 2);
suma += pow(dstpoints[i].y - ppts[i].y, 2);
}
I'm looking for 'params' vector that will give me the smallest value of 'suma' variable. Least squares algorithm seems to be a good option to solve it: http://dlib.net/dlib/optimization/optimization_least_squares_abstract.h.html#solve_least_squares, but I don't know if it is good for my case.
I think, my problem is that for every different 'params' vector I get different 'ppts' vector, not only single value, and I don't know if solve_least_squares function can match my example.
I must calculate residual for every point. I think, my 'list' from aforementioned link should be something like this:
(ppts[i].x - dstpoints[i].x, ppts[i].y - dstpoints[i].y, ppts[i+1].x - dstpoints[i+1].x, ppts[i+1].y - dstpoints[i+1].y, etc.)
, where 'ppts' vector depends on 'params' vector and then this problem can be solved with least squares algorithm. I don't know how to create data_samples with these assumptions, because it requires dlib::input_vector for every sample, as it is shown in example: http://dlib.net/least_squares_ex.cpp.html.
Am I thinking right?
I'm doing the same thing this days. My solution is writing a Powell Class by myself. It works, but really slowly. The program takes 2 minutes in dewarping linguistics_thesis.jpg.
I don't know what cause the program running so slowly. Maybe because of the algorithm or the code has some extra loop. I'm a Chinese student and my school only have java lessons. So it is normal if you find some extra codes in my codes.
Here is my Powell class.
using namespace std;
using namespace cv;
class MyPowell
{
public:
vector<vector<double>> xi;
vector<double> pcom;
vector<double> xicom;
vector<Point2d> dstpoints;
vector<double> myparams;
vector<double> params;
vector<Point> keypoint_index;
Point2d dst_br;
Point2d dims;
int N;
int itmax;
int ncom;
int iter;
double fret, ftol;
int usingAorB;
MyPowell(vector<Point2d> &dstpoints, vector<double> ¶ms, vector<Point> &keypoint_index);
MyPowell(Point2d &dst_br, vector<double> ¶ms, Point2d & dims);
MyPowell();
double obj(vector<double> ¶ms);
void powell(vector<double> &p, vector<vector<double>> &xi, double ftol, double &fret);
double sign(double a);// , double b);
double sqr(double a);
void linmin(vector<double> &p, vector<double> &xit, int n, double &fret);
void mnbrak(double & ax, double & bx, double & cx,
double & fa, double & fb, double & fc);
double f1dim(double x);
double brent(double ax, double bx, double cx, double & xmin, double tol);
vector<double> usePowell();
void erase(vector<double>& pbar, vector<double> &prr, vector<double> &pr);
};
#include"Powell.h"
MyPowell::MyPowell(vector<Point2d> &dstpoints, vector<double>& params, vector<Point> &keypoint_index)
{
this->dstpoints = dstpoints;
this->myparams = params;
this->keypoint_index = keypoint_index;
N = params.size();
itmax = N * N;
usingAorB = 1;
}
MyPowell::MyPowell(Point2d & dst_br, vector<double>& params, Point2d & dims)
{
this->dst_br = dst_br;
this->myparams.push_back(dims.x);
this->myparams.push_back(dims.y);
this->params = params;
this->dims = dims;
