Template specialization with a specific templated class - c++

Given the following simple C++ class:
using namespace std;
template<class T1>
class ValueWrapper {
private:
T1 value_;
public:
ValueWrapper() {}
ValueWrapper(const T1& value) {
value_ = value;
}
ValueWrapper(const ValueWrapper<T1> &wrapper) {
value_ = wrapper.value_;
}
ValueWrapper& Set(const T1& value) {
value_ = value;
return *this;
}
T1 Get() const {
return value_;
}
};
I was trying to create a simple shared_ptr wrapper for that class (ultimately allowing the developer to use the class without the dereferencing operator if desired). While I've seen a few examples of wrapping a shared_ptr, I couldn't find any that also used a specialization for a templated class.
Using the class above, I created a ValueShared class which derives from shared_ptr:
template<class T1>
class ValueShared : public shared_ptr<T1> {
public:
ValueShared& operator =(const T1& rhs) {
// nothing to do in base
return *this;
}
};
Then, I created a custom make_shared_value function:
//
// TEMPLATE FUNCTION make_shared
template<class T1, class... Types> inline
ValueShared<T1> make_shared_value(Types&&... Arguments)
{ // make a shared_ptr
_Ref_count_obj<T1> *_Rx = new _Ref_count_obj<T1>(_STD forward<Types>(Arguments)...);
ValueShared<T1> _Ret;
_Ret._Resetp0(_Rx->_Getptr(), _Rx);
return (_Ret);
}
But, here's the problem code:
template<class T1, class ValueWrapper<T1>>
class ValueShared<ValueWrapper<T1>> : public shared_ptr<ValueWrapper<T1>>{
public:
ValueShared& operator =(const ValueWrapper<T1>& rhs) {
auto self = this->get();
self.Set(rhs->Get());
return *this;
}
};
I wanted to provide a specialization of the equals operator here that was specialized to the ValueWrapper class (so that it would Get/Set the value from the right hand side value).
I've tried a few things, but the current error is:
error C2943: 'ValueWrapper<T1>' : template-class-id redefined
as a type argument of a template
Maybe this isn't the proper approach, or maybe it's not possible?

Following should remove your error:
template<class T1>
class ValueShared<ValueWrapper<T1>> : public shared_ptr<ValueWrapper<T1>> {
public:
ValueShared& operator =(const ValueWrapper<T1>& rhs)
{
auto self = this->get();
self->Set(rhs.Get());
return *this;
}
};

