Passing states of StateMachine as parameter to a function pointer C++ OOP - c++

I'm fairly new to the concept of function pointer in C++, so I don't know how to write my question properly. Please bear with me.
Basically, what I'm trying to do is to create a Button object whose constructor accepts a function pointer as its parameter. That function pointer points to a function which will change state of the StateMachine.
Here is the sample code (it doesn't work, and irrelevant bits have been stripped out)
Button.h
#include "StateMachine.h"
class Button
{
private:
void (*m_onclickAction)(); //a data member
public:
Button(void (*action)());
};
StateMachine.h (I didn't write it, I just use it with permission. So there should be no problem with the code, and I don't want to modify it)
#include <map>
template<class E, class T>
class StateMachine
{
public:
typedef void (T::*CallbackOnInitialise)();
typedef void (T::*CallbackOnExit)();
private:
T* m_pOwner;
E m_currentState;
// Maps to store function pointers to state functions.
std::map<E, CallbackOnInitialise> m_statesOnInitialise;
std::map<E, CallbackOnExit> m_statesOnExit;
public:
StateMachine(T* pOwner, E emptyState)
{
m_currentState = emptyState;
m_pOwner = pOwner;
}
void ChangeState(E statenext)
{
//do something to change the state
}
};
So that in my main Program class, I could be able to do something like this
#include "Button.h"
#include "StateMachine.h"
//Code to instantiate an StateMachine object goes here
Button* aButton = new Button(aStateMachine->ChangeState(NEW_STATE));
The problem is I can't think of a way to correctly pass the NEW_STATE, which is an enum declared in the Program class as the function pointer is expecting no parameter. I have tried tweaking around with it, but no success.
Any suggestion on how should I do it?

You have a couple of problems here. The first is that in your version you call the ChangeState member function when you create the Button instance. The second is that m_onclickAction is a pointer to a function, which is not the same as a pointer to a member function.
For this I suggest you look into std::function and std::bind:
class Button
{
std::function<void(int)> m_onclickAction;
public:
Button(std::function<void(int)> action) { ... }
};
Then you can create your button like this:
Button* aButton = new Button(
std::bind(&StateMachine::ChangeState, aStateMachine, NEW_STATE));

For callbacks boost::bind() and boost::function() is a very useful tool. So your Button class may look like this:
class Button
{
public:
typedef boost::function<void()> Callback;
Button( Callback clickAction );
private:
Callback m_onclickAction; //a data member
};
Code to pass StateMachine method with parameter then would be:
Button* aButton = new Button( boost::bind( &StateMachine::ChangeState, aStateMachine, NEW_STATE ) );
If you use C++11 you can replace boost::bind with std::bind and boost::function with std::function.

Tha library has a design bug.
The problem is that a function pointer is just a function pointer in C++ (not a closure) and therefore it doesn't have any context.
If you want to create a button that draws a blue circle you will need a global function that will draw a blue circle taking no parameters.
If you want another button to draw a yellow circle you will need another global function that draws a yellow circle taking no parameters.
More specifically the problem is that the library doesn't have any way to store in the button what is called a "context" to be able to pass your code a color to use to draw the circle.
C++11 has added something that reminds a bit closures (not the real thing because of lifetime issues that are hard to solve in any language without garbage collection) but they are not bare function pointers.
What you want to do is just impossible without changing the Button class unless you use some bad hack as the one you can see here that tries to emulate std::bind in C using bare function pointers.