N = 2;
itmax = N * 1000;
usingAorB = 2;
}
MyPowell::MyPowell()
{
usingAorB = 3;
}
double MyPowell::obj(vector<double> &myparams)
{
if (1 == usingAorB)
{
vector<Point2d> ppts = Dewarp::projectKeypoints(keypoint_index, myparams);
double total = 0;
for (int i = 0; i < ppts.size(); i++)
{
double x = dstpoints[i].x - ppts[i].x;
double y = dstpoints[i].y - ppts[i].y;
total += (x * x + y * y);
}
return total;
}
else if(2 == usingAorB)
{
dims.x = myparams[0];
dims.y = myparams[1];
//cout << "dims.x " << dims.x << " dims.y " << dims.y << endl;
vector<Point2d> vdims = { dims };
vector<Point2d> proj_br = Dewarp::projectXY(vdims, params);
double total = 0;
double x = dst_br.x - proj_br[0].x;
double y = dst_br.y - proj_br[0].y;
total += (x * x + y * y);
return total;
}
return 0;
}
void MyPowell::powell(vector<double> &x, vector<vector<double>> &direc, double ftol, double &fval)
{
vector<double> x1;
vector<double> x2;
vector<double> direc1;
int myitmax = 20;
if(N>500)
myitmax = 10;
else if (N > 300)
{
myitmax = 15;
}
double fx2, t, fx, dum, delta;
fval = obj(x);
int bigind;
for (int j = 0; j < N; j++)
{
x1.push_back(x[j]);
}
int iter = 0;
while (true)
{
do
{
do
{
iter += 1;
fx = fval;
bigind = 0;
delta = 0.0;
for (int i = 0; i < N; i++)
{
direc1 = direc[i];
fx2 = fval;
linmin(x, direc1, N, fval);
if (fabs(fx2 - fval) > delta)
{
delta = fabs(fx2 - fval);
bigind = i;
}
}
if (2.0 * fabs(fx - fval) <= ftol * (fabs(fx) + fabs(fval)) + 1e-7)
{
erase(direc1, x2, x1);
return;
}
if (iter >= itmax)
{
cout << "powell exceeding maximum iterations" << endl;
return;
}
if (!x2.empty())
{
x2.clear();
}
for (int j = 0; j < N; j++)
{
x2.push_back(2.0*x[j] - x1[j]);
direc1[j] = x[j] - x1[j];
x1[j] = x[j];
}
myitmax--;
cout << fx2 << endl;
fx2 = obj(x2);
if (myitmax < 0)
return;
} while (fx2 >= fx);
dum = fx - 2 * fval + fx2;
t = 2.0*dum*pow((fx - fval - delta), 2) - delta * pow((fx - fx2), 2);
} while (t >= 0.0);
linmin(x, direc1, N, fval);
direc[bigind] = direc1;
}
}
double MyPowell::sign(double a)//, double b)
{
if (a > 0.0)
{
return 1;
}
else
{
if (a < 0.0)
{
return -1;
}
}
return 0;
}
double MyPowell::sqr(double a)
{
return a * a;
}
void MyPowell::linmin(vector<double>& p, vector<double>& xit, int n, double &fret)
{
double tol = 1e-2;
ncom = n;
pcom = p;
xicom = xit;
double ax = 0.0;
double xx = 1.0;
double bx = 0.0;
double fa, fb, fx, xmin;
mnbrak(ax, xx, bx, fa, fx, fb);
fret = brent(ax, xx, bx, xmin, tol);
for (int i = 0; i < n; i++)
{
xit[i] = (xmin * xit[i]);
p[i] += xit[i];
}
}
void MyPowell::mnbrak(double & ax, double & bx, double & cx,
double & fa, double & fb, double & fc)
{
const double GOLD = 1.618034, GLIMIT = 110.0, TINY = 1e-20;
double val, fw, tmp2, tmp1, w, wlim;
double denom;
fa = f1dim(ax);
fb = f1dim(bx);
if (fb > fa)
{
val = ax;
ax = bx;
bx = val;
val = fb;
fb = fa;
fa = val;
}
cx = bx + GOLD * (bx - ax);
fc = f1dim(cx);
int iter = 0;
while (fb >= fc)
{
tmp1 = (bx - ax) * (fb - fc);
tmp2 = (bx - cx) * (fb - fa);
val = tmp2 - tmp1;
if (fabs(val) < TINY)
{
denom = 2.0*TINY;
}
else
{
denom = 2.0*val;
}
w = bx - ((bx - cx)*tmp2 - (bx - ax)*tmp1) / (denom);