Related

Error with template operator overloading

I wrote a class and I wanted to implement an iterator for it ( as shown in the following code ). I needed to overload a variety of operators and I faced the error mentioned below:
class BaseClass
{
virtual ~BaseClass() {}
};
template<class T>
class AbstractBaseOrgan: public BaseClass
{
public:
typedef T value;
template<class TT>
class AbstractBaseIterator:
public std::iterator<std::random_access_iterator_tag,
typename std::iterator_traits<TT>::value_type>
{
protected:
TT _M_current;
const TT&
base() const
{ return this->_M_current; }
};
protected:
value te;
};
template<typename Iter>
inline bool
operator<(const typename AbstractBaseOrgan<typename
std::iterator_traits<Iter>::value_type>::template
AbstractBaseIterator<Iter>& lhs,
const typename AbstractBaseOrgan<typename
std::iterator_traits<Iter>::value_type>::template
AbstractBaseIterator<Iter>& rhs)
{ return lhs.base() < rhs.base(); }
int main()
{
AbstractBaseOrgan<int>::AbstractBaseIterator<int*> temp;
AbstractBaseOrgan<int>::AbstractBaseIterator<int*> temp2;
int ttemp;
if(operator< (temp,temp2))
ttemp = 0;
return 0;
}
Compiling it gives me the following error:
error: no matching function for call to ‘operator<(AbstractBaseOrgan<int>::AbstractBaseIterator<int*>&, AbstractBaseOrgan<int>::AbstractBaseIterator<int*>&)’
Any idea what might cause this?
4 In most cases, the types, templates, and non-type values that are
used to compose P participate in template argument deduction. That is,
they may be used to determine the value of a template argument, and
the value so determined must be consistent with the values determined
elsewhere. In certain contexts, however, the value does not
participate in type deduction, but instead uses the values of template
arguments that were either deduced elsewhere or explicitly specified.
If a template parameter is used only in non-deduced contexts and is
not explicitly specified, template argument deduction fails.
The non-deduced contexts are:
— The nested-name-specifier of a type that was specified using a qualified-id.
You can avoid this by few ways. First way - make operator < friend for class AbstractIteratorBase, or its member.
template<class TT>
class AbstractBaseIterator:
public std::iterator<std::random_access_iterator_tag,
typename std::iterator_traits<TT>::value_type>
{
public:
template<typename Iter>
friend bool operator < (const AbstractBaseIterator<Iter>& lhs, const AbstractBaseIterator<Iter>& rhs)
{
return lhs.base() < rhs.base();
}
protected:
TT _M_current;
const TT&
base() const
{ return this->_M_current; }
};
Second variant is define AbstractBaseIterator class not in template class. And then typedef AbstractBaseIterator<T> iterator; in AbstractBaseOrgan. If you can use C++11 you can use something like this.
class BaseClass
{
virtual ~BaseClass() {}
};
template<class TT>
class AbstractBaseIterator:
public std::iterator<std::random_access_iterator_tag,
typename std::iterator_traits<TT>::value_type>
{
protected:
TT _M_current;
const TT&
base() const
{ return this->_M_current; }
};
template<typename Iter>
bool operator < (const AbstractBaseIterator<Iter>& lhs, const AbstractBaseIterator<Iter>& rhs)
{
return lhs.base() < rhs.base();
}
template<class T>
class AbstractBaseOrgan: public BaseClass
{
public:
typedef T value;
template<typename TT>
using iterator = AbstractBaseIterator<TT>;
protected:
value te;
};
int main()
{
AbstractBaseOrgan<int>::iterator<int*> temp;
AbstractBaseOrgan<int>::iterator<int*> temp2;
int ttemp;
if(operator< (temp,temp2))
ttemp = 0;
return 0;
}

How can I modify my boost::any like class

I'm trying to implement boost::any like class:
struct any
{
private:
struct holderBase
{
virtual ~holderBase(){}
};
template<typename T>
struct holder : public holderBase
{
T content;
holder(const T& value) : content(value){}
holder(const holder<T>& other) : content(other.content){}
};
holderBase *hl;
public:
template<typename T>
any(const T& data = T()) { hl = new holder<T>(data); }
any(const any& other) { hl = other.hl; }
template<typename T>
T get()
{
if(holder<T>* p_hl = dynamic_cast<holder<T>*>(hl))
return p_hl->content;
else
throw std::runtime_error("std::runtime_error");
}
};
I use a holder class (inherited by holderBase) to store the data.
How can I modify the any::get() function (or even modify the whole code) so that it doesn't need a template parameter (the get() function)?
You could do it like this:
template<typename T>
T get(T *ptr);
Similar to the C time function, you would return the result, as well as store it in ptr.
Edit: You could also override the casting operator:
template<typename T>
operator T()
{
return get<T>();
}
Which will implicitly do what you want.
Stating the obvious: If you don't want to return 1 particular type to the user then it needs to be templated. There's nothing you can do about it.

