I have correctly written the program for getting the superdigit of a large number (long long) but can't seem to pass some cases due to timeout and abort calls. Please suggest some optimizations to improve the runtime of my program:
int superDigit(long long m) {
int d=countDigit(m);
if(d==1){
return m;
}
long s=sumDigit(m);
return superDigit(s);
}
//utility functions to calculate digit count and sum of digits
int countDigit(long long n)
{
int count = 0;
while (n != 0) {
n = n / 10;
++count;
}
return count;
}
long sumDigit(long long n)
{
long sum = 0;
while (n != 0) {
sum += n % 10;
n = n / 10;
}
return sum;
}
Theory: A superdigit is defined by the following rules:
If x has only 1 digit, then its super digit is x
Otherwise, the super digit of x is equal to the super digit of the sum of the digits of x
For example:
super_digit(9875): 9+8+7+5 = 29 ,then
super_digit(29): 2 + 9 = 11 ,then
super_digit(11): 1 + 1 = 2 ,then
super_digit(2): = 2
Only looping over the digits once per superDigit call and avoiding recursion should make it faster. Something like this:
long long superDigit(long long m) {
long long sum;
while(true) {
sum = 0;
while(m != 0) {
sum += m % 10;
m /= 10;
}
if(sum >= 10)
m = sum;
else
break;
}
return sum;
}
If you need support for repeated sequences, like 593 10 times (which is usually too big for a long long) you could add a wrapper like this:
long long superDigit(long long m, int times) {
long long r = superDigit(m) * times;
if(r >= 10) r = superDigit(r);
return r;
}
For numbers small enough to fit in a long long, you can check that it works. Example:
superDigit(148148148) == superDigit(148, 3)
If you need support for large numbers that are not repeated sequences, you could add yet another overload, taking the number as a std::string:
long long superDigit(const std::string& m) {
long long sum = 0;
for(auto d : m) sum += d - '0';
if(sum >= 10) return superDigit(sum);
return sum;
}
And you can check that it's also getting the same result as one of the previous overloads:
superDigit(593, 10) == superDigit("593593593593593593593593593593")
I think you are getting abort call for value of m! If the value of m is 0, then the recursion will continue lifetime. And if the value of m can be negative then take care the problem for negative values too.
Please check it!
int superDigit(long long m) {
if(m<=9)return m; // handling case 0
int d=countDigit(m);
if(d==1){
return m;
}
long s=sumDigit(m);
return superDigit(s);
}
Your code has a problem with a '0'. It gets into an endless loop that is terminated if the call stack overflows (if your compiler does not eliminated the tail recursion).
The digit count helper function is completely unnecessary
int superDigit(long long m) {
if(m<10){
return m;
}else{
int s = 0;
do {
s += m % 10;
m = m / 10;
}while (m > 0);
return superDigit(s);
}
}
You can eliminate the recursion by yourself by putting the whole thing into a loop.
int superDigit(long long m) {
while (m >9){
int s = 0;
do {
s += m % 10;
m = m / 10;
}while (m > 0);
m = s;
}
return m;
}
But recursion looks a bit more self explaining and modern compiler should be able to eliminate the tail recursion either.
I need to make a simple function in c++ that will say if an entered integer has its digits ascending from left to right. Ex, 123 is ascending. We just started learning recurssion, which is what I'm supposed to use, but I'm confused. So far what I was thinking is that you store the last digit as a temp, then compare that to the next digit, but how would you manage to do that?
bool ascending(int n) {
int temp = n % 10;
while (n / 10 > 0) {
n = n / 10;
if (temp > n % 10) {
return false;
break;
}
temp = n % 10;
}
}
This is the code I have so far, but I'm definitely messing up. I'm not even using recurrsion.
Here is one way you can go about it.