Related

C++: How to pass a function from any class as a parameter

I began implementing my GUI system for my game last night and I decided to try using function pointers to handle gui events. I haven’t used them before, but was able to get a basic implementation in. However, I want to extend the usability and ‘genericness’ of the GUI system. Currently I have a function pointer in the GUI superclass under the protected modifier. I also have a getter (callback) and a setter (subscribeEvent) in the class to assign the gui an event. It currently looks a little something like this:
class GUI
{
public:
…….
……
std::function<void()> callback() const { return eventCallback; }
void subscribeEvent(const std::function<void()>& callback)
{
eventCallback = callback;
}
protected:
std::function<void()> eventCallback;
};
To set a function callback, you pass in a void function to subscribeEvent which works fine. However you cannot use a scope resolution modifier with any function, the function passed in has to be a global function like so.
(MainGame.h):
void global();
class MainGame
{
public:
void Init();
void nonGlobal();
private:
std::vector<GUI*> _guis;
};
(MainGame.cpp):
void MainGame::Init()
{
Button* button = new Button(……); //< Button is a subclass of GUI
button->subscribeEvent(global); //< This works fine
button->subscribeEvent(MainGame::nonGlobal); //< This does not work saying something like “void(MainGame) is not of type void()”
_guis.pushBack(button);
}
void MainGame::nonGlobal()
{
……
}
void global()
{
……
}
Does anyone know how to modify the parameter to allow any function in the scope of any class to be passed in. This would be helpful because I could have a button event come from a player, enemy, item, etc class and not have every handler function be global. I’ve seen high level gui systems pass in events such as ‘event(handlerFunction, classtype)’ so you can pass in the handler function and then an object that the handler function resides in. This is an approach I would like to take.
Your code would work if you made the function MainGame::nonGlobal static:
class MainGame
{
public:
void Init();
static void nonGlobal();
private:
std::vector<GUI*> _guis;
};
The reason you can't pass a non-static member function is because member functions have an implicit first parameter (this), in your case of type MainGame*. So in effect the function you're currently trying to pass has the signature void(MainGame*) instead of void().
Alternatively, you can bind the this parameter by using a lambda instead of passing the function directly:
button->subscribeEvent([this](){nonGlobal();});
Change this:
button->subscribeEvent(MainGame::nonGlobal); //< This does not work saying something like “void(MainGame) is not of type void()”
to
button->subscribeEvent(std::bind(&MainGame::nonGlobal, this));
With this change you have another problem of lifetime management of this though.

std::bind inside of a class, general concept of an event system

I'm working on a library that's based upon a simple event-system.
For work with GUI elements ("controls"), these are needed a lot. For example, the Window class has got a bunch of events, like "onMouseMove", "onKeyPress", "onKeyRelease", .. However, the basic class for controls is the Control class. It has a virtual function draw (which obviously draws the control) and a virtual function connect which connects the control's and the main window's events (works similar to the Qt Signal-Slot-Concept).
But since the Event class takes an std::function<...> pointer as subject (=> Slot), I cannot simply connect a member function of a derived control class with an event of the window. As a workaround, I'm doing the following thing:
class A : public Control {
friend class Window;
public:
A(){
this->eventHandler = [this] () -> void {
if ( someCondition ) this->onSomeCondition.notify();
};
}
Event<> onSomeCondition;
protected:
std::function<void()> eventHandler;
void connect(Window *window){
window->onSomeHigherEvent.attach(&this->eventHandler);
}
void draw(...) const{
drawSome(...);
}
};
What this basically does is that it assigns a lambda function to the std::function<...> in the constructor and attaches that std::function<...> to the chosen event.
There is a major problem though: What happens if I instantiate a few more objects of that class? If I had the event handlers specified in the class, as a normal function like so:
void eventHandler() {
if ( someCondition ) this->onSomeCondition.notify();
}
And could assign that function to the std::function<...> using std::bind, which does not work for some reason, at least as long as I'm using the following call:
std::bind(&A::eventHandler, this, std::placeholders::_1); // *this will not work since that's just a (reference to the?) copy to of the object.
Anyways, the lambda-function-workaround seems to be less time efficient since it's not really built into the class. Is there a more efficient way to solve this problem? Maybe not by solving the lambda-function problem in particular but by changing the concept?
I'm not sure what your asking, since I can't find the question, but ...
std::bind(&A::eventHandler, this, std::placeholders::_1); // *this will not work since that's just a (reference to the?) copy to of the object.
This creates a callable object that has one unbound parameter, i.e. it expects to be called with one argument, which is not compatible with std::function<void()> because that is a function that expects to be called with no arguments. It's also not compatible with the eventHandler member function you show, because that too takes no arguments.
Maybe you just want to use std::bind(&A::eventHandler, this);

