Error with template operator overloading - c++

I wrote a class and I wanted to implement an iterator for it ( as shown in the following code ). I needed to overload a variety of operators and I faced the error mentioned below:
class BaseClass
{
virtual ~BaseClass() {}
};
template<class T>
class AbstractBaseOrgan: public BaseClass
{
public:
typedef T value;
template<class TT>
class AbstractBaseIterator:
public std::iterator<std::random_access_iterator_tag,
typename std::iterator_traits<TT>::value_type>
{
protected:
TT _M_current;
const TT&
base() const
{ return this->_M_current; }
};
protected:
value te;
};
template<typename Iter>
inline bool
operator<(const typename AbstractBaseOrgan<typename
std::iterator_traits<Iter>::value_type>::template
AbstractBaseIterator<Iter>& lhs,
const typename AbstractBaseOrgan<typename
std::iterator_traits<Iter>::value_type>::template
AbstractBaseIterator<Iter>& rhs)
{ return lhs.base() < rhs.base(); }
int main()
{
AbstractBaseOrgan<int>::AbstractBaseIterator<int*> temp;
AbstractBaseOrgan<int>::AbstractBaseIterator<int*> temp2;
int ttemp;
if(operator< (temp,temp2))
ttemp = 0;
return 0;
}
Compiling it gives me the following error:
error: no matching function for call to ‘operator<(AbstractBaseOrgan<int>::AbstractBaseIterator<int*>&, AbstractBaseOrgan<int>::AbstractBaseIterator<int*>&)’
Any idea what might cause this?

4 In most cases, the types, templates, and non-type values that are
used to compose P participate in template argument deduction. That is,
they may be used to determine the value of a template argument, and
the value so determined must be consistent with the values determined
elsewhere. In certain contexts, however, the value does not
participate in type deduction, but instead uses the values of template
arguments that were either deduced elsewhere or explicitly specified.
If a template parameter is used only in non-deduced contexts and is
not explicitly specified, template argument deduction fails.
The non-deduced contexts are:
— The nested-name-specifier of a type that was specified using a qualified-id.
You can avoid this by few ways. First way - make operator < friend for class AbstractIteratorBase, or its member.
template<class TT>
class AbstractBaseIterator:
public std::iterator<std::random_access_iterator_tag,
typename std::iterator_traits<TT>::value_type>
{
public:
template<typename Iter>
friend bool operator < (const AbstractBaseIterator<Iter>& lhs, const AbstractBaseIterator<Iter>& rhs)
{
return lhs.base() < rhs.base();
}
protected:
TT _M_current;
const TT&
base() const
{ return this->_M_current; }
};
Second variant is define AbstractBaseIterator class not in template class. And then typedef AbstractBaseIterator<T> iterator; in AbstractBaseOrgan. If you can use C++11 you can use something like this.
class BaseClass
{
virtual ~BaseClass() {}
};
template<class TT>
class AbstractBaseIterator:
public std::iterator<std::random_access_iterator_tag,
typename std::iterator_traits<TT>::value_type>
{
protected:
TT _M_current;
const TT&
base() const
{ return this->_M_current; }
};
template<typename Iter>
bool operator < (const AbstractBaseIterator<Iter>& lhs, const AbstractBaseIterator<Iter>& rhs)
{
return lhs.base() < rhs.base();
}
template<class T>
class AbstractBaseOrgan: public BaseClass
{
public:
typedef T value;
template<typename TT>
using iterator = AbstractBaseIterator<TT>;
protected:
value te;
};
int main()
{
AbstractBaseOrgan<int>::iterator<int*> temp;
AbstractBaseOrgan<int>::iterator<int*> temp2;
int ttemp;
if(operator< (temp,temp2))
ttemp = 0;
return 0;
}