On every iteration, you check that last 2 digits are in order. And when the number is a single digit, return true
bool ascending(int n) {
int last_digit = n % 10;
int remainder = n / 10;
if (remainder == 0)
{
return true;
}
int second_last_digit = remainder % 10;
if (last_digit < second_last_digit)
{
return false;
}
else
{
return ascending(remainder); // Recusrive call
}
}
I need to create a recursive function that counts the 2 and 6 from the number a user inputs.
For example if the user enters 26827 the count is 3.
It works with certain numbers and certain numbers it doesn't. Can someone please modify my function making sure its recursive and using very basic C++ language as I have used. Thank you! (I believe something is wrong with return type.)
int count(int n) {
static int count = 0;
if (n == 2 || n == 6) count++;
if ((n % 10 == 2) || (n % 10 == 6)) {
count++;
count(num / 10);
}
else return count;
}
One liner for fun.
int f(int n) {
return n == 0 ? 0 : (n%10==2 || n%10==6) + f(n/10);
}
int count(int n) {
if(n <= 0) return 0; // Base Condition
int countDig = 0; // Initalizing Count of digits
if(n % 10 == 2 || n % 10 == 6) // Checking whether the LSB is 2 or 6
countDig ++; // If it is then incrementing the countDig
countDig += count(n / 10); // Calling the recurive function by sending the number except its LSB
//And incrementing counter according to it
return countDig; // Returning the final count
}
you don't need to have a static value counter. It can be easily done as above. Please refer to comments given. Second the error in your code is you only calling the recursion if the LSB is 2 or 6. The recursion should be put outside the if condition in your code. Why are you using num variable. I think it should be n
You don't need statics
This should work (note return c + count(n / 10) line. That's the main recursion here)
int count(int n)
{
int c = 0;
if(n % 10 == 2 || n % 10 == 6)
c = 1;
if(n < 10)
return c;
return c + count(n / 10);
}
If you want to make it with recursion , another procedure you can apply using string manipulation.
PseudoCode:
Function ( int n):
1. Make n as a string. ( Convert Number to string)
2. Collect the first character (char C) of the string and remove the character from the string.
3. Make the main string again as a number n. ( Convert String to Number).
4. Check the character C , which is number 2 or 6 or not, count it with a flag.
5. Enter base case for which the recursion will stop.
6. return the number n , inside the Function (n) for recursion.
I'm making a simple program to calculate the number of pairs in an array that are divisible by 3 array length and values are user determined.
Now my code is perfectly fine. However, I just want to check if there is a faster way to calculate it which results in less compiling time?
As the length of the array is 10^4 or less compiler takes less than 100ms. However, as it gets more to 10^5 it spikes up to 1000ms so why is this? and how to improve speed?
#include <iostream>
using namespace std;
int main()
{
int N, i, b;
b = 0;
cin >> N;
unsigned int j = 0;
std::vector<unsigned int> a(N);
for (j = 0; j < N; j++) {
cin >> a[j];
if (j == 0) {
}
else {
for (i = j - 1; i >= 0; i = i - 1) {
if ((a[j] + a[i]) % 3 == 0) {
b++;
}
}
}
}
cout << b;
return 0;
}
Your algorithm has O(N^2) complexity. There is a faster way.
(a[i] + a[j]) % 3 == ((a[i] % 3) + (a[j] % 3)) % 3
Thus, you need not know the exact numbers, you need to know their remainders of division by three only. Zero remainder of the sum can be received with two numbers with zero remainders (0 + 0) and with two numbers with remainders 1 and 2 (1 + 2).
The result will be equal to r[1]*r[2] + r[0]*(r[0]-1)/2 where r[i] is the quantity of numbers with remainder equal to i.
int r[3] = {};
for (int i : a) {
r[i % 3]++;
}
std::cout << r[1]*r[2] + (r[0]*(r[0]-1)) / 2;
The complexity of this algorithm is O(N).
I've encountered this problem before, and while I don't find my particular solution, you could improve running times by hashing.