Function Pointer problems: passing and declaring

Hey i'm trying to figure out Function pointers and how to pass them around/ declare them, but i'm having a little trouble passing a pointer in my Button class constructor and setting it's member function pointer too the passed pointer.
when i write Button(Func1) Button1 it says expected a ';'
when i write Button(Func1); it says no default constructor for Button
when i write Button(&Func1); it says Func1 requires an initializer
when i write Button(&Func1()) Button1; it says expression must be lvalue or function designator
What am i doing wrong?
void Func1(){std::cout << "This is a function\n";};
void Func2(){std::cout << "This is another function\n";};
class Button
{
private:
void (*Func)(void);
public:
void Activate(){ Func() ;};
Button( void (*Function)(void)){
this->Func = Function;};
};
Button(&Func1) Button1;
Button(&Func2) Button2;
Button1.Activate();
Button2.Activate();
This code has wrong syntax:
Button(&Func1) Button1;
Button(&Func2) Button2;
It should be:
Button Button1(&Func1);
Button Button2(&Func2);
And function pointer declaration:
void (*Func)(void);
Leave without void in parameters:
void (*Func)();
Edit: Working example at ideone.
Think of it like:
return_type (*ptr_name)(arguments);
It's often easiest to use typedefs to keep it as close to that as possible, too. For example:
void *(*f)(int);
can be rewritten as:
typedef void *ret_type;
ret_type (*f)(int);
this becomes particularly relevant when/if things get complex -- for example, any time you do some pseudo-functional programming, with one function returning a pointer to another function, you almost certainly want to use a typedef to keep the two straight.
Edit: You should also be aware that you seem to be trying to re-invent the Command pattern. You might want to look at (for one example) the implementation of the command pattern in Modern C++ Design.

redefining or adding a classes member function dynamically/ during execution

Hey i'm trying to make a very simple GUI using SFML, and i want to be able to attach a function to my Button class in the constructor, as so the user can define what happens when the button is pressed.
I've worked a little before with GLUT and noticed these declerations:
glutReshapeFunc(Resize);
glutDisplayFunc(Draw);
Which apparently define what function should be called when the window is resized or displayed. I want something exactly like this for my button so upon construction you can define what function should be called. I want to be able to pass a function name just like glut, not having define a new class wich overides a virtual functin.
I also doubt it's possible however to pass parameters for these
called functions, as you never know what or how many there would be.
Am i right?
So anyway..... How do i accomplish this or something like it?? Thanks!
You can store a callback using e.g. std::function (for C++0x; boost::function is also available and has a similar interface).
#include <functional>
class Button {
public:
template<typename T>
explicit
Button(T const& t): callback(t) {}
void
press()
{
callback();
}
private:
std::function<void()> callback;
};
// example use with a lambda
Button b([] { do_stuff(); });
b.press(); // will call do_stuff
In C++ it's better to use virtual function approach to address such kind of problems. That's more maintainable at long run.
You can choose to redesign a little bit to your code, where you can have a common handle to various subclasses. Now based on subclass chosen you can call a particular function. For example:
class Shape
{
public:
virtual void Resize () = 0;
virtual void Draw () = 0;
};
class Triangle : public Shape
{
public:
// implement above to functions
};
class Square : public Shape
{
public:
// implement above to functions
};
Now, just pass the handle of Shape* wherever you want and call the above abstract methods;
void foo(Shape *p)
{
p->Resize();
}
(Rewrote everything), I had misread the question.
You seem to be wanting to pass plain old function pointers around to other functions. All you need to do is just pass the name of the function you want, but do so inside an if (or something like that) so the function passed is actualy what you want:
if(i am feeling lucky today){
glutDisplayFunc(DrawMyLuckyShape);
}else{
glutDisplayFunc(DrawAFoo);
}
The bad news is that since C is a nasty language you can't set up to pass extra parameters to your functions (ie, use closures). Therefore, you need to rely on a) the functions being passed some parameter quen being called or b) the functions looking at some global state.

How can I pass a class member function as a callback?