Related

Implicit type conversion for operator==

I'd like to have a way to compare different data types that are internally represented by an array (e.g. a string and a vector of chars) using a common array reference type. Consider the following code:
template <typename T>
struct ArrayConstRef {
const T *data;
size_t length;
};
template <typename T>
bool operator==(ArrayConstRef<T> a, ArrayConstRef<T> b);
template <typename T>
class ContainerA {
public:
operator ArrayConstRef<T>() const;
explicit operator const T *() const;
};
template <typename T>
class ContainerB {
public:
operator ArrayConstRef<T>() const;
explicit operator const T *() const;
};
int main() {
if (ContainerA<int>() == ContainerB<int>()) // error - no matching operator==
printf("equals\n");
return 0;
}
The overloaded operator== isn't matched even though the implicit conversion is available. Interestingly, if I removed the explicit keywords, the compiler manages to convert both objects to pointers and do the comparison that way (which I don't want). Why does one implicit conversion work but not the other? Is there a way to make it work?
This can be solved using SFINAE and little changes in code of your classes.
#include <cstddef>
#include <cstdio>
#include <type_traits>
template <typename T>
struct ArrayConstRef {
const T *data;
size_t length;
};
// This is needed to override other template below
// using argument depended lookup
template <typename T>
bool operator==(ArrayConstRef<T> a, ArrayConstRef<T> b){
/* Provide your implementation */
return true;
}
template <
typename Left,
typename Right,
// Sfinae trick :^)
typename = std::enable_if_t<
std::is_constructible_v<ArrayConstRef<typename Left::ItemType>, const Left&>
&& std::is_constructible_v<ArrayConstRef<typename Right::ItemType>, const Right&>
&& std::is_same_v<typename Left::ItemType, typename Right::ItemType>
>
>
inline bool operator==(const Left& a, const Right& b){
using T = typename Left::ItemType;
return ArrayConstRef<T>(a) == ArrayConstRef<T>(b);
}
template <typename T>
class ContainerA {
public:
// Add type of element
using ItemType = T;
operator ArrayConstRef<T>() const;
explicit operator const T *() const;
};
template <typename T>
class ContainerB {
public:
// Add type of element
using ItemType = T;
operator ArrayConstRef<T>() const;
explicit operator const T *() const;
};
int main() {
if (ContainerA<int>() == ContainerB<int>()) // no error :)
printf("equals\n");
return 0;
}
Compiles well with GCC 11.2 -std=c++17.
If you can use C++20, it is better to use concepts for this.
Code below compiles with GCC 11.2 -std=c++20.
#include <cstddef>
#include <cstdio>
#include <type_traits>
template <typename T>
struct ArrayConstRef {
const T *data;
size_t length;
};
// This is needed to override other template below
// using argument depended lookup
template <typename T>
bool operator==(ArrayConstRef<T> a, ArrayConstRef<T> b){
/* Provide your implementation */
return true;
}
template <typename Container>
concept ConvertibleToArrayConstRef =
requires (const Container& a) {
ArrayConstRef<typename Container::ItemType>(a);
};
template <
ConvertibleToArrayConstRef Left,
ConvertibleToArrayConstRef Right
>
requires (std::is_same_v<
typename Left::ItemType,
typename Right::ItemType>
)
inline bool operator==(const Left& a, const Right& b){
using T = typename Left::ItemType;
return ArrayConstRef<T>(a) == ArrayConstRef<T>(b);
}
template <typename T>
class ContainerA {
public:
// Add type of element
using ItemType = T;
operator ArrayConstRef<T>() const;
explicit operator const T *() const;
};
template <typename T>
class ContainerB {
public:
// Add type of element
using ItemType = T;
operator ArrayConstRef<T>() const;
explicit operator const T *() const;
};
int main() {
if (ContainerA<int>() == ContainerB<int>()) // no error :)
printf("equals\n");
return 0;
}
The problem is that operator== is a template, for it to be called the template parameter T needs to be deduced. But implicit conversion (ContainerA<int> -> ArrayConstRef<int> and ContainerB<int> -> ArrayConstRef<int>) won't be considered in template argument deduction.
Type deduction does not consider implicit conversions (other than type adjustments listed above): that's the job for overload resolution, which happens later.
On the other hand, if you specify the template argument to bypass the deduction (in a ugly style), the code works.
if (operator==<int>(ContainerA<int>(), ContainerB<int>()))
Another workaround, you might change the parameter type and add a helper like:
template <typename T>
bool equal_impl(ArrayConstRef<T> a, ArrayConstRef<T> b);
template <template <typename> class C1, template <typename> class C2, typename T>
std::enable_if_t<std::is_convertible_v<C1<T>, ArrayConstRef<T>>
&& std::is_convertible_v<C2<T>, ArrayConstRef<T>>,
bool>
operator==(C1<T> a, C2<T> b) {
return equal_impl<T>(a, b);
}
LIVE