The code would look something like this:
// A C++ program to check if arr[0..n-1] can be divided
// in pairs such that every pair is divisible by k.
#include <bits/stdc++.h>
using namespace std;
// Returns true if arr[0..n-1] can be divided into pairs
// with sum divisible by k.
bool canPairs(int arr[], int n, int k)
{
// An odd length array cannot be divided into pairs
if (n & 1)
return false;
// Create a frequency array to count occurrences
// of all remainders when divided by k.
map<int, int> freq;
// Count occurrences of all remainders
for (int i = 0; i < n; i++)
freq[arr[i] % k]++;
// Traverse input array and use freq[] to decide
// if given array can be divided in pairs
for (int i = 0; i < n; i++)
{
// Remainder of current element
int rem = arr[i] % k;
// If remainder with current element divides
// k into two halves.
if (2*rem == k)
{
// Then there must be even occurrences of
// such remainder
if (freq[rem] % 2 != 0)
return false;
}
// If remainder is 0, then there must be two
// elements with 0 remainder
else if (rem == 0)
{
if (freq[rem] & 1)
return false;
}
// Else number of occurrences of remainder
// must be equal to number of occurrences of
// k - remainder
else if (freq[rem] != freq[k - rem])
return false;
}
return true;
}
/* Driver program to test above function */
int main()
{
int arr[] = {92, 75, 65, 48, 45, 35};
int k = 10;
int n = sizeof(arr)/sizeof(arr[0]);
canPairs(arr, n, k)? cout << "True": cout << "False";
return 0;
}
That works for a k (in your case 3)
But then again, this is not my code, but the code you can find in the following link. with a proper explanation. I didn't just paste the link since it's bad practice I think.
The sequence of triangle numbers is
generated by adding the natural
numbers. So the 7th triangle number
would be 1 + 2 + 3 + 4 + 5 + 6 + 7 =
28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55,
...
Let us list the factors of the first
seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first
triangle number to have over five
divisors.
Given an integer n, display the first
triangle number having at least n
divisors.
Sample Input: 5
Output 28
Input Constraints: 1<=n<=320
I was obviously able to do this question, but I used a naive algorithm:
Get n.
Find triangle numbers and check their number of factors using the mod operator.
But the challenge was to show the output within 4 seconds of input. On high inputs like 190 and above it took almost 15-16 seconds. Then I tried to put the triangle numbers and their number of factors in a 2d array first and then get the input from the user and search the array. But somehow I couldn't do it: I got a lot of processor faults. Please try doing it with this method and paste the code. Or if there are any better ways, please tell me.
Here's a hint:
The number of divisors according to the Divisor function is the product of the power of each prime factor plus 1. For example, let's consider the exponential prime representation of 28:
28 = 22 * 30 * 50 * 71 * 110...
The product of each exponent plus one is: (2+1)*(0+1)*(0+1)*(1+1)*(0+1)... = 6, and sure enough, 28 has 6 divisors.
Now, consider that the nth triangular number can be computed in closed form as n(n+1)/2. We can multiply numbers written in the exponential prime form simply by adding up the exponents at each position. Dividing by two just means decrementing the exponent on the two's place.
Do you see where I'm going with this?
Well, you don't go into a lot of detail about what you did, but I can give you an optimization that can be used, if you didn't think of it...
If you're using the straightforward method of trying to find factors of a number n, by using the mod operator, you don't need to check all the numbers < n. That obviously would take n comparisons...you can just go up to floor(sqrt(n)). For each factor you find, just divide n by that number, and you'll get the conjugate value, and not need to find it manually.
For example: say n is 15.
We loop, and try 1 first. Yep, the mod checks out, so it's a factor. We divide n by the factor to get the conjugate value, so we do (15 / 1) = 15...so 15 is a factor.
We try 2 next. Nope. Then 3. Yep, which also gives us (15 / 3) = 5.