wlim = bx + GLIMIT * (cx - bx);
if ((bx - w) * (w - cx) > 0.0)
{
fw = f1dim(w);
if (fw < fc)
{
ax = bx;
fa = fb;
bx = w;
fb = fw;
return;
}
else if (fw > fb)
{
cx = w;
fc = fw;
return;
}
w = cx + GOLD * (cx - bx);
fw = f1dim(w);
}
else
{
if ((cx - w)*(w - wlim) >= 0.0)
{
fw = f1dim(w);
if (fw < fc)
{
bx = cx;
cx = w;
w = cx + GOLD * (cx - bx);
fb = fc;
fc = fw;
fw = f1dim(w);
}
}
else if ((w - wlim)*(wlim - cx) >= 0.0)
{
w = wlim;
fw = f1dim(w);
}
else
{
w = cx + GOLD * (cx - bx);
fw = f1dim(w);
}
}
ax = bx;
bx = cx;
cx = w;
fa = fb;
fb = fc;
fc = fw;
}
}
double MyPowell::f1dim(double x)
{
vector<double> xt;
for (int j = 0; j < ncom; j++)
{
xt.push_back(pcom[j] + x * xicom[j]);
}
return obj(xt);
}
double MyPowell::brent(double ax, double bx, double cx, double & xmin, double tol = 1.48e-8)
{
const double CGOLD = 0.3819660, ZEPS = 1.0e-4;
int itmax = 500;
double a = MIN(ax, cx);
double b = MAX(ax, cx);
double v = bx;
double w = v, x = v;
double deltax = 0.0;
double fx = f1dim(x);
double fv = fx;
double fw = fx;
double rat = 0, u = 0, fu;
int iter;
int done;
double dx_temp, xmid, tol1, tol2, tmp1, tmp2, p;
for (iter = 0; iter < 500; iter++)
{
xmid = 0.5 * (a + b);
tol1 = tol * fabs(x) + ZEPS;
tol2 = 2.0*tol1;
if (fabs(x - xmid) <= (tol2 - 0.5*(b - a)))
break;
done = -1;
if (fabs(deltax) > tol1)
{
tmp1 = (x - w) * (fx - fv);
tmp2 = (x - v) * (fx - fw);
p = (x - v) * tmp2 - (x - w) * tmp1;
tmp2 = 2.0 * (tmp2 - tmp1);
if (tmp2 > 0.0)
p = -p;
tmp2 = fabs(tmp2);
dx_temp = deltax;
deltax = rat;
if ((p > tmp2 * (a - x)) && (p < tmp2 * (b - x)) &&
fabs(p) < fabs(0.5 * tmp2 * dx_temp))
{
rat = p / tmp2;
u = x + rat;
if ((u - a) < tol2 || (b - u) < tol2)
{
rat = fabs(tol1) * sign(xmid - x);
}
done = 0;
}
}
if(done)
{
if (x >= xmid)
{
deltax = a - x;
}
else
{
deltax = b - x;
}
rat = CGOLD * deltax;
}
if (fabs(rat) >= tol1)
{
u = x + rat;
}
else
{
u = x + fabs(tol1) * sign(rat);
}
fu = f1dim(u);
if (fu > fx)
{
if (u < x)
{
a = u;
}
else
{
b = u;
}
if (fu <= fw || w == x)
{
v = w;
w = u;
fv = fw;
fw = fu;
}
else if (fu <= fv || v == x || v == w)
{
v = u;
fv = fu;
}
}
else
{
if (u >= x)
a = x;
else
b = x;
v = w;
w = x;
x = u;
fv = fw;
fw = fx;
fx = fu;
}
}
if(iter > itmax)
cout << "\n Brent exceed maximum iterations.\n\n";
xmin = x;
return fx;
}
vector<double> MyPowell::usePowell()
{
ftol = 1e-4;
vector<vector<double>> xi;
for (int i = 0; i < N; i++)
{
vector<double> xii;
for (int j = 0; j < N; j++)
{
xii.push_back(0);
}
xii[i]=(1.0);
xi.push_back(xii);
}
double fret = 0;
powell(myparams, xi, ftol, fret);
//for (int i = 0; i < xi.size(); i++)
//{
// double a = obj(xi[i]);
// if (fret > a)
// {
// fret = a;
// myparams = xi[i];
// }
//}
cout << "final result" << fret << endl;
return myparams;
}
void MyPowell::erase(vector<double>& pbar, vector<double>& prr, vector<double>& pr)
{
for (int i = 0; i < pbar.size(); i++)
{
pbar[i] = 0;
}
for (int i = 0; i < prr.size(); i++)
{
prr[i] = 0;
}
for (int i = 0; i < pr.size(); i++)
{
pr[i] = 0;
}
}
I used PRAXIS library, because it doesn't need derivative information and is fast.