Template specialization with a specific templated class

Given the following simple C++ class:
using namespace std;
template<class T1>
class ValueWrapper {
private:
T1 value_;
public:
ValueWrapper() {}
ValueWrapper(const T1& value) {
value_ = value;
}
ValueWrapper(const ValueWrapper<T1> &wrapper) {
value_ = wrapper.value_;
}
ValueWrapper& Set(const T1& value) {
value_ = value;
return *this;
}
T1 Get() const {
return value_;
}
};
I was trying to create a simple shared_ptr wrapper for that class (ultimately allowing the developer to use the class without the dereferencing operator if desired). While I've seen a few examples of wrapping a shared_ptr, I couldn't find any that also used a specialization for a templated class.
Using the class above, I created a ValueShared class which derives from shared_ptr:
template<class T1>
class ValueShared : public shared_ptr<T1> {
public:
ValueShared& operator =(const T1& rhs) {
// nothing to do in base
return *this;
}
};
Then, I created a custom make_shared_value function:
//
// TEMPLATE FUNCTION make_shared
template<class T1, class... Types> inline
ValueShared<T1> make_shared_value(Types&&... Arguments)
{ // make a shared_ptr
_Ref_count_obj<T1> *_Rx = new _Ref_count_obj<T1>(_STD forward<Types>(Arguments)...);
ValueShared<T1> _Ret;
_Ret._Resetp0(_Rx->_Getptr(), _Rx);
return (_Ret);
}
But, here's the problem code:
template<class T1, class ValueWrapper<T1>>
class ValueShared<ValueWrapper<T1>> : public shared_ptr<ValueWrapper<T1>>{
public:
ValueShared& operator =(const ValueWrapper<T1>& rhs) {
auto self = this->get();
self.Set(rhs->Get());
return *this;
}
};
I wanted to provide a specialization of the equals operator here that was specialized to the ValueWrapper class (so that it would Get/Set the value from the right hand side value).
I've tried a few things, but the current error is:
error C2943: 'ValueWrapper<T1>' : template-class-id redefined
as a type argument of a template
Maybe this isn't the proper approach, or maybe it's not possible?
Following should remove your error:
template<class T1>
class ValueShared<ValueWrapper<T1>> : public shared_ptr<ValueWrapper<T1>> {
public:
ValueShared& operator =(const ValueWrapper<T1>& rhs)
{
auto self = this->get();
self->Set(rhs.Get());
return *this;
}
};