And we're done, because 4 is > floor(sqrt(n)). Quick!
If you didn't think of it, that might be something you could leverage to improve your times...overall you go from O(n) to O(sqrt (n)) which is pretty good (though for numbers this small, constants may still weigh heavily.)
I was in a programming competition way back in school where there was some similar question with a run time limit. the team that "solved" it did as follows:
1) solve it with a brute force slow method.
2) write a program to just print out the answer (you found using the slow method), which will run sub second.
I thought this was bogus, but they won.
see Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n. (Formerly M2535 N1002)
then pick the language you want implement it in, see this:
"... Python
import math
def diminishing_returns(val, scale):
if val < 0:
return -diminishing_returns(-val, scale)
mult = val / float(scale)
trinum = (math.sqrt(8.0 * mult + 1.0) - 1.0) / 2.0
return trinum * scale
..."
First, create table with two columns: Triangle_Number Count_of_Factors.
Second, derive from this a table with the same columns, but consisting only of the 320 rows of the lowest triangle number with a distinct number of factors.
Perform your speedy lookup to the second table.
If you solved the problem, you should be able to access the thread on Project Euler in which people post their (some very efficient) solutions.
If you're going to copy and paste a problem, please cite the source (unless it was your teacher who stole it); and I second Wouter van Niferick's comment.
Well, at least you got a good professor. Performance is important.
Since you have a program that can do the job, you can precalculate all of the answers for 1 .. 320.
Store them in an array, then simply subscript into the array to get the answer. That will be very fast.
Compile with care, winner of worst code of the year :D
#include <iostream>
bool isPrime( unsigned long long number ){
if( number != 2 && number % 2 == 0 )
return false;
for( int i = 3;
i < static_cast<unsigned long long>
( sqrt(static_cast<double>(number)) + 1 )
; i += 2 ){
if( number % i == 0 )
return false;
}
return true;
}
unsigned int p;
unsigned long long primes[1024];
void initPrimes(){
primes[0] = 2;
primes[1] = 3;
unsigned long long number = 5;
for( unsigned int i = 2; i < 1024; i++ ){
while( !isPrime(number) )
number += 2;
primes[i] = number;
number += 2;
}
return;
}
unsigned long long nextPrime(){
unsigned int ret = p;
p++;
return primes[ret];
}
unsigned long long numOfDivs( unsigned long long number ){
p = 0;
std::vector<unsigned long long> v;
unsigned long long prime = nextPrime(), divs = 1, i = 0;
while( number >= prime ){
i = 0;
while( number % prime == 0 ){
number /= prime;
i++;
}
if( i )
v.push_back( i );
prime = nextPrime();
}
for( unsigned n = 0; n < v.size(); n++ )
divs *= (v[n] + 1);
return divs;
}
unsigned long long nextTriNumber(){
static unsigned long long triNumber = 1, next = 2;
unsigned long long retTri = triNumber;
triNumber += next;
next++;
return retTri;
}
int main()
{
initPrimes();
unsigned long long n = nextTriNumber();
unsigned long long divs = 500;
while( numOfDivs(n) <= divs )
n = nextTriNumber();
std::cout << n;
std::cin.get();
}
def first_triangle_number_with_over_N_divisors(N):
n = 4
primes = [2, 3]
fact = [None, None, {2:1}, {3:1}]
def num_divisors (x):
num = 1
for mul in fact[x].values():
num *= (mul+1)
return num
while True:
factn = {}
for p in primes:
if p > n//2: break
r = n // p
if r * p == n:
factn = fact[r].copy()
factn[p] = factn.get(p,0) + 1
if len(factn)==0:
primes.append(n)
factn[n] = 1
fact.append(factn)
(x, y) = (n-1, n//2) if n % 2 == 0 else (n, (n-1)//2)
numdiv = num_divisors(x) * num_divisors(y)
if numdiv >= N:
print('Triangle number %d: %d divisors'
%(x*y, numdiv))
break
n += 1
>>> first_triangle_number_with_over_N_divisors(500)
Triangle number 76576500: 576 divisors
Dude here is ur code, go have a look. It calculates the first number that has divisors greater than 500.
