OpenCL - Vectorization vs In-thread for loop - c++

I have a problem where I need to process a known number of threads in parallel (great), but for which each thread may have a vastly different number of internal iterations (not great). In my mind, this makes it better to do a kernel scheme like this:
__kernel something(whatever)
{
unsigned int glIDx = get_global_id(0);
for(condition_from_whatever)
{
}//alternatively, do while
}
where id(0) is known beforehand, rather than:
__kernel something(whatever)
{
unsigned int glIDx = get_global_id(0);
unsigned int glIDy = get_global_id(1); // max "unroll dimension"
if( glIDy_meets_condition)
do_something();
else
dont_do_anything();
}
which would necessarily execute for the FULL POSSIBLE RANGE of glIDy, with no way to terminate beforehand, as per this discussion:
Killing OpenCL Kernels
I can't seem to find any specific information about costs of dynamic-sized forloops / do-while statements within kernels, though I do see them everywhere in kernels in Nvidia's and AMD's SDK. I remember reading something about how the more aperiodic an intra-kernel condition branch is, the worse the performance.
ACTUAL QUESTION:
Is there a more efficient way to deal with this on a GPU architecture than the first scheme I proposed?
I'm also open to general information about this topic.
Thanks.

I don't think there's a general answer that can be given to that question. It really depends on your problem.
However here are some considerations about this topic:
for loop / if else statements may or may not have an impact to the performance of a kernel. The fact is the performance cost is not at the kernel level but at the work-group level. A work-group is composed of one or more warps (NVIDIA)/ wavefront (AMD). These warps (I'll keep the NVIDIA terminology but it's exactly the same for AMD) are executed in lock-step.
So if within a warp you have divergence because of an if else (or a for loop with different iterations number) the execution will be serialized. That is to say that the threads within this warp following the first path will do their jobs will the others will idle. Once their job is finished, these threads will idle while the others will start working.
Another problem arise with these statements if you need to synchronize your threads with a barrier. You'll have an undefined behavior if not all the threads hit the barrier.
Now, knowing that and depending on your specific problem, you might be able to group your threads in such a fashion that within the work-groups there is not divergence, though you'll have divergence between work-groups (no impact there).
Knowing also that a warp is composed of 32 threads and a wavefront of 64 (maybe not on old AMD GPUs - not sure) you could make the size of your well organized work-groups equal or a multiple of these numbers. Note that it is quite simplified because some other problems should be taken into consideration. See for instance this question and the answer given by Chanakya.sun (maybe more digging on that topic would be nice).
In the case your problem could not be organized as just described, I'd suggest to consider using OpenCL on CPUs which are quite good dealing with branching. If I well recall, typically you'll have one work-item per work-group. In that case, better to check the documentation from Intel and AMD for CPU. I also like very much the chapter 6 of Heterogeneous Computing with OpenCL which explains the differences between using OCL with GPUs and CPUs when programming.
I like this article too. It's mainly a discussion about increasing performance for a simple reduction on GPU (not your problem), but the last part of the article examines also performance on CPUs.
Last thing, regarding your comments on the answer provided by #Oak about the "intra-device thread queuing support" which is actually called dynamic parallelism. This feature would obviously solve your problem but even using CUDA you'd need a device with capability 3.5 or higher. So even NVIDIA GPUs with Kepler GK104 architecture don't support it (capability 3.0). For OCL, the dynamic parallelism is part of the standard version 2.0. (as far as I know there is no implementation yet).

I like the 2nd version more, since for inserts a false dependency between iterations. If the inner iterations are independent, send each to a different work item and let the OpenCL implementation sort out how best to run them.
Two caveats:
If the average number of iterations is significantly lower than the max number of iterations, this might not be worth the extra dummy work items.
You will have a lot more work items and you still need to calculate the condition for each... if calculating the condition is complicated this might not be a good idea.
Alternatively, you can flatten the indices into the x dimension, group all the iterations into the same work-group, then calculate the condition just once per workgroup and use local memory + barriers to sync it.

Related

Threading: Most efficient way for many repeated parallel sweeps over a small array?