C++ template class overload [] operator

I would like to overload the [] operator for a template class in respect with the template parameters. Like so:
template<
typename T,
template<typename> class Property,
template<typename> class Key1,
template<typename> class Key2>
class a_map
{
public:
const Property<T>& operator[](const Key1<T>& k) const
{ return _values[k.index()]; }
const Property<T>& operator[](const Key2<T>& k) const
{ return _values[k.index()]; }
protected:
std::vector<Property<T> > _values;
};
I would use this class like so:
int main()
{
a_map<float, prop, key_a, key_b> pm;
}
Basically I want to be able to access the elements inside the _values vector without having to worry to much about the Key types. All that matters is that they have an index() member.
However I get the following error
error C2535: 'const Property &a_map::operator
[](const Key1 &) const' : member function already defined or
declared
even though key_a and key_b are two totaly different types class templates.
Am I missing something? Is the compiler afraid that in certain situation Key1<T> and Key2<T> might actually be the same type?
Edit
These are the class templates used in main
template<typename T>
struct prop
{
T weight;
T height;
};
template<typename T>
class key_a
{
public:
int index() { return _i; }
private:
int _i;
};
template<typename T>
class key_b
{
public:
int index() { return 3; } // Always return 3
Edit
I'm using MVC++ 2008 compiler.
Since both of your operator[] are the same except for the argument type, why not template them?
template <typename TT>
const Property<T>& operator[](const TT& k) const
{
return _values[k.index()];
}
You need to declare your index() functions as const because inside the a_map template you are invoking them through const objects
template<typename T> class key_a {
public:
int index() const // <- `const` is necessary
{ return _i; }
private:
int _i;
};
template<typename T> class key_b {
public:
int index() const // <- `const` is necessary
{ return 3; }
};
But otherwise, everything compiles and work fine for me.
Tried it in VS2010 compiler and get the same error as yours. This is obviously a compiler bug in MSVC++ compilers. Handling of template-template arguments is implemented incorrectly.
To work around the problem I was able to use this technique
template<
typename T,
template<typename> class Property,
template<typename> class Key1,
template<typename> class Key2>
class a_map
{
public:
const Property<T>& operator[](const typename Key1<T>::self& k) const
{ return _values[k.index()]; }
const Property<T>& operator[](const typename Key2<T>::self& k) const
{ return _values[k.index()]; }
protected:
std::vector<Property<T> > _values;
};
and define the key templates as
template<typename T> class key_a {
public:
typedef key_a self;
int index() const { return _i; }
private:
int _i;
};
template<typename T> class key_b {
public:
typedef key_b self;
int index() const { return 3; }
};
This is inelegant, but it makes it work correctly with MSVC++ compilers.
Compiles fine like this... note how Prop/K1/K2 should be defined.
#include <vector>
template<
typename T,
template<typename> class Property,
template<typename> class Key1,
template<typename> class Key2>
class a_map
{
public:
const Property<T>& operator[](const Key1<T>& k) const
{ return _values[k.index()]; }
const Property<T>& operator[](const Key2<T>& k) const
{ return _values[k.index()]; }
protected:
std::vector<Property<T> > _values;
};
template <typename T> struct K1 { int index() const { return 0; } };
template <typename T> struct K2 { int index() const { return 0; } };
template <typename T> struct Prop { };
int main()
{
a_map<float, Prop, K1, K2> m;
}