void main() {
long long divisors = 0;
long long nat_num = 0;
long long tri_num = 0;
int tri_sqrt = 0;
while (1) {
divisors = 0;
nat_num++;
tri_num = nat_num + tri_num;
tri_sqrt = floor(sqrt((double)tri_num));
long long i = 0;
for ( i=tri_sqrt; i>=1; i--) {
long long remainder = tri_num % i;
if ( remainder == 0 && tri_num == 1 ) {
divisors++;
}
else if (remainder == 0 && tri_num != 1) {
divisors++;
divisors++;
}
}
if (divisors >100) {
cout <<"No. of divisors: "<<divisors<<endl<<tri_num<<endl;
}
if (divisors > 500)
break;
}
cout<<"Final Result: "<<tri_num<<endl;
system("pause");
}
Boojum's answer motivated me to write this little program. It seems to work well, although it does use a brute force method of computing primes. It's neat how all the natural numbers can be broken down into prime number components.
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <iomanip>
#include <vector>
//////////////////////////////////////////////////////////////////////////////
typedef std::vector<size_t> uint_vector;
//////////////////////////////////////////////////////////////////////////////
// add a prime number to primes[]
void
primeAdd(uint_vector& primes)
{
size_t n;
if (primes.empty())
{
primes.push_back(2);
return;
}
for (n = *(--primes.end()) + 1; ; ++n)
{
// n is even -> not prime
if ((n & 1) == 0) continue;
// look for a divisor in [2,n)
for (size_t i = 2; i < n; ++i)
{
if ((n % i) == 0) continue;
}
// found a prime
break;
}
primes.push_back(n);
}
//////////////////////////////////////////////////////////////////////////////
void
primeFactorize(size_t n, uint_vector& primes, uint_vector& f)
{
f.clear();
for (size_t i = 0; n > 1; ++i)
{
while (primes.size() <= i) primeAdd(primes);
while (f.size() <= i) f.push_back(0);
while ((n % primes[i]) == 0)
{
++f[i];
n /= primes[i];
}
}
}
//////////////////////////////////////////////////////////////////////////////
int
main(int argc, char** argv)
{
// allow specifying number of TN's to be evaluated
size_t lim = 1000;
if (argc > 1)
{
lim = atoi(argv[1]);
}
if (lim == 0) lim = 1000;
// prime numbers
uint_vector primes;
// factors of (n), (n + 1)
uint_vector* f = new uint_vector();
uint_vector* f1 = new uint_vector();
// sum vector
uint_vector sum;
// prime factorize (n)
size_t n = 1;
primeFactorize(n, primes, *f);
// iterate over triangle-numbers
for (; n <= lim; ++n)
{
// prime factorize (n + 1)
primeFactorize(n + 1, primes, *f1);
while (f->size() < f1->size()) f->push_back(0);
while (f1->size() < f->size()) f1->push_back(0);
size_t numTerms = f->size();
// compute prime factors for (n * (n + 1) / 2)
sum.clear();
size_t i;
for (i = 0; i < numTerms; ++i)
{
sum.push_back((*f)[i] + (*f1)[i]);
}
--sum[0];
size_t numFactors = 1, tn = 1;
for (i = 0; i < numTerms; ++i)
{
size_t exp = sum[i];
numFactors *= (exp + 1);
while (exp-- != 0) tn *= primes[i];
}
std::cout
<< n << ". Triangle number "
<< tn << " has " << numFactors << " factors."
<< std::endl;
// prepare for next iteration
f->clear();
uint_vector* tmp = f;
f = f1;
f1 = tmp;
}
delete f;
delete f1;
return 0;
}