I'm using an API that requires me to pass a function pointer as a callback. I'm trying to use this API from my class but I'm getting compilation errors.
Here is what I did from my constructor:
m_cRedundencyManager->Init(this->RedundencyManagerCallBack);
This doesn't compile - I get the following error:
Error 8 error C3867: 'CLoggersInfra::RedundencyManagerCallBack': function call missing argument list; use '&CLoggersInfra::RedundencyManagerCallBack' to create a pointer to member
I tried the suggestion to use &CLoggersInfra::RedundencyManagerCallBack - didn't work for me.
Any suggestions/explanation for this??
I'm using VS2008.
Thanks!!
This is a simple question but the answer is surprisingly complex. The short answer is you can do what you're trying to do with std::bind1st or boost::bind. The longer answer is below.
The compiler is correct to suggest you use &CLoggersInfra::RedundencyManagerCallBack. First, if RedundencyManagerCallBack is a member function, the function itself doesn't belong to any particular instance of the class CLoggersInfra. It belongs to the class itself. If you've ever called a static class function before, you may have noticed you use the same SomeClass::SomeMemberFunction syntax. Since the function itself is 'static' in the sense that it belongs to the class rather than a particular instance, you use the same syntax. The '&' is necessary because technically speaking you don't pass functions directly -- functions are not real objects in C++. Instead you're technically passing the memory address for the function, that is, a pointer to where the function's instructions begin in memory. The consequence is the same though, you're effectively 'passing a function' as a parameter.
But that's only half the problem in this instance. As I said, RedundencyManagerCallBack the function doesn't 'belong' to any particular instance. But it sounds like you want to pass it as a callback with a particular instance in mind. To understand how to do this you need to understand what member functions really are: regular not-defined-in-any-class functions with an extra hidden parameter.
For example:
class A {
public:
A() : data(0) {}
void foo(int addToData) { this->data += addToData; }
int data;
};
...
A an_a_object;
an_a_object.foo(5);
A::foo(&an_a_object, 5); // This is the same as the line above!
std::cout << an_a_object.data; // Prints 10!
How many parameters does A::foo take? Normally we would say 1. But under the hood, foo really takes 2. Looking at A::foo's definition, it needs a specific instance of A in order for the 'this' pointer to be meaningful (the compiler needs to know what 'this' is). The way you usually specify what you want 'this' to be is through the syntax MyObject.MyMemberFunction(). But this is just syntactic sugar for passing the address of MyObject as the first parameter to MyMemberFunction. Similarly, when we declare member functions inside class definitions we don't put 'this' in the parameter list, but this is just a gift from the language designers to save typing. Instead you have to specify that a member function is static to opt out of it automatically getting the extra 'this' parameter. If the C++ compiler translated the above example to C code (the original C++ compiler actually worked that way), it would probably write something like this:
struct A {
int data;
};
void a_init(A* to_init)
{
to_init->data = 0;
}
void a_foo(A* this, int addToData)
{
this->data += addToData;
}
...
A an_a_object;
a_init(0); // Before constructor call was implicit
a_foo(&an_a_object, 5); // Used to be an_a_object.foo(5);
Returning to your example, there is now an obvious problem. 'Init' wants a pointer to a function that takes one parameter. But &CLoggersInfra::RedundencyManagerCallBack is a pointer to a function that takes two parameters, it's normal parameter and the secret 'this' parameter. That's why you're still getting a compiler error (as a side note: If you've ever used Python, this kind of confusion is why a 'self' parameter is required for all member functions).
The verbose way to handle this is to create a special object that holds a pointer to the instance you want and has a member function called something like 'run' or 'execute' (or overloads the '()' operator) that takes the parameters for the member function, and simply calls the member function with those parameters on the stored instance. But this would require you to change 'Init' to take your special object rather than a raw function pointer, and it sounds like Init is someone else's code. And making a special class for every time this problem comes up will lead to code bloat.
