meet exc_bad_access errror when operating on c-style string - c++

I'm solving a problem that "replace all spaces in a string with ‘%20’." and I want to operate on the original string instead of create a new string. Here is my code:
void replaceSpaces(char* s, int len) {
int spaceCnt = 0;
for(int i = 0; i < len; ++i) {
if(s[i] == ' '){
++spaceCnt;
}
}
int newlen = len + 2 * spaceCnt;
s[newlen] = '\0';
for(int i = len - 1; i >= 0; --i) {
if(s[i] == ' ') {
s[newlen - 1] = '0';
s[newlen - 2] = '2';
s[newlen - 3] = '%';
newlen -= 3;
} else {
s[newlen - 1] = s[i];
--newlen;
}
}
}
And I have an "thread: exc_bad_access" error in the line s[newlen] = '\0';. I know it's dangerous to operate c-stye string in this way but I don't know how to modify it...
Any explanations or suggestions will be appreciated!

Well, if the original buffer is not long enough to contain the string with replacements, you are accessing memory out of bounds. When you determine the new size, you could do a realloc call to reallocate a suffiecient buffer with the size newlen like *s = realloc(*s, newsize). The only issue is that you need to change the paramter from char* s to char** s so that if realloc moves the memory to another block you update the pointer. And of course, this will work with strings allocated on heap, not local stack strings, since you can't reallocate that.

Related

c++ Split char array without use of any library

I've been running into this weird issue where the split code returns correctly when I printf output inside the function, but will incorrectly return output upon calling it as an instance.
Question: How do I get the correct ouput when calling it as an instance?(see useage bellow)
Here is the code:
typedef struct SplitText
{
int splitLen;
char* splitTxt[100];
char* subTxt(char* text, int index, int len)
{
char subTxt_[1000];
int count = 0;
for (int i = 0; i < 1000; i++)
subTxt_[i] = '\0';
for (int i = index; i < index + len; i++)
subTxt_[count++] = text[i];
return subTxt_;
}
void split(char* text, char sep)
{
char separator[3] = { '<', sep, '>' };
int textLen = strlen(text);
int splitIndex = 0;
int splitCount = 0;
for (int t = 0; t < textLen; t++)
{
if (text[t] == separator[0] && text[t + 1] == separator[1] && text[t + 2] == separator[2])
{
if (splitIndex != 0)
splitIndex += 3;
splitTxt[splitCount] = subTxt(text, splitIndex, t - splitIndex);
splitIndex = t;
//correct output
printf(splitTxt[splitCount]);
printf("\n");
splitCount++;
}
}
splitLen = splitCount;
}
}SplitText;
Useage:
SplitText st;
st.split("testing<=>split<=>function<=>", '=');
for (int i = 0; i < st.splitLen; i++)
{
//incorrect output
printf(st.splitTxt[i]);
printf("\n");
}
printf("--------\n");
This:
char* subTxt(char* text, int index, int len)
{
char subTxt_[1000];
...
return subTxt_;
}
Is undefined behavior. Returning a pointer to a local stack variable (or local array var) is going to result in weird stuff like this happening.
The typical thing that corrupts the contens of that returned pointer is when another function is invoked, the memory occupied by subTxt_ is going to get overwritten with the stack variables of the next function invoked.
Better:
char* subTxt(char* text, int index, int len)
{
char *subTxt = new char[1000];
...
return subTxt_;
}
And then make sure whoever invokes subTxt remembers to delete [] on the returned pointer.
Or just use std::string and be done with it (unless this is an academic exercise).
Also, this is undefined behavior:
for (int t = 0; t < textLen; t++)
{
if (text[t] == separator[0] && text[t + 1] == separator[1] && text[t + 2] == separator[2])
when t == textLen-1, then referencing text[t+2] and text[t+1] is an out of bounds access. Change it to be:
for (int t = 2; t < textLen; t++)
{
if (text[t-2] == separator[0] && text[t -1] == separator[1] && text[t] == separator[2])
And do similar fixups with t within the block as well.
Well you can create a splitstring function instead of a struct/class.
Anyway your code still looks quite "C" like with its fixed size char arrays. This will limit the usability and stability (out-of-bound array bugs).
Strings in C++ are usually of type std::string.
and then C++ has string_view to make views on that string (so no data gets copied, but it also means your string_view is only valid for as long as the string it is viewing lives).
If you don't know the number of substrings in a string up-front, you should not use a fixed size array, but a std::vector (which can resize internally if needed)
This is what a split_string function would look like in current C++, note that the code also shows better what it is doing compared to "C" style programming that show more what you are doing.
std::vector<std::string_view> split_string(std::string_view string, std::string_view delimiters)
{
std::vector<std::string_view> substrings;
if(delimiters.size() == 0ul)
{
substrings.emplace_back(string);
return substrings;
}
auto start_pos = string.find_first_not_of(delimiters);
auto end_pos = start_pos;
auto max_length = string.length();
while(start_pos < max_length)
{
end_pos = std::min(max_length, string.find_first_of(delimiters, start_pos));
if(end_pos != start_pos)
{
substrings.emplace_back(&string[start_pos], end_pos - start_pos);
start_pos = string.find_first_not_of(delimiters, end_pos);
}
}
return substrings;
}
Take a look at std::string_view.
You can avoid allocating memory and it has a built-in substring function.
Just be careful when using printf for printing to console as "%s" will
print the whole string.
See printf documentation.
for(auto view : container_with_string_views)
printf("%.*s, (int)view.size(), view.data());