I'm optimizing a solver (systems of linear equations) whose most critical part consists of
Many (1000+) short (~10-1000 Microseconds) massively parallel (128 threads on 64 CPU cores) sweeps over small (CPU cache size) arrays, pseudocode:
for(i=0;i<num_iter;i++)
{
// SYNC-POINT
parallel_for(j=0;j<array_size;j++)
array_out[j] = some_function( array_in[j] )
swap( array_in, array_out );
}
Unfortunately, the standard parallelization constructs provided by OMP or TBB I tried so far
(serial outer loop plus parallel inner loop, e.g. via tbb::parallel_for) doesn't seem to handle this extremly fine grained parallelism very well, because the thread libraries' setup cost for the inner loop seems to dominates the time spent within the relatively short inner loop. (Note that very fine grained inner loops are crucial for the total performance of the algorithm because this way all data can be kept in L2/L3 CPU cache))
EDIT to address answers,questions & comments so far:
The example is just pseudo code to illustrate the idea. The actual implementation takes care about false sharing by padding ARRAY lines with CPU cache-line.
some_func(array_in, j) is a simple stencil that accesses the current point j and a small neighborhood around it, e.g. sume_func( array, j ) = array[j-1]+array[j]+array[j+1];
The answer given by Jérôme Richard touches a very intersting point
about barriers ( here is IMO the root of the problem). It is suggested to "replace barriers by local point-to-point neighbor synchronizations. Using task-based parallel runtimes can help to do that easily. Weaker synchronization patterns are the key". Interesting but very general. How exactly would this be accomplished in this case ?
Does "point-to-point-neighbor synchronization" involve an atomic primitive for every entry of the array ?
The general solution to this problem is to create the threads and distribute the work only once, and then use fast synchronization point in the threads. In this case, the outer loop is moved in the threaded function. This is possible with the TBB library by providing a range (tbb::blocked_range<size_t> ) and a function to tbb::parallel_for (see an example here).
Barriers are known to scale poorly on many core architectures, especially in such codes. The only way to make the program scale is to reduce the synchronization between threads so to make it more local. For example, for stencils, the solution is to replace barriers by local point-to-point neighbor synchronizations. Using task-based parallel runtimes can help to do that easily. Weaker synchronization patterns are the key to solve such problem. In fact, note the fundamental laws of physics prevent barriers to scale because clocks cannot be fully synchronized in general relativity and computers (unfortunately) obeys to physics law.
Many core systems are now nearly always NUMA ones. Regarding your configuration, you certainly use an AMD Threadripper processor which have multiple NUMA nodes. This means you should care about locality and the NUMA allocation policy. The default policy is generally the first touch. This means that is your initialization is sequential or threads are mapped differently, then cores have to fetch data from remote NUMA nodes which is slow. In the worst case, all cores can access to the same NUMA node and saturate it resulting in a possibly slower execution than the sequential version. You should generally make it parallel for better performance. Getting high-performance on such architecture is far from being easy. You need to carefully control the allocation policy (numactl can help for that), the initialization (parallel), the thread binding (with taskset, hwloc and/or environment variables) and the memory access pattern (by reading articles/books about how NUMA machines work and applying dedicated algorithms).
By the way, there is probably a false-sharing effect happening in your code because cache lines of array_out are certainly shared between thread. This should not have a critical impact but it does contribute to get a poor scalability (especially on your 64-core processor). The general solution to this problem is to align the array in memory on a cache line and take take the parallel splitting is done on a cache line boundary. Alternatively, you can allocate the array part in each thread. This is generally a better approach as is ensure data is locally allocated, locally filled and make data-sharing/communication between NUMA nodes and even cores more explicit (ie. better control), though it can make the code more complex (there is no free lunch).
Sharing data across threads is slow. This is because each CPU core has at least one layer of personal cache. The minute you share data between cores/threads, the personal caches need to be synchronised which is slow.
Threads running in parallel across different cores work best if they do not share data.
In your case, if data is read only you might be best off giving each thread its own copy of the data. For read write data, you have to accept the synchronisation slowdown.

OpenCL Kernel performance is very bad. Why my code is better without OpenCL?

I'm writing an Ant-Simulation.
The Kernel Performance is very bad. In comparsion to standard c++ solution it has a big performance disadvantage.
I dont understand why. The operations in the kernel are mostly without control structures (like if/else).
Kernels:
https://github.com/Furtano/BA-Code-fuer-Mac/blob/master/BA/Ant.cl
https://github.com/Furtano/BA-Code-fuer-Mac/blob/master/BA/Pheromon.cl
I made a benchmark, and the OpenCL Kernel Performance is very bad.
(Left Axis: Execution time in ms, Bottom Axis: number of simulated Ants)
Can you give me advice?
You can find the hole code in the git repo, if you are interested (the OpenCL stuff is happening here: https://github.com/Furtano/BA-Code-fuer-Mac/blob/master/BA/clInitFunctions.cpp).
