SML Basis Library: what's the rationale for `ArraySlice.copyVec`? - sml

Prior understanding
According to The ArraySlice structure as reported by standardml.org (I don't have an SML 97 manual to check, only an SML 90 PDF manual), ArraySlice.copyVec gets an Array.array parameter as the destination, and not an ArraySlice.slice as one (or at least me) would intuitively expects. Of course, one can use ArraySlice.base to get an array and an index for respectively the dst and di parameters to copyVec. Surprisingly, copyVec from ArraySlice, does not even have a single parameter of type ArraySlice.slice. Fortunately, its src parameter is of type VectorSlice.slice, as intuitively expected.
The question
What's the rationale for ArraySlice.copyVec? Why doesn't it get an ArraySlice.slice as dst?

Presumably, because that would require the additional constraint that both slices have the same length (or at least dst is larger than src). The current API gets by without such an extra side condition. Also, it would probably be somewhat more cumbersome to use.

Related

Why would I ever want to use Maybe instead of a List?

Seeing as the Maybe type is isomorphic to the set of null and singleton lists, why would anyone ever want to use the Maybe type when I could just use lists to accomodate absence?
Because if you match a list against the patterns [] and [x] that's not an exhaustive match and you'll get a warning about that, forcing you to either add another case that'll never get called or to ignore the warning.
Matching a Maybe against Nothing and Just x however is exhaustive. So you'll only get a warning if you fail to match one of those cases.
If you choose your types such that they can only represent values that you may actually produce, you can rely on non-exhaustiveness warnings to tell you about bugs in your code where you forget to check for a given a case. If you choose more "permissive" types, you'll always have to think about whether a warning represents an actual bug or just an impossible case.
You should strive to have accurate types. Maybe expresses that there is exactly one value or that there is none. Many imperative languages represent the "none" case by the value null.
If you chose a list instead of Maybe, all your functions would be faced with the possibility that they get a list with more than one member. Probably many of them would only be defined for one value, and would have to fail on a pattern match. By using Maybe, you avoid a class of runtime errors entirely.
Building on existing (and correct) answers, I'll mention a typeclass based answer.
Different types convey different intentions - returning a Maybe a represents a computation with the possiblity of failing while [a] could represent non-determinism (or, in simpler terms, multiple possible return values).
This plays into the fact that different types have different instances for typeclasses - and these instances cater to the underlying essence the type conveys. Take Alternative and its operator (<|>) which represents what it means to combine (or choose) between arguments given.
Maybe a Combining computations that can fail just means taking the first that is not Nothing
[a] Combining two computations that each had multiple return values just means concatenating together all possible values.
Then, depending on which types your functions use, (<|>) would behave differently. Of course, you could argue that you don't need (<|>) or anything like that, but then you are missing out on one of Haskell's main strengths: it's many high-level combinator libraries.
As a general rule, we like our types to be as snug fitting and intuitive as possible. That way, we are not fighting the standard libraries and our code is more readable.
Lisp, Scheme, Python, Ruby, JavaScript, etc., manage to get along with just one type each, which you could represent in Haskell with a big sum type. Every function handling a JavaScript (or whatever) value must be prepared to receive a number, a string, a function, a piece of the document object model, etc., and throw an exception if it gets something unexpected. People who program in typed languages like Haskell prefer to limit the number of unexpected things that can occur. They also like to express ideas using types, making types useful (and machine-checked) documentation. The closer the types come to representing the intended meaning, the more useful they are.
Because there are an infinite number of possible lists, and a finite number of possible values for the Maybe type. It perfectly represents one thing or the absence of something without any other possibility.
Several answers have mentioned exhaustiveness as a factor here. I think it is a factor, but not the biggest one, because there is a way to consistently treat lists as if they were Maybes, which the listToMaybe function illustrates:
listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a
That's an exhaustive pattern match, which rules out any straightforward errors.
The factor I'd highlight as bigger is that by using the type that more precisely models the behavior of your code, you eliminate potential behaviors that would be possible if you used a more general alternative. Say for example you have some context in your code where you uses a type of the form a -> [b], though the only correct alternatives (given your program's specification) are empty or singleton lists. Try as hard as you may to enforce the convention that this context should obey that rule, it's still possible that you'll mess up and:
Somehow a function used in that context will produce a list of two or more items;
And somehow a function that uses the results produced in that context will observe whether the lists have two or more items, and behave incorrectly in that case.
Example: some code that expects there to be no more than one value will blindly print the contents of the list and thus print multiple items when only one was supposed to be.
But if you use Maybe, then there really must be either one value or none, and the compiler enforces this.
Even though isomorphic, e.g. QuickCheck will run slower because of the increase in search space.

