Im trying to understand goodFeaturesToTrack and in the documention at this link:
http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=goodf#goodfeaturestotrack
it says "
Note
If the function is called with different values A and B of the parameter qualityLevel , and A > {B}, the vector of returned corners with qualityLevel=A will be the prefix of the output vector with qualityLevel=B . "
is A > {B} just a is greater than b or does it mean something else
I think, there is a typo in the documentation, and B should not be in curly brackets. Probably, it was an intent to make this letter be of different font.
Since the qualityLevel parameter is double, and from RTFS (reading the fine sources :) ) I conclude that this text says the following.
If you call this function several times, decreasing qualityLevel step by step, then this function will return the same results, just truncating them somewhere at the end.
In other words, if you compare results from two such calls, you'll see the same elements in the beginning and different amount of the results.
Related
I need writing a function which takes as input
a = [12,39,48,36]
and produces as output
b=[4,4,4,13,13,13,16,16,16,12,12,12]
where the idea is to repeat one element three times or two times (this should be variable) and divided by 2 or 3.
I tried doing this:
c=[12,39,48,36]
a=size(c)
for i in a
repeat(c[i]/3,3)
end
You need to vectorize the division operator with a dot ..
Additionally I understand that you want results to be Int - you can vectorizing casting to Int too:
repeat(Int.(a./3), inner=3)
Przemyslaw's answer, repeat(Int.(a./3), inner=3), is excellent and is how you should write your code for conciseness and clarity. Let me in this answer analyze your attempted solution and offer a revised solution which preserves your intent. (I find that this is often useful for educational purposes).
Your code is:
c = [12,39,48,36]
a = size(c)
for i in a
repeat(c[i]/3, 3)
end
The immediate fix is:
c = [12,39,48,36]
output = Int[]
for x in c
append!(output, fill(x/3, 3))
end
Here are the changes I made:
You need an array to actually store the output. The repeat function, which you use in your loop, would produce a result, but this result would be thrown away! Instead, we define an initially empty output = Int[] and then append! each repeated block.
Your for loop specification is iterating over a size tuple (4,), which generates just a single number 4. (Probably, you misunderstand the purpose of the size function: it is primarily useful for multidimensional arrays.) To fix it, you could do a = 1:length(c) instead of a = size(c). But you don't actually need the index i, you only require the elements x of c directly, so we can simplify the loop to just for x in c.
Finally, repeat is designed for arrays. It does not work for a single scalar (this is probably the error you are seeing); you can use the more appropriate fill(scalar, n) to get [scalar, ..., scalar].
Hi I am new here and want to solve this problem:
do k=1,31
Data H(1,k)/0/
End do
do l=1,21
Data H(l,1)/0.5*(l-1)/
End do
do m=31,41
Data H(17,m)/0/
End do
do n=17,21
Data H(n,41)/0.5*(n-17)/
End do
I get error for l and n saying that it is a syntax error in DATA statement. Anyone know how to solve this problem?
You have three problems here, and not just with the "l" and "n" loops.
The first problem is that the values in a data statement cannot be arbitrary expressions. In particular, they must be constants; 0.5*(l-1) is not a constant.
The second problem is that the bounds in the object lists must also be constant (expressions); l is not a constant expression.
For the first, it's also worth noting that * in a data value list has a special meaning, and it isn't the multiplication operator. * gives a repeat count, and a repeat count of 0.5 is not valid.
You can fix the second point quite simply, by using such constructions as
data H(1,1:31) /31*0./ ! Note the repeat count specifier
outside a loop, or using an implied loop
data (H(1,k),k=1,31) /31*0./
To do something for the "l" loop is more tedious
data H(1:21,1) /0., 0.5, 1., 1.5, ... /
and we have to be very careful about the number of values specified. This cannot be dynamic.
The third problem is that you cannot specify explicit initialization for an element more than once. Look at your first two loops: if this worked you'd be initializing H(1,1) twice. Even though the same value is given, this is still invalid.
Well, actually you have four problems. The fourth is related to the point about dynamic number of values. You probably don't want to be doing explicit initialization. Whilst it's possible to do what it looks like you want to do, just use assignment where these restrictions don't apply.
do l=1,21
H(l,1) = 0.5*(l-1)
End do
Yes, there are times when complicated explicit initialization is a desirable thing, but in this case, in what I assume is new code, keeping things simple is good. An "initialization" portion of your code which does the assignments is far more "modern".
I tried to code a Prolog program that takes 2 value and calculates if the pair is valid or not. If pairs are in different lists, then pairs will be valid and they can make match. If two team in same list(group) then they can't make match which means false.
when i started the program it doesn't show anything. I thought there would be infinite searching or looping. Then tried that simple code
GroupB=[china,usa,chile,italy].
member(X,[X|_]).
member(X,[_|T]):-
member(X,T).
match(X):-
member(X,GroupB).
In that code i saw that program always gives me true. I typed; to SWI-Prolog it gave me another true, i typed ; again another true then i realized that the problem should be in that searching part. Thanks for all interests from now. All suggestions are welcome.
edit:
I edited the code like that to try a different style
GroupA([germany,brazil,turkey,korea]).
GroupB([china,usa,chile,italy]).
member(X,[X|_]).
member(X,[_|T]):-
member(X,T).
memberence(X):-
GroupA(L).
GroupB(M).
member(X,L).
member(X,M).
collision(X,Y):-
GroupA(L),
member(X,L),
member(Y,L).
GroupB(L),
member(X,L),
member(Y,L).
match(X,Y) :-
GroupA(L),
memberence(X),
memberence(Y),
\+collision(X,Y).
now i got:
ERROR: Undefined procedure: match/2
ERROR: However, there are definitions for:
ERROR: catch/3
although there is a match(X,Y) procedure why it gives me undefined match/2 error.