Thanks :)
You have a lot of if/else, can't you write it in a different way?
Don't follow the if/else path, since you will never reach anywhere.
You need to make the GPU will only execute useful instructions. Not millions of if/else.
It may be better to keep track and execute only the ants that are live in the grid. You better keep track of them and move them around. Having stored their coordinates.
You will obviously need as well a map with the ant positions and status, so you will need a multi kernel system.
In addition, you have a los of non-useful memory transfers, starting from using int variables for single boolean storage. This can lead to 90% of non useful transfer that can bottleneck the GPU.
Your OpenCL kernels have ifs. Current GPUs aren't supposed to do that. AFAIK an AMD GPU has n groups of 64 cores that have the same instruction pointer (they are executing the exact same part of the exact same statement). Ifs are implemented by stopping some of the cores, executing the true branch, stopping the others and executing the false branch. Imagine this with nested ifs or loops.

Multithreading efficiency in C++

I am trying to learn threading in C++, and just had a few questions about it (more specifically <thread>.
Let's say the machine this code will run on has 4 cores, should I split up an operation into 4 threads? If I were to create 8 threads instead of 4, would this run slower on a 4 core machine? What if the processor has hyperthreading, should I try and make the threads match the number of physical cores or logical cores?
Should I just not worry about the number of cores a machine has, and try to create as many threads as possible?
I apologize if these questions have been already answered; I've been looking for information about threading with <thread>, which was introduced in c11 so I haven't been able to find too much about it.
The program in question is going to run many independent simulations.
If anybody has any insight about <thread> or just multithreading in general, I would be glad to hear it.
If you are performing pure calculations with no I/O - and those calculations are freestanding and not relying on results from other calculations happening in another thread, the maximum number of such threads should be the number of cores (possibly one or two less if the system is also loaded with other tasks).
If you are doing network I/O or similar, more threads are certainly a possibility.
If you are doing disk-I/O, a single thread reading from the disk is often best, because disk reads from multiple threads leads to moving the read/write head around on the disk, which just makes things slower.
If you're using threads for to make the code simpler, then the number of threads will probably depend on what you are doing.
It also depends on how "freestanding" each thread is. If they need to share data in complex ways, the sharing/waiting for other thread/etc, may well make it slower with more threads.
And as others have said, try to make your framework for this flexible and test different options. Preferably on multiple machines (unless you only have one kind of machine that you will ever run your code on).
There is no such thing as <threads.h>, you mean <thread>, the thread support library introduced in C++11.
The only answer to your question is "test and see". You can make your code flexible enough, so that it can be run by passing an N parameter (where N is the desired number of threads).
If you are CPU-bound, the answer will be very different from the case when you are IO bound.
So, test and see! For your reference, this link can be helpful. And if you are serious, then go ahead and get this book. Multithreading, concurrency, and the like are hairy topics.
Let's say the machine this code will run on has 4 cores, should I split up an operation into 4 threads?
If some portions of your code can be run in parallel, then yes it can be made to go faster, but this is very tricky to do since loading threads and switching data between them takes a ton of time.
If I were to create 8 threads instead of 4, would this run slower on a 4 core machine?
It depends on the context switching it has to do. Sometimes the execution will switch between threads very often and sometimes it will not but this is very difficult to control. It will not in any case run faster than 4 threads doing the same work.
What if the processor has hyperthreading, should I try and make the threads match the number of physical cores or logical cores?
Hyperthreading works nearly the same as having more cores. When you will notice the differences between a real core and an execution core, you will have enough knowledge to work around the caveats.
Should I just not worry about the number of cores a machine has, and try to create as many threads as possible?
NO, threads are hard to manage, avoid them as much as you can.
The program in question is going to run many independent simulations.
You should look into openmp. It is a library in C made to parallelize computation when your program can be split up. Do not confuse parallel with concurrent. Concurrent is simply multiple threads working together while parallel is made specifically to speed up your application. Maybe openmp is overkill for your thing, but it is a good thing to know when you are approaching parallel computing
Don't think of the number of threads you need as in comparison to the machine you're running on. Threading is valuablue any time you have a process that:
A: There is some very slow operation, that the rest of the process need not wait for.
B: Certain functions can run faster than one another and don't need to be executed inline.
C: There is a lot of non-order dependant I/O going on(web servers).