C++ delete[] crash

Program crashes when I'm trying to delete[] an array that was allocated with new[]. I don't see any reasons why this shouldn't work. The array is allocated in method and deleted in the end of it, it's local, everything should be fine, but it's not.
I don't see any exception name that was thrown in debug, that's why I don't know where to dig.
Through debug I see that crash is happening at first delete[] operator.
Without those two deletes no crashes happening, but I don't want something to float in memory.
void Atbash::EncryptString(string t)
{
char *cOriginalString;
char *cEncryptedString;
unsigned int originalStringLength;
unsigned int i;
unsigned short j = 0;
originalString = t;
originalStringLength = originalString.length();
cOriginalString = new char(originalStringLength + 1);
cEncryptedString = new char(originalStringLength + 1);
strcpy_s(cOriginalString, originalStringLength + 1, originalString.c_str());
cOriginalString[originalStringLength] = '\0';
for (i = 0; i < originalStringLength; i++)
{
while (cOriginalString[i] != alphabet[j])
{
j++;
}
cEncryptedString[i] = alphabet[N - j - 2];
j = 0;
}
cEncryptedString[originalStringLength] = '\0';
encryptedString = cEncryptedString;
delete[] cOriginalString;
delete[] cEncryptedString;
}
originalString and encryptedString are of "string" type.
You aren't allocating a char[], just a plain old char. Note that you should be using square braces ([]) and not parenthethis (()):
cOriginalString = new char[originalStringLength + 1];
// Here ------------------^------------------------^
cEncryptedString = new char[originalStringLength + 1];
// And here ---------------^------------------------^
You can process individual characters in a std::string and it will both simplify your code and make it more robust. Here is one possible implementation.
void Atbash::EncryptString(string originalString)
{
encryptedString.clear();
encryptedString.reserve(originalString.size());
for (auto ch:originalString)
{
auto index= alphabet.find(ch);
if (index != npos)
encryptedString += alphabet[N - index - 2];
}
}

C++. How can I free memory correctly?