So now, finally, the good solution, boost::bind and boost::function, the documentation for each you can find here:
boost::bind docs,
boost::function docs
boost::bind will let you take a function, and a parameter to that function, and make a new function where that parameter is 'locked' in place. So if I have a function that adds two integers, I can use boost::bind to make a new function where one of the parameters is locked to say 5. This new function will only take one integer parameter, and will always add 5 specifically to it. Using this technique, you can 'lock in' the hidden 'this' parameter to be a particular class instance, and generate a new function that only takes one parameter, just like you want (note that the hidden parameter is always the first parameter, and the normal parameters come in order after it). Look at the boost::bind docs for examples, they even specifically discuss using it for member functions. Technically there is a standard function called [std::bind1st][3] that you could use as well, but boost::bind is more general.
Of course, there's just one more catch. boost::bind will make a nice boost::function for you, but this is still technically not a raw function pointer like Init probably wants. Thankfully, boost provides a way to convert boost::function's to raw pointers, as documented on StackOverflow here. How it implements this is beyond the scope of this answer, though it's interesting too.
Don't worry if this seems ludicrously hard -- your question intersects several of C++'s darker corners, and boost::bind is incredibly useful once you learn it.
C++11 update: Instead of boost::bind you can now use a lambda function that captures 'this'. This is basically having the compiler generate the same thing for you.
That doesn't work because a member function pointer cannot be handled like a normal function pointer, because it expects a "this" object argument.
Instead you can pass a static member function as follows, which are like normal non-member functions in this regard:
m_cRedundencyManager->Init(&CLoggersInfra::Callback, this);
The function can be defined as follows
static void Callback(int other_arg, void * this_pointer) {
CLoggersInfra * self = static_cast<CLoggersInfra*>(this_pointer);
self->RedundencyManagerCallBack(other_arg);
}
This answer is a reply to a comment above and does not work with VisualStudio 2008 but should be preferred with more recent compilers.
Meanwhile you don't have to use a void pointer anymore and there is also no need for boost since std::bind and std::function are available. One advantage (in comparison to void pointers) is type safety since the return type and the arguments are explicitly stated using std::function:
// std::function<return_type(list of argument_type(s))>
void Init(std::function<void(void)> f);
Then you can create the function pointer with std::bind and pass it to Init:
auto cLoggersInfraInstance = CLoggersInfra();
auto callback = std::bind(&CLoggersInfra::RedundencyManagerCallBack, cLoggersInfraInstance);
Init(callback);
Complete example for using std::bind with member, static members and non member functions:
#include <functional>
#include <iostream>
#include <string>
class RedundencyManager // incl. Typo ;-)
{
public:
// std::function<return_type(list of argument_type(s))>
std::string Init(std::function<std::string(void)> f)
{
return f();
}
};
class CLoggersInfra
{
private:
std::string member = "Hello from non static member callback!";
public:
static std::string RedundencyManagerCallBack()
{
return "Hello from static member callback!";
}
std::string NonStaticRedundencyManagerCallBack()
{
return member;
}
};
std::string NonMemberCallBack()
{
return "Hello from non member function!";
}
int main()
{
auto instance = RedundencyManager();
auto callback1 = std::bind(&NonMemberCallBack);
std::cout << instance.Init(callback1) << "\n";
// Similar to non member function.
auto callback2 = std::bind(&CLoggersInfra::RedundencyManagerCallBack);
std::cout << instance.Init(callback2) << "\n";
// Class instance is passed to std::bind as second argument.
// (heed that I call the constructor of CLoggersInfra)
auto callback3 = std::bind(&CLoggersInfra::NonStaticRedundencyManagerCallBack,
CLoggersInfra());
std::cout << instance.Init(callback3) << "\n";
}
Possible output:
Hello from non member function!
Hello from static member callback!
Hello from non static member callback!
Furthermore using std::placeholders you can dynamically pass arguments to the callback (e.g. this enables the usage of return f("MyString"); in Init if f has a string parameter).