These are just a few of the obvious examples when launching a thread makes sense. The number of threads you launch is therefore more dependant on the number of these scenarios that pop up in your code, than the architecture you expect to run on. In fact unless you're running a process that really really needs to be optimized, it is likely that you can only eek out a few percentage points of additional performance by benchmarking for your architecture in comparison to the number of threads that you launch, and in modern computers this number shouldn't vary much at all.
Let's take the I/O example, as it is the scenario that will see the most benefit. Let's assume that some program needs to interract with 200 users over the network. Network I/O is very very slow. Thousands of times slower than the CPU. If we were to handle each user in turn we would waste thousands of processor cycles just waiting for data to come from the first user. Could we not have been processing information from more than one user at a time? In this case since we have roughly 200 users, and the data that we're waiting for we know to be 1000s of times slower than what we can handle(assuming we have a minimal amount of processing to do on this data), we should launch as many threads as the operating system allows. A web server that takes advantage of threading can serve hundreds of more people per second than one that does not.
Now, let's consider a less I/O intensive example, where say we have several functions that execute in turn, but are independant of one another and some of them might run faster, say because there is disk I/O in one, and no disk I/O in another. In this case, our I/O is still fairly fast, but we will certainly waste processing time waiting for the disk to catch up. As such we can launch a few threads, just to take advantage of our processing power, and minimize wasted cycles. However, if we launch as many threads as the operating system allows we are likely to cuase memory management issues for branch predictors, etc... and launching too many threads in this case is actually sub optimal and can slow the program down. Note that in this, I never mentioned how many cores the machine has! NOt that optimizing for different architectures isn't valuable, but if you optimize for one architecture you are likely very close to optimal for most. Assuming, again, that you're dealing with all reasonably modern processors.
I think most people would say that large scale threading projects are better supported by languages other than c++ (go, scala,cuda). Task parallelism as opposed to data parallelism works better in c++. I would say that you should create as many threads as you have tasks to dole out but if data parallelism is more related to your problem consider maybe using cuda and linking to the rest of your project at a later time
NOTE: if you look at some sort of system monitor you will notice that there are likely far more than 8 threads running, I looked at my computer and it had hundreds of threads running at once so don't worry too much about the overhead. The main reason I choose to mention the other languages is that managing many threads in c++ or c tends to be very difficult and error prone, I did not mention it because the c++ program will run slower(which unless you use cuda it probably won't)
In regards to hyper-threading let me comment on what I have found from experience.
In large dense matrix multiplication hyper-threading actually gives worse performance. For example Eigen and MKL both use OpenMP (at least the way I have used them) and get better results on my system which has four cores and hyper-threading using only four threads instead of eight. Also, in my own GEMM code which gets better performance than Eigen I also get better results using four threads instead of eight.
However, in my Mandelbrot drawing code I get a big performance increase using hyper-threading with OpenMP (eight threads instead of four). The general trend (so far) seems to be that if the code works well using schedule(static) in OpenMP then hyper-threading does not help and may even be worse. If the code works better using schedule(dynamic) then hyper-threading may help.
In other words, my observation so far is that if the run time of each thread can vary a lot hyper-threading can help. If the run time of each thread is constant then it may even make performance worse. But YOU have to test and see for each case.

Multithreaded image processing in C++

I am working on a program which manipulates images of different sizes. Many of these manipulations read pixel data from an input and write to a separate output (e.g. blur). This is done on a per-pixel basis.
Such image mapulations are very stressful on the CPU. I would like to use multithreading to speed things up. How would I do this? I was thinking of creating one thread per row of pixels.
I have several requirements:
Executable size must be minimized. In other words, I can't use massive libraries. What's the most light-weight, portable threading library for C/C++?
Executable size must be minimized. I was thinking of having a function forEachRow(fp* ) which runs a thread for each row, or even a forEachPixel(fp* ) where fp operates on a single pixel in its own thread. Which is best?
Should I use normal functions or functors or functionoids or some lambda functions or ... something else?
Some operations use optimizations which require information from the previous pixel processed. This makes forEachRow favorable. Would using forEachPixel be better even considering this?
Would I need to lock my read-only and write-only arrays?
The input is only read from, but many operations require input from more than one pixel in the array.
The ouput is only written once per pixel.
Speed is also important (of course), but optimize executable size takes precedence.
Thanks.
More information on this topic for the curious: C++ Parallelization Libraries: OpenMP vs. Thread Building Blocks
Don't embark on threading lightly! The race conditions can be a major pain in the arse to figure out. Especially if you don't have a lot of experience with threads! (You've been warned: Here be dragons! Big hairy non-deterministic impossible-to-reliably-reproduce dragons!)