Written code to find and remove the largest word in a string without the using of library functions. Everything works fine. But when I want to free memory, the result is negative (displays an empty line). If you remove the call to the memory release function, everything will work correctly, but there will be a leak of memory.
How do I fix it? Please help me.
#include <iostream>
using namespace std;
int length(char *text) // string length
{
char *begin = text;
while(*text++);
return text - begin - 1;
}
int size(char **text) // size of two-dimensional array
{
int i = 0;
while(text[i]) i++;
return i;
}
void free_memory(char **text)
{
for(int i=0; i<size(text); i++)
delete text[i];
delete [] text;
}
char **split(char *text, char delim)
{
int words = 1;
int len = length(text);
for(int i=0; i<len; i++)
if(text[i] == delim) words++;
char **result = new char*[words + 1];
int j = 0, t = 0;
for(int i=0; i<words; i++)
{
result[i] = new char[len];
while(text[j] != delim && text[j] != '\0') result[i][t++] = text[j++];
j++;
t = 0;
}
result[words + 1] = nullptr;
return result;
}
char *strcat(char *source, char *destination)
{
char *begin = destination;
while(*destination) destination++;
*destination++ = ' ';
while(*source) *destination++ = *source++;
return begin;
}
char *removeWord(char *in_string)
{
char **words = split(in_string, ' ');
int max = length(words[0]);
int j = 0;
for(int i=0; i<size(words); i++)
if(max < length(words[i]))
{
max = length(words[i]);
j = i;
}
int index;
char *result;
if(!j) index = 1;
else index = 0;
result = words[index];
for(int i=0; i<size(words); i++)
if(i != j && i != index)
result = strcat(words[i], result);
free_memory(words); // I want free memory here
return result;
}
int main()
{
char text[] = "audi and volkswagen are the best car";
cout << removeWord(text) << endl;
return 0;
}
In fact, this is C style programming - not C++. I see that your aim is to implement everything from scratch, possibly for practicing. But even then, your code is not designed/structured properly.
Besides that, you also have several bugs in your code:
result[words + 1] = nullptr; must be result[words] = nullptr;
You need result[i][t] = '\0'; after the while loop in split
delete text[i] must be delete [] text[i]
You cannot assign to your result pointer memory from words, then free it and then return it for use by the caller.
There is at least one further bug in the second half of removeWord. It would be tedious to try to understand what you are trying to do there.
You might want to start with a simpler task. You also should proceed step-by-step and check each function for correctness independently first and not implement everything and then test. Also take a look at the tool valgrind for memory checking - if you use Linux.
The way you free memory correctly is to use RAII:
Only use new and new[] in constructors
Pair those with delete and delete[] in the corresponding destructor
Use automatic storage duration objects as much as possible
If you are specifically not using std::string and std::vector etc, for reasons of learning pointers, you will end up writing some small number of classes that resemble string and vector and unique_ptr, and then you go about programming as if you were using the std versions.
You have two issues. First is that result is assigned to a memory location in words. Second, is that you're storing the result of strcat in words[i] which will likely not have enough room (see strcat documentation).
result = new char[len(in_string)+1]; // +1 for space for null char
// the old loop reversed the word order -- if you want to keep doing
// that, make this a descending loop
for(int i=0; i<size(words); i++)
if(i != j && i != index)
strcat(result, words[i]);
free_memory(words);
return result;
So that when you free words, what result points to is also free'd. You would then need to free your result in main().
int main()
{
char text[] = "audi and volkswagen are the best car";
char * result = removeWord(text);
cout << result << endl;
delete[] result;
return 0;
}

C++ How to remove double quotes in char

I want to remove double-quotes from a string, for example 13.3" Rentina becomes 13.3 Rentina
const char* s = sheet->readStr(row, col);
int ii = strlen(s);
char* b;
b=(char*)s;
char ch;
for (int i = 0; i < ii ;++i) {
strncpy(&ch, b+ii, 1);
if(ch == '\"'){
ch = '\"';
memcpy(b+i, &ch, 1);
}
}
myfile << b;
If you deal with strings in C++, you should use character arrays and functions like strncpy only when you have a strong reason to use them. By default you should use standard string, which makes e.g. memory management much easier. The solution to your problem with std::string is
std::string s = sheet->readStr(row, col);
size_t pos = 0;
while ((pos = s.find('"', pos)) != std::string::npos)
s = s.erase(pos, 1);
myfile << s;
You cannot do b=(char*)s!!!
The compiler lets you in on this one, but you will get a runtime exception as soon as you attempt to write into the memory address space pointed by b.
The variable s is possibly pointing to an address in the code-section, which is a read-only memory address space within your program ("possibly", because perhaps that const declaration of s is just something you added on your own initiative).
You should allocate a new char array, and copy the output string into that array instead.
So first of all, change the above statement to b = (char*)malloc(strlen(s)).
In addition, do not pass to strncpy (or any other str function for that matter) an address of a char variable. These functions operate on char arrays, and either assume that the array ends with a 0 character, or set the character at the end of the array to 0.
You can try the following piece of code (assuming that your purpose is to remove the '"'):
const char* s = sheet->readStr(row, col);
int ii = strlen(s);
char* b = (char*)malloc(ii+1);
if (b != NULL)
{
int i,j;
for(i=0,j=0; i<ii; i++)
{
if (s[i] != '"')
b[j++] = s[i];
}
b[j] = 0;
// Add your code here (do whatever you wanna do with 'b')
free(b);
}
else
{
printf("Out of memory\n");
}

Write access in char array

everyone!
I'm writing a simple char* string reverse. I get an error with writing access in line src[k] = src[n - k]; when I initialize my input array as a pointer : char * input= "string".
And it is fixed, when I put: char input[] = "string";
Why doesn't it work with a pointer? Thanks a lot!
Here is my code:
void reverse(char* src) {
if (src == NULL) {
return;
}
size_t n = strlen(src) - 1;
char swap;
for (int k = 0; k <= n/2; k++) {
swap = src[k];
src[k] = src[n - k];
src[n - k] = swap;
}
src[n + 1] = '\0';
}
It doesn't work with the pointer because the pointer points to the literal "string". String literals are not modifiable. When you use an array, the literal is copied into the array, which is modifiable.