What's the OCaml naming convention for "constructors"?

An OCaml module usually contains at least one abstract type whose idiomatic name is t. Also, there's usually a function that constructs a value of that type.
What is the usual / idiomatic name for this?
The StdLib is not consistent here. For example:
There's Array.make and a deprecated function Array.create. So that function should be named make?
On the other hand, there's Buffer.create but not Buffer.make. So that function should be named create?
Some people find this way of module design makes OCaml programming easier, but this is not a mandatory OCaml programming style, and I do not think there is no official name for it. I personally call it "1-data-type-per-1-module" style. (I wrote a blog post about this but it is in Japanese. I hope some autotranslator gives some useful information to you ...)
Defining a module dedicated to one data type and fix the name of the type t has some values:
Nice namespacing
Module names explain about what its type and values are, therefore you do not need to repeat type names inside: Buffer.add_string instead of add_string_to_buffer, and Buffer.create instead of create_buffer. You can also avoid typing the same module names with local module open:
let f () =
let open Buffer in
let b = create 10 in (* instead of Buffer.create *)
add_string b "hello"; (* instead of Buffer.add_string *)
contents b (* instead of Buffer.contents *)
Easy ML functor application
If an ML functor takes an argument module with a data type, we have a convention that the type should be called t. Modules with data type t are easily applied to these functors without renaming of the type.
For Array.create and Array.make, I think this is to follow the distinction of String.create and String.make.
String.create is to create a string with uninitialized contents. The created string contains random bytes.
String.make is to create a string filled with the given char.
We had Array.create for long, to create an array whose contents are filled with the given value. This behavior corresponds with String.make rather than String.create. That's why it is now renamed to Array.make, and Array.create is obsolete.
We cannot have Array.create in OCaml with the same behaviour of String.create. Unlike strings, arrays cannot be created without initialization, since random bytes may not represent a valid OCaml value for the content in general, which leads to a program crash.
Following this, personally I use X.create for a function to create an X.t which does not require an initial value to fill it. I use X.make if it needs something to fill.
I had the same question when I picked up the language a long time ago. I never use make and I think few people do.
Nowadays I use create for heavy, often imperative or stateful values, e.g. a Unicode text segmenter. And I use v for, functional, lighter values in DSL/combinator based settings, e.g. the various constructors in Gg, for example for 2D vectors, or colors.
As camlspotter mentions in his answer the standard library distinguishes make and create for values that need an initial value to fill in. I think it's better to be regular here and always use create regardless. If your values support an optional initial fill value, add an optional argument to create rather than multiply the API entry points.

Passing lists from Mathematica to c++ (Mathlink)

I simply want to pass a list of integers to a function written in C++. I've set up the template (.tm) file and all, and I can successfully call a test function whith scalar arguments. Calling the function with the list argument behaves as though the function was not defined at all. I suspect that the argument types don't match.
In the documentation for templates (http://reference.wolfram.com/mathematica/ref/file/file.tm.html) the datatype for lists is something like "Int32List". When I use that, my C++ function must contain an extra long parameter for the list length. The only example code which uses a list is "sumalist.tm". This example uses IntegerList (a type which doesn't appear in the doku).
When I use Int32List, the mprep result requires a function with an extra integer argument (not long as written in the doku). When I use the undocumented IntegerList type, the extra argument is of type long.
During my experiments with scalar types, I had a similar problem - a c++ function was called properly when using "Integer" in the tm-file, and not recognized with "Integer32".
The "sumalist.tm" example also uses a strange Pattern (list:{___Integer}) about which I didn't find any documentation. I'd also like to understand what the Evaluate line means (I suspect that it's used make the function callable without the curly braces around the list).
So who know which datatypes are really appropriate to call a c++ function with a list - maybe also with reals... ?
The mapping of MathLink data types (e.g., Integer32, Integer32List, ...) to C/C++ types is described on the MathLink template file documentation page.
The page no longer documents the old interface types Integer, Real, IntegerList and RealList. These should no longer be used, because the mapping of these types depends on C types whose bit length is platform and compiler dependent (e.g., long). Use the corresponding new type with explicit bit length instead (i.e., Integer32 or Integer64 instead of Integer). The old interface types are still documented in the somewhat dated MathLink reference guide.
The following talk slides contain a simple MathLink example that shows how to implement a MathLink function that adds a scalar value to a vector of reals. This may serve as a starting point.
I don't know much about MathLink, but I can explain the pattern, list:{___Integer}.
The colon is just the general form for a named pattern, that is symbol:pattern just says that the object referred to by symbol has to match pattern. Indeed, pattern like a_Integer or b__List are really just short forms for a:_Integer and b:__List.
So what we are left with interpreting is {___Integer}. This is a pattern matching a list of arbitrary many (including zero) integers. It works as follows:
{Pattern} is the Pattern for a list whose contents matches Pattern
___Integer is the Pattern for a sequence of zero or more Integers.