Do you know what deadlock is? How about Livelock?
That said...
As ckarmann and others have already suggested: Use a work-queue model. One thread per CPU core. Break the work up into N chunks. Make the chunks reasonably large, like many rows. As each thread becomes free, it snags the next work chunk off the queue.
In the simplest IDEAL version, you have N cores, N threads, and N subparts of the problem with each thread knowing from the start exactly what it's going to do.
But that doesn't usually happen in practice due to the overhead of starting/stopping threads. You really want the threads to already be spawned and waiting for action. (E.g. Through a semaphore.)
The work-queue model itself is quite powerful. It lets you parallelize things like quick-sort, which normally doesn't parallelize across N threads/cores gracefully.
More threads than cores? You're just wasting overhead. Each thread has overhead. Even at #threads=#cores, you will never achieve a perfect Nx speedup factor.
One thread per row would be very inefficient! One thread per pixel? I don't even want to think about it. (That per-pixel approach makes a lot more sense when playing with vectorized processor units like they had on the old Crays. But not with threads!)
Libraries? What's your platform? Under Unix/Linux/g++ I'd suggest pthreads & semaphores. (Pthreads is also available under windows with a microsoft compatibility layer. But, uhgg. I don't really trust it! Cygwin might be a better choice there.)
Under Unix/Linux, man:
* pthread_create, pthread_detach.
* pthread_mutexattr_init, pthread_mutexattr_settype, pthread_mutex_init,
* pthread_mutexattr_destroy, pthread_mutex_destroy, pthread_mutex_lock,
* pthread_mutex_trylock, pthread_mutex_unlock, pthread_mutex_timedlock.
* sem_init, sem_destroy, sem_post, sem_wait, sem_trywait, sem_timedwait.
Some folks like pthreads' condition variables. But I always preferred POSIX 1003.1b semaphores. They handle the situation where you want to signal another thread BEFORE it starts waiting somewhat better. Or where another thread is signaled multiple times.
Oh, and do yourself a favor: Wrap your thread/mutex/semaphore pthread calls into a couple of C++ classes. That will simplify matters a lot!
Would I need to lock my read-only and write-only arrays?
It depends on your precise hardware & software. Usually read-only arrays can be freely shared between threads. But there are cases where that is not so.
Writing is much the same. Usually, as long as only one thread is writing to each particular memory spot, you are ok. But there are cases where that is not so!
Writing is more troublesome than reading as you can get into these weird fencepost situations. Memory is often written as words not bytes. When one thread writes part of the word, and another writes a different part, depending on the exact timing of which thread does what when (e.g. nondeterministic), you can get some very unpredictable results!
I'd play it safe: Give each thread its own copy of the read and write areas. After they are done, copy the data back. All under mutex, of course.
Unless you are talking about gigabytes of data, memory blits are very fast. That couple of microseconds of performance time just isn't worth the debugging nightmare.
If you were to share one common data area between threads using mutexes, the collision/waiting mutex inefficiencies would pile up and devastate your efficiency!
Look, clean data boundaries are the essence of good multi-threaded code. When your boundaries aren't clear, that's when you get into trouble.
Similarly, it's essential to keep everything on the boundary mutexed! And to keep the mutexed areas short!
Try to avoid locking more than one mutex at the same time. If you do lock more than one mutex, always lock them in the same order!
Where possible use ERROR-CHECKING or RECURSIVE mutexes. FAST mutexes are just asking for trouble, with very little actual (measured) speed gain.
If you get into a deadlock situation, run it in gdb, hit ctrl-c, visit each thread and backtrace. You can find the problem quite quickly that way. (Livelock is much harder!)
One final suggestion: Build it single-threaded, then start optimizing. On a single-core system, you may find yourself gaining more speed from things like foo[i++]=bar ==> *(foo++)=bar than from threading.
Addendum: What I said about keeping mutexed areas short up above? Consider two threads: (Given a global shared mutex object of a Mutex class.)
/*ThreadA:*/ while(1){ mutex.lock(); printf("a\n"); usleep(100000); mutex.unlock(); }
/*ThreadB:*/ while(1){ mutex.lock(); printf("b\n"); usleep(100000); mutex.unlock(); }
What will happen?
Under my version of Linux, one thread will run continuously and the other will starve. Very very rarely they will change places when a context swap occurs between mutex.unlock() and mutex.lock().