What argument does Init take? What is the new error message?
Method pointers in C++ are a bit difficult to use. Besides the method pointer itself, you also need to provide an instance pointer (in your case this). Maybe Init expects it as a separate argument?
A pointer to a class member function is not the same as a pointer to a function. A class member takes an implicit extra argument (the this pointer), and uses a different calling convention.
If your API expects a nonmember callback function, that's what you have to pass to it.
Is m_cRedundencyManager able to use member functions? Most callbacks are set up to use regular functions or static member functions. Take a look at this page at C++ FAQ Lite for more information.
Update: The function declaration you provided shows that m_cRedundencyManager is expecting a function of the form: void yourCallbackFunction(int, void *). Member functions are therefore unacceptable as callbacks in this case. A static member function may work, but if that is unacceptable in your case, the following code would also work. Note that it uses an evil cast from void *.
// in your CLoggersInfra constructor:
m_cRedundencyManager->Init(myRedundencyManagerCallBackHandler, this);
// in your CLoggersInfra header:
void myRedundencyManagerCallBackHandler(int i, void * CLoggersInfraPtr);
// in your CLoggersInfra source file:
void myRedundencyManagerCallBackHandler(int i, void * CLoggersInfraPtr)
{
((CLoggersInfra *)CLoggersInfraPtr)->RedundencyManagerCallBack(i);
}
Necromancing.
I think the answers to date are a little unclear.
Let's make an example:
Supposed you have an array of pixels (array of ARGB int8_t values)
// A RGB image
int8_t* pixels = new int8_t[1024*768*4];
Now you want to generate a PNG.
To do so, you call the function toJpeg
bool ok = toJpeg(writeByte, pixels, width, height);
where writeByte is a callback-function
void writeByte(unsigned char oneByte)
{
fputc(oneByte, output);
}
The problem here: FILE* output has to be a global variable.
Very bad if you're in a multithreaded environment (e.g. a http-server).
So you need some way to make output a non-global variable, while retaining the callback signature.
The immediate solution that springs into mind is a closure, which we can emulate using a class with a member function.
class BadIdea {
private:
FILE* m_stream;
public:
BadIdea(FILE* stream) {
this->m_stream = stream;
}
void writeByte(unsigned char oneByte){
fputc(oneByte, this->m_stream);
}
};
And then do
FILE *fp = fopen(filename, "wb");
BadIdea* foobar = new BadIdea(fp);
bool ok = TooJpeg::writeJpeg(foobar->writeByte, image, width, height);
delete foobar;
fflush(fp);
fclose(fp);
However, contrary to expectations, this does not work.
The reason is, C++ member functions are kinda implemented like C# extension functions.
So you have
class/struct BadIdea
{
FILE* m_stream;
}
and
static class BadIdeaExtensions
{
public static writeByte(this BadIdea instance, unsigned char oneByte)
{
fputc(oneByte, instance->m_stream);
}
}
So when you want to call writeByte, you need pass not only the address of writeByte, but also the address of the BadIdea-instance.
So when you have a typedef for the writeByte procedure, and it looks like this
typedef void (*WRITE_ONE_BYTE)(unsigned char);
And you have a writeJpeg signature that looks like this
bool writeJpeg(WRITE_ONE_BYTE output, uint8_t* pixels, uint32_t
width, uint32_t height))
{ ... }
it's fundamentally impossible to pass a two-address member function to a one-address function pointer (without modifying writeJpeg), and there's no way around it.
The next best thing that you can do in C++, is using a lambda-function:
FILE *fp = fopen(filename, "wb");
auto lambda = [fp](unsigned char oneByte) { fputc(oneByte, fp); };
bool ok = TooJpeg::writeJpeg(lambda, image, width, height);
However, because lambda is doing nothing different, than passing an instance to a hidden class (such as the "BadIdea"-class), you need to modify the signature of writeJpeg.
The advantage of lambda over a manual class, is that you just need to change one typedef
typedef void (*WRITE_ONE_BYTE)(unsigned char);
to
using WRITE_ONE_BYTE = std::function<void(unsigned char)>;
And then you can leave everything else untouched.
You could also use std::bind
auto f = std::bind(&BadIdea::writeByte, &foobar);
But this, behind the scene, just creates a lambda function, which then also needs the change in typedef.
So no, there is no way to pass a member function to a method that requires a static function-pointer.
But lambdas are the easy way around, provided that you have control over the source.