Copy constructor with smart pointer

I have a class with one std::unique_ptr as class member. I was wondering, how to correctly define the copy constructor, since I'm getting the following compiler error message: error C2248: std::unique_ptr<_Ty>::unique_ptr : cannot access private member declared in class 'std::unique_ptr<_Ty>. My class design looks something like:
template <typename T>
class Foo{
public:
Foo(){};
Foo( Bar<T> *, int );
Foo( const Foo<T> & );
~Foo(){};
void swap( Foo<T> & );
Foo<T> operator = ( Foo<T> );
private:
std::unique_ptr<Bar> m_ptrBar;
int m_Param1;
};
template < typename T >
Foo<T>::Foo( const Foo<T> & refFoo )
:m_ptrBar(refFoo.m_ptrBar),
m_Param1(refFoo.m_Param1)
{
// error here!
}
template < typename T >
void Foo<T>::swap( Foo<T> & refFoo ){
using std::swap;
swap(m_ptrBar, refFoo.m_ptrBar);
swap(m_Param1, refFoo.m_Param1);
}
template < typename T >
Foo<T> Foo<T>::operator = ( Foo<T> Elem ){
Elem.swap(*this);
return (*this);
}
Assuming the goal is to copy-construct the uniquely-owned Bar,
template < typename T >
Foo<T>::Foo( const Foo<T> & refFoo )
: m_ptrBar(refFoo.m_ptrBar ? new Bar(*refFoo.m_ptrBar) : nullptr),
m_Param1(refFoo.m_Param1)
{
}
Unique_ptr documentation:
Stores a pointer to an owned object. The object is owned by no other unique_ptr.
The object is destroyed when the unique_ptr is destroyed.
You cant copy it because two objects can't own it.
Try switching to a std::shared_ptr.
EDIT I should point out that this would make both objects have a pointer to that same object. If you want to copy the uniquely owned object Cubbi's solution is the correct one.
A possibility is to create a new clone_ptr type for this.
Below is a rudimentary example of a clone_ptr that invokes the correct copy constructor (and destructor) of a derived object. This is done here by creating a "type erasure" helper when the clone_ptr is created.
Other implementations may be found on the Internet.
#include <memory>
namespace clone_ptr_detail
{
template <class T>
class clone_ptr_helper_base
{
public:
virtual ~clone_ptr_helper_base() {}
virtual T* clone(const T* source) const = 0;
virtual void destroy(const T* p) const = 0;
};
template <class T, class U>
class clone_ptr_helper: public clone_ptr_helper_base<T>
{
public:
virtual T* clone(const T* source) const
{
return new U(static_cast<const U&>(*source));
}
virtual void destroy(const T* p) const
{
delete static_cast<const U*>(p);
}
};
}
template <class T>
class clone_ptr
{
T* ptr;
std::shared_ptr<clone_ptr_detail::clone_ptr_helper_base<T>> ptr_helper;
public:
template <class U>
explicit clone_ptr(U* p): ptr(p), ptr_helper(new clone_ptr_detail::clone_ptr_helper<T, U>()) {}
clone_ptr(const clone_ptr& other): ptr(other.ptr_helper->clone(other.ptr)), ptr_helper(other.ptr_helper) {}
clone_ptr& operator=(clone_ptr rhv)
{
swap(rhv);
return *this;
}
~clone_ptr()
{
ptr_helper->destroy(ptr);
}
T* get() const { /*error checking here*/ return ptr; }
T& operator* () const { return *get(); }
T* operator-> () const { return get(); }
void swap(clone_ptr& other)
{
std::swap(ptr, other.ptr);
ptr_helper.swap(other.ptr_helper);
}
};
See usage example: http://ideone.com/LnWa3
(But perhaps you don't really need to copy your objects, and might rather explore the possibilities of move semantics. For example, you can have a vector<unique_ptr<T>>, as long as you don't use functions that copy the contents.)

C++ -- why we have to define this friend template class

template<class T>
class auto_ptr2 {
public:
explicit auto_ptr2(T *p = 0): pointee(p) {}
template<class U>
auto_ptr2(auto_ptr2<U>& rhs): pointee(rhs.release()) {}
~auto_ptr2() { delete pointee; }
template<class U>
auto_ptr2<T>& operator=(auto_ptr2<U>& rhs)
{
if (this != &rhs) reset(rhs.release());
return *this;
}
T& operator*() const { return *pointee; }
T* operator->() const { return pointee; }
T* get() const { return pointee; }
T* release()
{
T *oldPointee = pointee;
pointee = 0;
return oldPointee;
}
void reset(T *p = 0)
{
if (pointee != p) {
delete pointee;
pointee = p;
}
}
private:
T *pointee;
//template<class U> friend class auto_ptr2<U>;
// Question 1> Why we have to define this friend class
// Question 2> I cannot compile this code with above line with VS2010.
// Error 1 error C3772: 'auto_ptr2<T>' : invalid friend template declaration
};
thank you
Why we have to define this friend class
I'm fairly sure you don't; as far as I can see, nothing is referencing the private member of a different template instantiation. You would need it if the copy constructor or assignment operator manipulated rhs.pointee directly, rather than just calling rhs.release().
I cannot compile this code with above line with VS2010.
The declaration should be:
template<class U> friend class auto_ptr2;