Addendum: In your case, this is unlikely to be an issue. But with other problems one may not know in advance how long a particular work-chunk will take to complete. Breaking a problem down into 100 parts (instead of 4 parts) and using a work-queue to split it up across 4 cores smooths out such discrepancies.
If one work-chunk takes 5 times longer to complete than another, well, it all evens out in the end. Though with too many chunks, the overhead of acquiring new work-chunks creates noticeable delays. It's a problem-specific balancing act.
If your compiler supports OpenMP (I know VC++ 8.0 and 9.0 do, as does gcc), it can make things like this much easier to do.
You don't just want to make a lot of threads - there's a point of diminishing returns where adding new threads slows things down as you start getting more and more context switches. At some point, using too many threads can actually make the parallel version slower than just using a linear algorithm. The optimal number of threads is a function of the number of cpus/cores available, and the percentage of time each thread spends blocked on things like I/O. Take a look at this article by Herb Sutter for some discussion on parallel performance gains.
OpenMP lets you easily adapt the number of threads created to the number of CPUs available. Using it (especially in data-processing cases) often involves simply putting in a few #pragma omps in existing code, and letting the compiler handle creating threads and synchronization.
In general - as long as data isn't changing, you won't have to lock read-only data. If you can be sure that each pixel slot will only be written once and you can guarantee that all the writing has been completed before you start reading from the result, you won't have to lock that either.
For OpenMP, there's no need to do anything special as far as functors / function objects. Write it whichever way makes the most sense to you. Here's an image-processing example from Intel (converts rgb to grayscale):
#pragma omp parallel for
for (i=0; i < numPixels; i++)
{
pGrayScaleBitmap[i] = (unsigned BYTE)
(pRGBBitmap[i].red * 0.299 +
pRGBBitmap[i].green * 0.587 +
pRGBBitmap[i].blue * 0.114);
}
This automatically splits up into as many threads as you have CPUs, and assigns a section of the array to each thread.
I would recommend boost::thread and boost::gil (generic image libray). Because there are quite much templates involved, I'm not sure whether the code-size will still be acceptable for you. But it's part of boost, so it is probably worth a look.
As a bit of a left-field idea...
What systems are you running this on? Have you thought of using the GPU in your PCs?
Nvidia have the CUDA APIs for this sort of thing
I don't think you want to have one thread per row. There can be a lot of rows, and you will spend lot of memory/CPU resources just launching/destroying the threads and for the CPU to switch from one to the other. Moreover, if you have P processors with C core, you probably won't have a lot of gain with more than C*P threads.
I would advise you to use a defined number of client threads, for example N threads, and use the main thread of your application to distribute the rows to each thread, or they can simply get instruction from a "job queue". When a thread has finished with a row, it can check in this queue for another row to do.
As for libraries, you can use boost::thread, which is quite portable and not too heavyweight.
Can I ask which platform you're writing this for? I'm guessing that because executable size is an issue you're not targetting on a desktop machine. In which case does the platform have multiple cores or hyperthreaded? If not then adding threads to your application could have the opposite effect and slow it down...
To optimize simple image transformations, you are far better off using SIMD vector math than trying to multi-thread your program.
Your compiler doesn't support OpenMP. Another option is to use a library approach, both Intel's Threading Building Blocks and Microsoft Concurrency Runtime are available (VS 2010).
There is also a set of interfaces called the Parallel Pattern Library which are supported by both libraries and in these have a templated parallel_for library call.
so instead of:
#pragma omp parallel for
for (i=0; i < numPixels; i++)
{ ...}
you would write:
parallel_for(0,numPixels,1,ToGrayScale());
where ToGrayScale is a functor or pointer to function. (Note if your compiler supports lambda expressions which it likely doesn't you can inline the functor as a lambda expression).
parallel_for(0,numPixels,1,[&](int i)
{
pGrayScaleBitmap[i] = (unsigned BYTE)
(pRGBBitmap[i].red * 0.299 +
pRGBBitmap[i].green * 0.587 +
pRGBBitmap[i].blue * 0.114);
});
-Rick
Check the Creating an Image-Processing Network walkthrough on MSDN, which explains how to use Parallel Patterns Library to compose a concurrent image processing pipeline.
I'd also suggest Boost.GIL, which generates highly efficient code. For simple multi-threaded example, check gil_threaded by Victor Bogado. The An image processing network using Dataflow.Signals and Boost.GIL explains an interestnig dataflow model too.