GroupA=[germany,brazil,turkey,korea].
GroupB=[china,usa,chile,italy].
member(X,[X|_]).
member(X,[_|T]):-
member(X,T).
memberence(X):-
member(X,GroupA).
member(X,GroupB).
collision(X,Y):-
member(X,GroupA),
member(Y,GroupA).
member(X,GroupB),
member(Y,GroupB).
match(X,Y) :-
memberence(X),
memberence(Y),
\+collision(X,Y).
a)
You have a dot that must be comma in:
collision(X,Y):-
member(X,GroupA),member(Y,GroupA).
member(X,GroupB),member(Y,GroupB).
b)
Better you do not redefine "member", it is standard.
c)
If I change dot by comma in:
collision(X,Y):-
GroupA(L),member(X,L),member(Y,L),
GroupB(L),member(X,L),member(Y,L).
this statement will fail always because there are no list "L" common to GroupA and GroupB.
d)
If we take what seems the original request "takes 2 value and calculates if the pair is valid or not. If pairs are in different lists, then pairs will be valid and they can make match. If two team in same list(group) then they can't make match which means false."
the solution seems obvious:
match(X,Y) :- groupA(A), member(X,A), groupB(B), member(Y,B).
match(Y,X) :- groupA(A), member(X,A), groupB(B), member(Y,B).
You have 2 big problems.
First, you seem to use . and , interchangeably.
Second, you fail to understand Prolog's scoping rules. Anything that isn't asserted into the prolog database is scoped to the immediate statement or the clause of the predicate of which is a part. If you want somebody to know about it, it either has to be a part of the prolog database or passed as an argument. Thus, when you say something like
GroupB = [china,usa,chile,italy].
The variable GroupB Is unified with the list [china,usa,chile,italy]. At which point, the assertion succeeds, and both the newly-bound variable and the list with which it was unified ** go out of scope** and cease to exist. Then, when you attempt to reference it later on:
GroupB=[china,usa,chile,italy].
.
.
.
match(X) :- member(X,GroupB).
The variable GroupB is unbound. Your implementation of member/2,
GroupB=[china,usa,chile,
member(X,[X|_]) .
member(X,[_|T]) :- member(X,T) .
is more than willing to act in a generative manner when given an unbound variable as its 2nd argument, generating lists of variable, successively (and infinitely) longer on backtracking.
If I have a function
let rec function n =
if n<0 then []
else n-2 # function n-2 ;;
I get an error saying that the expression function n-2 is a list of int but it is expecting an int.
How do I concatenate the values to return all the n-2 values above zero as a list?
I cannot use the List module to fold.
Thanks
Your title asks how to concatenate lists, but your question seems rather different.
To concatenate lists, you can use the # operator. In many cases, code that depends on this operator is slower than it needs to be (something to keep in mind for later :-).
Here are some things I see wrong with the code you give:
a. You can't name a function function, because function is a keyword in OCaml.
b. If you use the # operator, you should have lists on both sides of it. As near as I can see, the thing on the left in your code is not a list.
c. Function calls have higher precedence than infix operators. So myfun n - 2 is parsed as (myfun n) - 2. You probably want something closer to myfun (n - 2).
Even with these changes, your code seems to generate a list of integers that are 2 apart, which isn't what you say you want. However, I can't understand what the function is actually supposed to return.
It seems like you are not concatenating lists, but concatenating ints instead. This is done by the :: operator. So your code would look like:
else (n-2)::(fun (n-2))
Although I could see this function possibly not producing the desired output if you put in negative numbers. For example if you pass through n = 1, n-2 will evaluate to -1 which is less than zero.
So I'm reading http://learnyouahaskell.com/starting-out as it explains lists, and using ghci on Vista 64. It says that [2,4..20] steps by 2 from 4 to 20. This works. It says [20,19..1] goes from 20 to 1, but doesn't explain. I take it that the first number is NOT the step, the step is the difference between the 1st and 2nd number. This is confirmed by [4,4..20] which hangs (no error message, must kill console). This is unlike operators like !! and take which check the index's range and give an error message.
My question is: is this a bug on Vista port or is that the way it's supposed to be?
[x,y..z] does indeed step from x to z by step y-x. When y-x is 0 this leads to an infinite list. This is intended behavior.
Note that if you use the list in an expression like take 20 [2,2..20], ghci won't try to print the whole list (which is impossible with infinite lists of course) and it won't "hang".
Quoting this book:
[n,p..m] is the list of numbers from n to m in steps of p-n.
Your list [4,4..20] "hangs", because you have a step of 4-4=0, so it's an infinite list containing only the number 4 ([4, 4, 4, 4...]).
Haskell allows infinite lists and as the Haskell is the "lazy evaluation language", meaning it will only compute what is necessary to give you the result, so the infinite structures are allowed in Haskell.
In Haskell you could compute something like "head[1..]". This is because Haskell only calculates what is required for the result. So in the example above it would generate only the first element of the infinite list (number 1) and head would return you this element (number 1).
So, in that case program will terminate! However, if you calculate [1..] (infinite list) program won't terminate. Same applies to your example, you created an infinite list and there is no way of terminating it.
That syntax basically is derived from listing the whole list. [1,3,5,7,9,11,13,15,17,19] for example can be shortened by simply omitting the obvious parts. So you could say, if I specify the first two elements, it is clear how it would continue. So the above list equals to [1,3..19].
It's worth noting that the .. syntax in lists desugars to the enumFrom functions given by the Enum typeclass:
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#t:Enum