clone_ptr implementation error

I have the following implementation of a clone_ptr in an attempt to make safe copies of object pointers that need to be copied in a class, so instead of using the copy constructor, I was adviced to use smart pointers and create a clone pointer.
Clone_ptr implementation:
#include <algorithm>
#include <functional>
#include <xercesc/dom/DOM.hpp>
struct DOMImplementation_cloner
{
template <typename T>
T* operator()(T* pPtr) const
{
/* your clone code*/.
T = DOMImplementationRegistry::getDOMImplementation(X("Core"));
}
};
struct default_clone
{
template <typename T>
T* operator()(T* pPtr) const
{
return pPtr->clone();
}
};
template <typename T, typename Cloner = default_clone>
class clone_ptr
{
public:
// types
typedef T element_type;
typedef element_type value_type;
typedef const element_type const_value_type;
typedef value_type* pointer;
typedef const_value_type* const_pointer;
typedef value_type& reference;
typedef const_value_type& const_reference;
// creation
clone_ptr() :
mPtr(0)
{}
explicit clone_ptr(pointer pPtr) :
mPtr(pPtr)
{}
clone_ptr(const clone_ptr& pOther) :
mPtr(pOther.get() ? mCloner(pOther.get()) : 0)
{}
/* clone_ptr(const clone_ptr& pOther) :
mPtr(pOther.get() ? pOther->clone() : 0),
{}*/
clone_ptr& operator=(clone_ptr pOther)
{
swap(*this, pOther);
return *this;
}
~clone_ptr()
{
delete get();
}
// observers
pointer get() const
{
return mPtr;
}
pointer operator->() const
{
return get();
}
reference operator*() const
{
assert(get() != 0);
return *get();
}
// modifiers
pointer release()
{
pointer result = mPtr;
mPtr = 0;
return result;
}
void reset(pointer pPtr = 0)
{
*this = clone_ptr(pPtr);
}
// utility
friend void swap(clone_ptr& pFirst, clone_ptr& pSecond)
{
std::swap(pFirst.mPtr, pSecond.mPtr);
}
/////////////////////
// compare
template <typename T1, typename T2>
friend bool operator==(const clone_ptr<T1>& pFirst, const clone_ptr<T2>& pSecond)
{
return pFirst.get() == pSecond.get();
}
template <typename T1, typename T2>
friend bool operator!=(const clone_ptr<T1>& pFirst, const clone_ptr<T2>& pSecond)
{
return !(pFirst == pSecond);
}
template <typename T1, typename T2>
friend bool operator<(const clone_ptr<T1>& pFirst, const clone_ptr<T2>& pSecond)
{
return std::less<void*>()(pFirst.get(), pSecond.get());
}
template <typename T1, typename T2>
friend bool operator<=(const clone_ptr<T1>& pFirst, const clone_ptr<T2>& pSecond)
{
return !(pFirst > pSecond);
}
template <typename T1, typename T2>
friend bool operator>(const clone_ptr<T1>& pFirst, const clone_ptr<T2>& pSecond)
{
return pSecond < pFirst;
}
template <typename T1, typename T2>
friend bool operator>=(const clone_ptr<T1>& pFirst, const clone_ptr<T2>& pSecond)
{
return !(pFirst < pSecond);
}
template <typename T1>
friend bool operator!(const clone_ptr<T1>& pX)
{
return pX.get() == 0;
}
private:
pointer mPtr;
default_clone mCloner;
};
/// Use of a xerces pointer so it can be copied/cloned safely
private class member:
clone_ptr<DOMImplementation, DOMImplementation_cloner> impl;
//compiler error:
error C2039: 'clone' : is not a member of 'xercesc_3_1::DOMImplementation'
I don't understand why it is not using the DOMImplementation_cloner and tries to use the default_clone instead?
Can someone clarify as to what I'm doing wrong?
The type of the cloner is hard-coded to default_clone, instead of using the template parameter Cloner (see the last line of your class definition).
Edit Just to make sure you understand, your definition of mCloner should look like this:
Cloner mCloner;
This way the cloner will actually be of the type given by the template parameter.
One more thing. If you expect you clone_ptr to be used in a more general setting (e.g. by coworkers on other projects), you should make the type of the cloner a property of the type T. This can be done using type traits (this answer gives an example). This could look like this in your clone_ptr:
template< typename T, typename Cloner = cloner_traits< T >::cloner_type >
class clone_ptr {
// ...
};
This would have the same default behavior as your current implementation. The advantage is that classes that require a special cloner would just specialize the cloner_traits template and the user of the class does not have to worry about choosing the appropriate cloner. If you still want to override the cloner for any class, you can still pass the cloner manually.
I recommend using clone_ptr class in following link:
http://www.codeproject.com/KB/stl/clone_ptr.aspx
The above type of clone pointer does not need to have a clone function.
There are other advantages to this type of clone pointer class, over above type implementation.
See article for more details.