One thread per pixel row is insane, best have around n-1 to 2n threads (for n cpu's), and make each one loop fetching one jobunit (may be one row, or other kind of partition)
on unix-like, use pthreads it's simple and lightweight.
Maybe write your own tiny library which implements a few standard threading functions using #ifdef's for every platform? There really isn't much to it, and that would reduce the executable size way more than any library you could use.
Update: And for work distribution - split your image into pieces and give each thread a piece. So that when it's done with the piece, it's done. This way you avoid implementing job queues that will further increase your executable's size.
I think regardless of the threading model you choose (boost, pthread, native threads, etc). I think you should consider a thread pool as opposed to a thread per row. Threads in a thread pool are very cheap to "start" since they are already created as far as the OS is concerned, it's just a matter of giving it something to do.
Basically, you could have say 4 threads in your pool. Then in a serial fashion, for each pixel, tell the next thread in the thread pool to process the pixel. This way you are effectively processing no more than 4 pixels at a time. You could make the size of the pool based either on user preference or on the number of CPUs the system reports.
This is by far the simplest way IMHO to add threading to a SIMD task.
I think map/reduce framework will be the ideal thing to use in this situation. You can use Hadoop streaming to use your existing C++ application.
Just implement the map and reduce jobs.
As you said, you can use row-level maniputations as a map task and combine the row level manipulations to the final image in the reduce task.
Hope this is useful.
It is very possible, that bottleneck is not CPU but memory bandwidth, so multi-threading WON'T help a lot. Try to minimize memory access and work on limited memory blocks, so that more data can be cached. I had a similar problem a while ago and I decided to optimize my code to use SSE instructions. Speed increase was almost 4x per single thread!
You also could use libraries like IPP or the Cassandra Vision C++ API that are mostly much more optimized than you own code.
There's another option of using assembly for optimization. Now, one exciting project for dynamic code generation is softwire (which dates back awhile - here is the original project's site). It has been developed by Nick Capens and grew into now commercially available swiftshader. But the spin-off of the original softwire is still available on gna.org.
This could serve as an introduction to his solution.
Personally, I don't believe you can gain significant performance by utilizing multiple threads for your problem.

Explicit code parallelism in c++

Out of order execution in CPUs means that a CPU can reorder instructions to gain better performance and it means the CPU is having to do some very nifty bookkeeping and such. There are other processor approaches too, such as hyper-threading.
Some fancy compilers understand the (un)interrelatedness of instructions to a limited extent, and will automatically interleave instruction flows (probably over a longer window than the CPU sees) to better utilise the processor. Deliberate compile-time interleaving of floating and integer instructions is another example of this.
Now I have highly-parallel task. And I typically have an ageing single-core x86 processor without hyper-threading.
Is there a straight-forward way to get my the body of my 'for' loop for this highly-parallel task to be interleaved so that two (or more) iterations are being done together? (This is slightly different from 'loop unwinding' as I understand it.)
My task is a 'virtual machine' running through a set of instructions, which I'll really simplify for illustration as:
void run(int num) {
for(int n=0; n<num; n++) {
vm_t data(n);
for(int i=0; i<data.len(); i++) {
data.insn(i).parse();
data.insn(i).eval();
}
}
}
So the execution trail might look like this:
data(1) insn(0) parse
data(1) insn(0) eval
data(1) insn(1) parse
...
data(2) insn(1) eval
data(2) insn(2) parse
data(2) insn(2) eval
Now, what I'd like is to be able to do two (or more) iterations explicitly in parallel:
data(1) insn(0) parse
data(2) insn(0) parse \ processor can do OOO as these two flow in
data(1) insn(0) eval /
data(2) insn(0) eval \ OOO opportunity here too
data(1) insn(1) parse /
data(2) insn(1) parse
I know, from profiling, (e.g. using Callgrind with --simulate-cache=yes), that parsing is about random memory accesses (cache missing) and eval is about doing ops in registers and then writing results back. Each step is several thousand instructions long. So if I can intermingle the two steps for two iterations at once, the processor will hopefully have something to do whilst the cache misses of the parse step are occurring...
Is there some c++ template madness to get this kind of explicit parallelism generated?
Of course I can do the interleaving - and even staggering - myself in code, but it makes for much less readable code. And if I really want unreadable, I can go so far as assembler! But surely there is some pattern for this kind of thing?
Given optimizing compilers and pipelined processors, I would suggest you just write clear, readable code.
Your best plan may be to look into OpenMP. It basically allows you to insert "pragmas" into your code which tell the compiler how it can split between processors.