What type of input check can be performed against binary data in C++?

let's say I have a function like this in C++, which I wish to publish to third parties. I want to make it so that the user will know what happened, should he/she feeds invalid data in and the library crashes.
Let's say that, if it helps, I can change the interface as well.
int doStuff(unsigned char *in_someData, int in_data_length);
Apart from application specific input validation (e.g. see if the binary begins with a known identifier etc.), what can be done? E.g. can I let the user know, if he/she passes in in_someData that has only 1 byte of data but passes in 512 as in_data_length?
Note: I already asked a similar question here, but let me ask from another angle..
It cannot be checked whether the parameter in_data_length passed to the function has the correct value. If this were possible, the parameter would be redundant and thus needless.
But a vector from the standard template library solves this:
int doStuff(const std::vector<unsigned char>& in_someData);
So, there is no possibility of a "NULL buffer" or an invalid data length parameter.
If you would know how many bytes passed by in_someData why would you need in_data_length at all?
Actually, you can only check in_someData for NULL and in_data_length for positive value. Then return some error code if needed. If a user passed some garbage to your function, this problem is obviously not yours.
In C++, the magic word you're looking for is "exception". That gives you a method to tell the caller something went wrong. You'll end up with code something like
int
doStuff(unsigned char * inSomeData, int inDataLength) throws Exception {
// do a test
if(inDataLength == 0)
throw new Exception("Length can't be 0");
// only gets here if it passed the test
// do other good stuff
return theResult;
}
Now, there's another problem with your specific example, because there's no universal way in C or C++ to tell how long an array of primitives really is. It's all just bits, with inSomeData being the address of the first bits. Strings are a special case, because there's a general convention that a zero byte ends a string, but you can't depend on that for binary data -- a zero byte is just a zero byte.
Update
This has currently picked up some downvotes, apparently by people misled by the comment that exception specifications had been deprecated. As I noted in a comment below, this isn't actually true -- while the specification will be deprecated in C++11, it's still part of the language now, so unless questioner is a time traveler writing in 2014, the throws clause is still the correct way to write it in C++.
Also note that the original questioner says "I want to make it so that the user will know what happened, should he/she feeds [sic] invalid data in and the library crashes." Thus the question is not just what can I do to validate the input data (answer: not much unless you know more about the inputs than was stated), but then how do I tell the caller they screwed up? And the answer to that is "use the exception mechanism" which has certainly not been deprecated.