Using STL algorithms (specifically std::sort) from within a templated class

I've declared a template class MyContainer as bellow, then created an instance of it of type DataType1. The DataType1 class provides a friend function "DataSpecificComparison" which is used by std::sort to compare DataType1 objects. The program compiled and sorted correctly.
I then defined a class called DataType2, gave it a friend implementation of "DataSpecificComparison" and used it to create another instance of MyContainer.
I am now unable to compile the program as a "C2914: 'std::sort' : cannot deduce template argument as function argument is ambiguous" compile time error is reported.
How can a developer specify that the DataSpecificComparison binary predicate is to take arguments of template type T*? Or is there another way around this issue?
template <class T>
class MyContainer
{
private:
vector<T*> m_vMyContainerObjects;
....
public:
....
void SortMyContainerObjects()
{
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), DataSpecificComparison)
}
}
class DataType1
{
....
friend bool DataSpecificComparison(const DataType1 * lhs, const DataType1 * rhs)
}
class DataType2
{
....
friend bool DataSpecificComparison(const DataType2* lhs, const DataType2* rhs)
}
You can use a temporary local function pointer variable of the required type to select the correct overload of DataSpecificComparison:
void SortMyContainerObjects()
{
typedef bool (*comparer_t)(const T*, const T*);
comparer_t cmp = &DataSpecificComparison;
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), cmp);
}
Here the compiler can deduce that you want to use the DataSpecificComparison overload that matches the comparer_t type, which resolves the ambiguity.
sth already gave a correct answer, but there's also a direct alternative based on the same principle:
void SortMyContainerObjects()
{
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(),
static_cast<bool (*comparer_t)(const T*, const T*)>(&DataSpecificComparison));
}
This uses essentially the same mechanism. The cast forces overload resolution to happen before the Template Argument Deduction for std::sort.
template<typename T>
struct DataSpecificComp : public binary_function<T, T, bool>
{
public:
bool operator()(const T* lhs, const T* rhs)
{
return *lhs < *rhs;
}
};
call the sort function as shown below:
sort(vi.begin(), vi.end(), DataSpecificComp<int>());
I'd prefer something along the following lines: by default it compares objects with less_than (so you wouldn't have to remember to provide a function with a funny name), and there's an overload that allows giving your own comparison functor (again, value-based):
#include <vector>
#include <algorithm>
#include <functional>
template <class T, class Func>
struct indirect_binary_call_type: public std::binary_function<const T*, const T*, bool>
{
Func f;
indirect_binary_call_type(Func f): f(f) {}
bool operator()(const T* a, const T* b) const
{
return f(*a, *b);
}
};
template <class T, class Func>
indirect_binary_call_type<T, Func> indirect_binary_call(Func f)
{
return indirect_binary_call_type<T, Func>(f);
}
template <class T>
class MyContainer
{
private:
std::vector<T*> m_vMyContainerObjects;
public:
void Sort()
{
Sort(std::less<T>());
}
template <class Func>
void Sort(Func f )
{
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), indirect_binary_call<T>(f));
}
};
int main()
{
MyContainer<int> m;
m.Sort();
m.Sort(std::greater<int>());
}
Did you try defining DataSpecificComparison as template with bunch of specializations and giving it the type?
template<T>
bool DataSpecificComparison(const T* t1, const T* t2)
{
// something non compilable here
}
template<> bool DataSpecificComparison<Data1>(const Data1* t1, const Data1* t2)
{
// return *t1 < *t2;
}
....
void SortMyContainerObjects()
{
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), DataSpecificComparison<T>)
}
....
Templating DataSpecificComparison should work. You can also specifically call the proper std::sort template, but it's a bit cumbersome:
template <class T>
class MyContainer
{
private:
vector<T*> m_vMyContainerObjects;
typedef bool (*compsT)(T, T);
public:
....
void SortMyContainerObjects()
{
std::sort<std::vector<T*>::iterator, compsT>(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), DataSpecificComparison);
}
}