Hyperthreading is a much higher-level system than instruction reordering. It makes the processor look like two processors to the operating system, so you'd need to use an actual threading library to take advantage of that. The same thing naturally applies to multicore processors.
If you don't want to use low-level threading libraries and instead want to use a task-based parallel system (and it sounds like that's what you're after) I'd suggest looking at OpenMP or Intel's Threading Building Blocks.
TBB is a library, so it can be used with any modern C++ compiler. OpenMP is a set of compiler extensions, so you need a compiler that supports it. GCC/G++ will from verion 4.2 and newer. Recent versions of the Intel and Microsoft compilers also support it. I don't know about any others, though.
EDIT: One other note. Using a system like TBB or OpenMP will scale the processing as much as possible - that is, if you have 100 objects to work on, they'll get split about 50/50 in a two-core system, 25/25/25/25 in a four-core system, etc.
Modern processors like the Core 2 have an enormous instruction reorder buffer on the order of nearly 100 instructions; even if the compiler is rather dumb the CPU can still make up for it.
The main issue would be if the code used a lot of registers, in which case the register pressure could force the code to be executed in sequence even if theoretically it could be done in parallel.
There is no support for parallel execution in the current C++ standard. This will change for the next version of the standard, due out next year or so.
However, I don't see what you are trying to accomplish. Are you referring to one single-core processor, or multiple processors or cores? If you have only one core, you should do whatever gets the fewest cache misses, which means whatever approach uses the smallest memory working set. This would probably be either doing all the parsing followed by all the evaluation, or doing the parsing and evaluation alternately.
If you have two cores, and want to use them efficiently, you're going to have to either use a particularly smart compiler or language extensions. Is there one particular operating system you're developing for, or should this be for multiple systems?
It sounds like you ran into the same problem chip designers face: Executing a single instruction takes a lot of effort, but it involves a bunch of different steps that can be strung together in an execution pipeline. (It is easier to execute things in parallel when you can build them out of separate blocks of hardware.)
The most obvious way is to split each task into different threads. You might want to create a single thread to execute each instruction to completion, or create one thread for each of your two execution steps and pass data between them. In either case, you'll have to be very careful with how you share data between threads and make sure to handle the case where one instruction affects the result of the following instruction. Even though you only have one core and only one thread can be running at any given time, your operating system should be able to schedule compute-intense threads while other threads are waiting for their cache misses.
(A few hours of your time would probably pay for a single very fast computer, but if you're trying to deploy it widely on cheap hardware it might make sense to consider the problem the way you're looking at it. Regardless, it's an interesting problem to consider.)
Take a look at cilk. It's an extension to ANSI C that has some nice constructs for writing parallelized code in C. However, since it's an extension of C, it has very limited compiler support, and can be tricky to work with.
This answer was written assuming the questions does not contain the part "And I typically have an ageing single-core x86 processor without hyper-threading.". I hope it might help other people who want to parallelize highly-parallel tasks, but target dual/multicore CPUs.
As already posted in another answer, OpenMP is a portable way how to do this. However my experience is OpenMP overhead is quite high and it is very easy to beat it by
rolling a DIY (Do It Youself) implementation. Hopefully OpenMP will improve over time, but as it is now, I would not recommend using it for anything else than prototyping.
Given the nature of your task, What you want to do is most likely a data based parallelism, which in my experience is quite easy - the programming style can be very similar to a single-core code, because you know what other threads are doing, which makes maintaining thread safety a lot easier - an approach which worked for me: avoid dependencies and call only thread safe functions from the loop.
To create a DYI OpenMP parallel loop you need to:
as a preparation create a serial for loop template and change your code to use functors to implement the loop bodies. This can be tedious, as you need to pass all references across the functor object
create a virtual JobItem interface for the functor, and inherit your functors from this interface
create a thread function which is able process individual JobItems objects
create a thread pool of the thread using this thread function
experiment with various synchronizations primitives to see which works best for you. While semaphore is very easy to use, its overhead is quite significant and if your loop body is very short, you do not want to pay this overhead for each loop iteration. What worked great for me was a combination of manual reset event + atomic (interlocked) counter as a much faster alternative.
experiment with various JobItem scheduling strategies. If you have long enough loop, it is better if each thread picks up multiple successive JobItems at a time. This reduces the synchronization overhead and at the same time it makes the threads more cache friendly. You may also want to do this in some dynamic way, reducing the length of the scheduled sequence as you are exhausting your tasks, or letting individual threads to steal items from other thread schedules.