I modified the code a little to my needs and now it is faster than original version written in Python.
I am attempting to implement the Bresenham line algorithm in a c++ paint program.
It draws fine when x is increasing but it seems to do a weird algorithm
int dx = old_x - x;
int dy = old_y - y;
if (dx >= 0){
step_x = 1;
} else {
step_x = -1;
dx = fabs(dx);
}
if (dy >= 0){
step_y = 1;
} else {
step_y = -1;
dy = fabs(dy);
}
int dx2 = dx * 2;
int dy2 = dy * 2;
if (dx > dy){
err = dy2 - dx;
for (int i = 0; i <= dx; i++){
currTool.draw(old_x, old_y);
if (err >= 0){
err -= dx2;
old_y += step_y;
}
err += dy2;
old_x += step_y;
}
} else {
err = dx2 - dy;
for (int i = 0; i <= dy; i++){
currTool.draw(old_x, old_y);
if (err >= 0){
err -= dy2;
old_x += step_x;
}
err += dx2;
old_y += step_y;
}
}
I have tried multiple things, such as flipping the x, y I have rewritten the code following multiple examples and have had no luck.
This is the link to the site I converted
http://www.falloutsoftware.com/tutorials/dd/dd4.htm
Here is a picture of what is happening to my program
I have a problem when trying to write a code to solve the nbody problem when using an array which contains all the bodies. My code doesn't do the right thing and i have no idea where it goes wrong though i suspect it has something to do with passing the array as a reference. To make it easier to spot my mistakes i will inculde a working version of the code which doesn't use the array containing all the bodies in the same way. The following is the code which doesn't work( when calculataing the orbit of a body you get a straight line instead of an ellipse with this code):
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <fstream>
#define h 10000.0 // size of the timestep
#define N 3 // number of bodies
#define G 6.67384*pow(10.0,-11) // gravitational constant
using namespace std;
class particle{
public:
double kx1,kx2,kx3,kx4, kv1, kv2, kv3, kv4;
double ky1, ky2, ky3, ky4, kvy1, kvy2, kvy3, kvy4;
double x,y,vx,vy,m;
double dist(particle body){
double dx = x - body.x;
double dy = y - body.y;
return sqrt(pow(dx,2.0)+pow(dy,2.0));
}
double g(double x1, double y1,particle body){
return G*body.m*(body.x-x1)/pow(dist(body),3.0);
}
double p(double x1, double y1, particle body){
return G*body.m*(body.y-y1)/pow(dist(body),3.0);
}
void update(){ //object advances 1 step
x = x + (1/6.0)*(kx1+2*kx2+2*kx3+kx4);
vx = vx + (1/6.0)*(kv1+2*kv2+2*kv3+kv4);
y = y + (1/6.0)*(ky1+2*ky2+2*ky3+ky4);
vy = vy + (1/6.0)*(kvy1+2*kvy2+2*kvy3+kvy4);
}
void create(double x1, double y1, double vx1, double vy1, double m1){ //choose the inital conditions for a new object
x = x1;
y = y1;
vx = vx1;
vy = vy1;
m =m1;
}
bool operator ==(particle &other){
if(x == other.x && y == other.y && vx == other.vx && vy == other.vy){