Using STL algorithms (specifically std::sort) from within a templated class

I've declared a template class MyContainer as bellow, then created an instance of it of type DataType1. The DataType1 class provides a friend function "DataSpecificComparison" which is used by std::sort to compare DataType1 objects. The program compiled and sorted correctly.
I then defined a class called DataType2, gave it a friend implementation of "DataSpecificComparison" and used it to create another instance of MyContainer.
I am now unable to compile the program as a "C2914: 'std::sort' : cannot deduce template argument as function argument is ambiguous" compile time error is reported.
How can a developer specify that the DataSpecificComparison binary predicate is to take arguments of template type T*? Or is there another way around this issue?
template <class T>
class MyContainer
{
private:
vector<T*> m_vMyContainerObjects;
....
public:
....
void SortMyContainerObjects()
{
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), DataSpecificComparison)
}
}
class DataType1
{
....
friend bool DataSpecificComparison(const DataType1 * lhs, const DataType1 * rhs)
}
class DataType2
{
....
friend bool DataSpecificComparison(const DataType2* lhs, const DataType2* rhs)
}
You can use a temporary local function pointer variable of the required type to select the correct overload of DataSpecificComparison:
void SortMyContainerObjects()
{
typedef bool (*comparer_t)(const T*, const T*);
comparer_t cmp = &DataSpecificComparison;
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), cmp);
}
Here the compiler can deduce that you want to use the DataSpecificComparison overload that matches the comparer_t type, which resolves the ambiguity.
sth already gave a correct answer, but there's also a direct alternative based on the same principle:
void SortMyContainerObjects()
{
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(),
static_cast<bool (*comparer_t)(const T*, const T*)>(&DataSpecificComparison));
}
This uses essentially the same mechanism. The cast forces overload resolution to happen before the Template Argument Deduction for std::sort.
template<typename T>
struct DataSpecificComp : public binary_function<T, T, bool>
{
public:
bool operator()(const T* lhs, const T* rhs)
{
return *lhs < *rhs;
}
};
call the sort function as shown below:
sort(vi.begin(), vi.end(), DataSpecificComp<int>());
I'd prefer something along the following lines: by default it compares objects with less_than (so you wouldn't have to remember to provide a function with a funny name), and there's an overload that allows giving your own comparison functor (again, value-based):
#include <vector>
#include <algorithm>
#include <functional>
template <class T, class Func>
struct indirect_binary_call_type: public std::binary_function<const T*, const T*, bool>
{
Func f;
indirect_binary_call_type(Func f): f(f) {}
bool operator()(const T* a, const T* b) const
{
return f(*a, *b);
}
};
template <class T, class Func>
indirect_binary_call_type<T, Func> indirect_binary_call(Func f)
{
return indirect_binary_call_type<T, Func>(f);
}
template <class T>
class MyContainer
{
private:
std::vector<T*> m_vMyContainerObjects;
public:
void Sort()
{
Sort(std::less<T>());
}
template <class Func>
void Sort(Func f )
{
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), indirect_binary_call<T>(f));
}
};
int main()
{
MyContainer<int> m;
m.Sort();
m.Sort(std::greater<int>());
}
Did you try defining DataSpecificComparison as template with bunch of specializations and giving it the type?
template<T>
bool DataSpecificComparison(const T* t1, const T* t2)
{
// something non compilable here
}
template<> bool DataSpecificComparison<Data1>(const Data1* t1, const Data1* t2)
{
// return *t1 < *t2;
}
....
void SortMyContainerObjects()
{
std::sort(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), DataSpecificComparison<T>)
}
....
Templating DataSpecificComparison should work. You can also specifically call the proper std::sort template, but it's a bit cumbersome:
template <class T>
class MyContainer
{
private:
vector<T*> m_vMyContainerObjects;
typedef bool (*compsT)(T, T);
public:
....
void SortMyContainerObjects()
{
std::sort<std::vector<T*>::iterator, compsT>(m_vMyContainerObjects.begin(), m_vMyContainerObjects.end(), DataSpecificComparison);
}
}