Named parameter string formatting in C++

I'm wondering if there is a library like Boost Format, but which supports named parameters rather than positional ones. This is a common idiom in e.g. Python, where you have a context to format strings with that may or may not use all available arguments, e.g.
mouse_state = {}
mouse_state['button'] = 0
mouse_state['x'] = 50
mouse_state['y'] = 30
#...
"You clicked %(button)s at %(x)d,%(y)d." % mouse_state
"Targeting %(x)d, %(y)d." % mouse_state
Are there any libraries that offer the functionality of those last two lines? I would expect it to offer a API something like:
PrintFMap(string format, map<string, string> args);
In Googling I have found many libraries offering variations of positional parameters, but none that support named ones. Ideally the library has few dependencies so I can drop it easily into my code. C++ won't be quite as idiomatic for collecting named arguments, but probably someone out there has thought more about it than me.
Performance is important, in particular I'd like to keep memory allocations down (always tricky in C++), since this may be run on devices without virtual memory. But having even a slow one to start from will probably be faster than writing it from scratch myself.
The fmt library supports named arguments:
print("You clicked {button} at {x},{y}.",
arg("button", "b1"), arg("x", 50), arg("y", 30));
And as a syntactic sugar you can even (ab)use user-defined literals to pass arguments:
print("You clicked {button} at {x},{y}.",
"button"_a="b1", "x"_a=50, "y"_a=30);
For brevity the namespace fmt is omitted in the above examples.
Disclaimer: I'm the author of this library.
I've always been critic with C++ I/O (especially formatting) because in my opinion is a step backward in respect to C. Formats needs to be dynamic, and makes perfect sense for example to load them from an external resource as a file or a parameter.
I've never tried before however to actually implement an alternative and your question made me making an attempt investing some weekend hours on this idea.
Sure the problem was more complex than I thought (for example just the integer formatting routine is 200+ lines), but I think that this approach (dynamic format strings) is more usable.
You can download my experiment from this link (it's just a .h file) and a test program from this link (test is probably not the correct term, I used it just to see if I was able to compile).
The following is an example
#include "format.h"
#include <iostream>
using format::FormatString;
using format::FormatDict;
int main()
{
std::cout << FormatString("The answer is %{x}") % FormatDict()("x", 42);
return 0;
}
It is different from boost.format approach because uses named parameters and because
the format string and format dictionary are meant to be built separately (and for
example passed around). Also I think that formatting options should be part of the
string (like printf) and not in the code.
FormatDict uses a trick for keeping the syntax reasonable:
FormatDict fd;
fd("x", 12)
("y", 3.141592654)
("z", "A string");
FormatString is instead just parsed from a const std::string& (I decided to preparse format strings but a slower but probably acceptable approach would be just passing the string and reparsing it each time).
The formatting can be extended for user defined types by specializing a conversion function template; for example
struct P2d
{
int x, y;
P2d(int x, int y)
: x(x), y(y)
{
}
};
namespace format {
template<>
std::string toString<P2d>(const P2d& p, const std::string& parms)
{
return FormatString("P2d(%{x}; %{y})") % FormatDict()
("x", p.x)
("y", p.y);
}
}
after that a P2d instance can be simply placed in a formatting dictionary.
Also it's possible to pass parameters to a formatting function by placing them between % and {.
For now I only implemented an integer formatting specialization that supports
Fixed size with left/right/center alignment
Custom filling char
Generic base (2-36), lower or uppercase
Digit separator (with both custom char and count)
Overflow char
Sign display
I've also added some shortcuts for common cases, for example
"%08x{hexdata}"
is an hex number with 8 digits padded with '0's.
"%026/2,8:{bindata}"
is a 24-bit binary number (as required by "/2") with digit separator ":" every 8 bits (as required by ",8:").
Note that the code is just an idea, and for example for now I just prevented copies when probably it's reasonable to allow storing both format strings and dictionaries (for dictionaries it's however important to give the ability to avoid copying an object just because it needs to be added to a FormatDict, and while IMO this is possible it's also something that raises non-trivial problems about lifetimes).
UPDATE
I've made a few changes to the initial approach:
Format strings can now be copied
Formatting for custom types is done using template classes instead of functions (this allows partial specialization)
I've added a formatter for sequences (two iterators). Syntax is still crude.
I've created a github project for it, with boost licensing.
The answer appears to be, no, there is not a C++ library that does this, and C++ programmers apparently do not even see the need for one, based on the comments I have received. I will have to write my own yet again.
Well I'll add my own answer as well, not that I know (or have coded) such a library, but to answer to the "keep the memory allocation down" bit.
As always I can envision some kind of speed / memory trade-off.
On the one hand, you can parse "Just In Time":
class Formater:
def __init__(self, format): self._string = format
def compute(self):
for k,v in context:
while self.__contains(k):
left, variable, right = self.__extract(k)
self._string = left + self.__replace(variable, v) + right
This way you don't keep a "parsed" structure at hand, and hopefully most of the time you'll just insert the new data in place (unlike Python, C++ strings are not immutable).
However it's far from being efficient...
On the other hand, you can build a fully constructed tree representing the parsed format. You will have several classes like: Constant, String, Integer, Real, etc... and probably some subclasses / decorators as well for the formatting itself.
I think however than the most efficient approach would be to have some kind of a mix of the two.
explode the format string into a list of Constant, Variable
index the variables in another structure (a hash table with open-addressing would do nicely, or something akin to Loki::AssocVector).
There you are: you're done with only 2 dynamically allocated arrays (basically). If you want to allow a same key to be repeated multiple times, simply use a std::vector<size_t> as a value of the index: good implementations should not allocate any memory dynamically for small sized vectors (VC++ 2010 doesn't for less than 16 bytes worth of data).
When evaluating the context itself, look up the instances. You then parse the formatter "just in time", check it agaisnt the current type of the value with which to replace it, and process the format.
Pros and cons:
- Just In Time: you scan the string again and again
- One Parse: requires a lot of dedicated classes, possibly many allocations, but the format is validated on input. Like Boost it may be reused.
- Mix: more efficient, especially if you don't replace some values (allow some kind of "null" value), but delaying the parsing of the format delays the reporting of errors.
Personally I would go for the One Parse scheme, trying to keep the allocations down using boost::variant and the Strategy Pattern as much I could.
Given that Python it's self is written in C and that formatting is such a commonly used feature, you might be able (ignoring copy write issues) to rip the relevant code from the python interpreter and port it to use STL maps rather than Pythons native dicts.
I've writen a library for this puporse, check it out on GitHub.
Contributions are wellcome.