return true;
}
}
};
particle bodies[N];
void set(particle (&bodies)[N]){
bodies[0].create(1, 1, -2, 1, 2*pow(10.0,30));
bodies[1].create(2870671*pow(10.0,6), 0, 0, 6800, 8.6810*pow(10.0,25));
bodies[2].create(4498542*pow(10.0,6),0 ,0, 5430, 1.0243*pow(10.0,26));
}
double xforce(double x1, double y1, particle body, particle bodies[N]){ //force in the x- direction
double fx = 0;
for (int i = 0; i < N; i++){
if (bodies[i] == body ){;}
else{
fx += body.g(x1,y1,bodies[i]);
}
}
return fx;
}
double yforce(double x1, double y1, particle body, particle bodies[N]){ //force in the y- direction
double fy = 0;
for (int i = 0; i < N; i++){
if (bodies[i] == body) {;}
else{
fy += body.p(x1,y1,bodies[i]);
}
}
return fy;
}
void corr(double t, particle bodies[N]){ //runge kutta 4
for(int i =0; i <= N; i++){
bodies[i].kx1 = t*bodies[i].vx;
bodies[i].kv1 = t*xforce(bodies[i].x, bodies[i].y, bodies[i], bodies);
bodies[i].ky1 = t*bodies[i].vy;
bodies[i].kvy1 = t*yforce(bodies[i].x, bodies[i].y, bodies[i], bodies);
bodies[i].kx2 = t*(bodies[i].vx + 0.5*bodies[i].kv1);
bodies[i].kv2 = t*xforce(bodies[i].x + 0.5*bodies[i].kx1, bodies[i].y + 0.5*bodies[i].ky1, bodies[i], bodies);
bodies[i].ky2 = t*(bodies[i].vy + 0.5*bodies[i].kvy1);
bodies[i].kvy2 = t*yforce(bodies[i].x + 0.5*bodies[i].kx1, bodies[i].y + 0.5*bodies[i].ky1, bodies[i], bodies);
bodies[i].kx3 = t*(bodies[i].vx+ 0.5*bodies[i].kv2);
bodies[i].kv3 = t*xforce(bodies[i].x + 0.5*bodies[i].kx2, bodies[i].y + 0.5*bodies[i].ky2, bodies[i], bodies);
bodies[i].ky3 = t*(bodies[i].vy+ 0.5*bodies[i].kvy2);
bodies[i].kvy3 = t*yforce(bodies[i].x + 0.5*bodies[i].kx2, bodies[i].y + 0.5*bodies[i].ky2,bodies[i], bodies);
bodies[i].kx4 = t*(bodies[i].vx + bodies[i].kv3);
bodies[i].kv4 = t*xforce(bodies[i].x+ bodies[i].kx3, bodies[i].y + bodies[i].ky3, bodies[i], bodies);
bodies[i].ky4 = t*(bodies[i].vy + bodies[i].kvy3);
bodies[i].kvy4 = t*yforce(bodies[i].x + bodies[i].kx3, bodies[i].y + bodies[i].ky3, bodies[i], bodies);
}
}
void calculate(particle (&bodies)[N]){
set(bodies);
ofstream file;
file.open("tester.txt");
for(int i =0; i <=50000; i++){
corr(h, bodies);
for(int j = 0; j <= N; j++){
bodies[j].update();
}
if( i%1000 == 0){
file << i*h;
for(int j = 0; j <=N ; j++){
file <<" "<<bodies[j].x << " "<< bodies[j].y;
}
file <<" "<<"\n";
}
else{;}
}
file.close();
}
int main()
{
calculate(bodies);
system("pause");
return 0;
}
Here is the working version of the code, both are supposed to solve the same problem:
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <fstream>
#define h 10000.0
#define N 3
#define G 6.67384*pow(10.0,-11)
using namespace std;
class particle{
public:
double kx1,kx2,kx3,kx4, kv1, kv2, kv3, kv4;
double ky1, ky2, ky3, ky4, kvy1, kvy2, kvy3, kvy4;
double x,y,vx,vy,m;
double dist(particle body){
double dx = x - body.x;
double dy = y - body.y;
return sqrt(pow(dx,2.0)+pow(dy,2.0));
}
double g(double x1, double y1,particle body){
return G*body.m*(body.x-x1)/pow(dist(body),3.0);
}
double p(double x1, double y1, particle body){
return G*body.m*(body.y-y1)/pow(dist(body),3.0);
}
void update(){
x = x + (1/6.0)*(kx1+2*kx2+2*kx3+kx4);
vx = vx + (1/6.0)*(kv1+2*kv2+2*kv3+kv4);
y = y + (1/6.0)*(ky1+2*ky2+2*ky3+ky4);
vy = vy + (1/6.0)*(kvy1+2*kvy2+2*kvy3+kvy4);
}
void create(double x1, double y1, double vx1, double vy1, double m1){
x = x1;
y = y1;
vx = vx1;
vy = vy1;
m =m1;
}
bool operator ==(particle &other){
if(x == other.x && y == other.y && vx == other.vx && vy == other.vy){
return true;
}
}
bool operator !=(particle &other){
if(x != other.x || y != other.y || vx != other.vx || vy != other.vy){
return true;
}
}
};
particle zon, uranus, neptunus;
particle closest[] = {uranus, neptunus};
void set(){
zon.create(1, 1, -2, 1, 2*pow(10.0,30));
uranus.create(2870671*pow(10.0,6), 0, 0, 6800, 8.6810*pow(10.0,25));
neptunus.create(4498542*pow(10.0,6),0 ,0, 5430, 1.0243*pow(10.0,26));
}
double xforce(double x1, double y1, particle body){
particle bodies[] = {zon, uranus, neptunus};
double fx = 0;
for (int i = 0; i < 3; i++){
if (bodies[i] == body ){;}
else{
fx += body.g(x1,y1,bodies[i]);
}
}
return fx;
}
double yforce(double x1, double y1, particle body){
particle bodies[] = {zon, uranus, neptunus};
double fy = 0;
for (int i = 0; i <= 3; i++){
if (bodies[i] == body) {;}
else{
fy += body.p(x1,y1,bodies[i]);
}
}
return fy;
}
void corr(particle& body, double t){
body.kx1 = t*body.vx;
body.kv1 = t*xforce(body.x, body.y, body);
body.ky1 = t*body.vy;
body.kvy1 = t*yforce(body.x, body.y, body);
body.kx2 = t*(body.vx + 0.5*body.kv1);
body.kv2 = t*xforce(body.x + 0.5*body.kx1, body.y + 0.5*body.ky1, body);
body.ky2 = t*(body.vy + 0.5*body.kvy1);
body.kvy2 = t*yforce(body.x + 0.5*body.kx1, body.y + 0.5*body.ky1, body);
body.kx3 = t*(body.vx+ 0.5*body.kv2);
body.kv3 = t*xforce(body.x + 0.5*body.kx2, body.y + 0.5*body.ky2, body);
body.ky3 = t*(body.vy+ 0.5*body.kvy2);
body.kvy3 = t*yforce(body.x + 0.5*body.kx2, body.y + 0.5*body.ky2,body);
body.kx4 = t*(body.vx+body.kv3);
body.kv4 = t*xforce(body.x+ body.kx3, body.y + body.ky3, body);
body.ky4 = t*(body.vy + body.kvy3);
body.kvy4 = t*yforce(body.x + body.kx3, body.y + body.ky3, body);
}
void bereken(){
set();
ofstream file;
file.open("tester.txt");
for(int i =0; i <=50000; i++){
corr(zon, h);
corr(uranus, h);
corr(neptunus, h);
zon.update();
uranus.update();
neptunus.update();
if( i%1000 == 0){
file << i*h <<" "<<zon.x << " "<< zon.y <<" "<<uranus.x<<" " <<uranus.y <<" "<< neptunus.x<<" "<<neptunus.y<<" "<<"\n";
}
else{;}
}
file.close();
}
int main()
{
bereken();
system("pause");
return 0;
}
One problem is that you are overflowing your bodies[] array in 3 places:
#define N 3
particle bodies[N];
for (int i = 0; i <= N; i++) {
bodies[i].x = ... // Oops, access bodies[3] which doesn't exist
The correct loop, which you do use in two places, is:
for (int i = 0; i < N; i++) { // 0 to < N
What i want is that, I have info of 2 points, the starting x,y and mid point x,y and i need to find end line like until some kind of border, like window
here is what I do:
//function for calculating the end point from one location, to specific end location
//like a bullet moving forward in a line
//x,y start location(mouse), x2,y2(rect point location one of the 4) mid point, qx,qy end point(shadow or triangle draw location)
void screenEnd(int x, int y, int x2, int y2, int*qx,int*qy)
{
x = x2-x;
y = y2-y;
float tx = x2,ty = y2;
float result = atan2((float)y,(float)x) * 180 / PI;
float tempx = cos ( result * PI / 180.0 );
float tempy = sin ( result * PI / 180.0 );
bool check = true;
//this part needs optimization
while(check)
{
if(tx < 0|| ty < 0|| tx > 1280 || ty > 720)
{
check = false;
}
else
{
tx += tempx;
ty += tempy;
}
}
*qx = tx;
*qy = ty;
}
what I do is just increase point until it reaches the end.
Is there any way faster?
A classic window clipping task.
Consider a parametric equation where p is the point (x,y).
p(0) = x, y
p(0.5) = x2, y2
p(1) = x+2*(x2-x), y + 2*(y2-y)
p(t) = p(0) + t*(p(1) - p(0))
clip window = 0,0 to 720, 1280 (suspect you really want 719,1279)
The segment to draw initially ranges from t=0.0 to t=1.0. The segment is tested against each of the 4 sides of the bounding box, potentially reducing the t range. Maybe even eliminating all together.
Follows is some old code, enough to get you going.
#include <math.h>
int cliptest(int dz, int z, double *t0, double *t1) {
if (dz < 0) {
double t = ((double) z) / dz;
if (t > *t1)
return 0;
if (t > *t0)
*t0 = t;
} else if (dz > 0) {
double t = ((double) z) / dz;
if (t < *t0)
return 0;
if (t < *t1)
*t1 = t;
} else {
if (z < 0)
return 0;
}
return 1;
}
int clipper(int *px0, int *py0, int *px1, int *py1, int minx, int miny,
int maxx, int maxy) {
double t0, t1;
int dx, dy;
t0 = 0.0;
t1 = 1.0;
dy = *py1 - *py0;
dx = *px1 - *px0;
if (cliptest(-dx, *px0 - minx, &t0, &t1)
&& cliptest(dx, maxx - *px0, &t0, &t1)
&& cliptest(-dy, *py0 - miny, &t0, &t1)
&& cliptest(dy, maxy - *py0, &t0, &t1)) {
if (t1 < 1.0) {
*px1 = round(*px0 + t1*dx);
*py1 = round(*py0 + t1*dy);
}
if (t0 > 0.0) {
*px0 = round(*px0 + t0*dx);
*py0 = round(*py0 + t0*dy);
}
return 1;
}
return 0;
}
int x0 = x;
int y0 = y;
int x1 = x + 2*(x2-x); // Form end point
int y1 = x + 2*(y2-y);
if (clipper(&x0, &y0, &x1, &y1, 0, 0, 720, 1280))
Draw(x0, y0, x1, y2);
else
Handle_LineTotallyClippedOut();