Otherwise, you're out of luck.
There's nothing you can do with C++.
Note:
std::function requires #include <functional>
However, since C++ allows you to use C as well, you can do this with libffcall in plain C, if you don't mind linking a dependency.
Download libffcall from GNU (at least on ubuntu, don't use the distro-provided package - it is broken), unzip.
./configure
make
make install
gcc main.c -l:libffcall.a -o ma
main.c:
#include <callback.h>
// this is the closure function to be allocated
void function (void* data, va_alist alist)
{
int abc = va_arg_int(alist);
printf("data: %08p\n", data); // hex 0x14 = 20
printf("abc: %d\n", abc);
// va_start_type(alist[, return_type]);
// arg = va_arg_type(alist[, arg_type]);
// va_return_type(alist[[, return_type], return_value]);
// va_start_int(alist);
// int r = 666;
// va_return_int(alist, r);
}
int main(int argc, char* argv[])
{
int in1 = 10;
void * data = (void*) 20;
void(*incrementer1)(int abc) = (void(*)()) alloc_callback(&function, data);
// void(*incrementer1)() can have unlimited arguments, e.g. incrementer1(123,456);
// void(*incrementer1)(int abc) starts to throw errors...
incrementer1(123);
// free_callback(callback);
return EXIT_SUCCESS;
}
And if you use CMake, add the linker library after add_executable
add_library(libffcall STATIC IMPORTED)
set_target_properties(libffcall PROPERTIES
IMPORTED_LOCATION /usr/local/lib/libffcall.a)
target_link_libraries(BitmapLion libffcall)
or you could just dynamically link libffcall
target_link_libraries(BitmapLion ffcall)
Note:
You might want to include the libffcall headers and libraries, or create a cmake project with the contents of libffcall.
A simple solution "workaround" still is to create a class of virtual functions "interface" and inherit it in the caller class. Then pass it as a parameter "could be in the constructor" of the other class that you want to call your caller class back.
DEFINE Interface:
class CallBack
{
virtual callMeBack () {};
};
This is the class that you want to call you back:
class AnotherClass ()
{
public void RegisterMe(CallBack *callback)
{
m_callback = callback;
}
public void DoSomething ()
{
// DO STUFF
// .....
// then call
if (m_callback) m_callback->callMeBack();
}
private CallBack *m_callback = NULL;
};
And this is the class that will be called back.
class Caller : public CallBack
{
void DoSomthing ()
{
}
void callMeBack()
{
std::cout << "I got your message" << std::endl;
}
};
It is still difficult to connect C style callback functions with C++ class instances. I want to kind of rephrase the original question:
Some library you are using requires a C style function to be called back from that library. Changing the library API is out of the question since it is not your API.
You want the callback to be handled in your own C++ code in member methods
As you did not mention (exactly) what callback you want to handle I will give an example using GLFW callbacks for key input. (On a side note: I know GLFW offers some other mechanism to attach user data to their API, but that is not the topic here.)
I don't know any solution to this problem that doesn't include usage of some kind of static object. Let's look at our options:
Simple approach: Use C style global objects
As we always think in classes and instances we sometimes forget that in C++ we still have the whole arsenal of C at our hands. So sometimes this very simple solution does not come to mind.
Let's assume we have a class Presentation that should handle keyboard input. This could look like this:
struct KeyInput {
int pressedKey;
} KeyInputGlobal;
void globalKeyHandler(GLFWwindow* window, int key, int scancode, int action, int mods) {
KeyInputGlobal.pressedKey = key;
}
int Presentation::getCurrentKey()
{
return KeyInputGlobal.pressedKey;
}
void Presentation::initGLFW()
{
glfwInit();
glfwSetKeyCallback(window, globalKeyHandler);
}
We have a global Object KeyInputGlobal that should receive the key pressed. The function globalKeyHandler has exactly the C style API signature needed by the GLFW library to be able to call our code. It is activated on our member method initGLFW. If anywhere in our code we are interested in the currently pressed key we can just call the other member method Presentation::getCurrentKey
What is wrong with this approach?
Maybe it is all fine. Depends entirely on your use case. Maybe you are totally fine to just read the last pressed key somwhere in your application code. You don't care to have missed key pressed events. The simple approach is all you need.
To generalize: If you are able to fully process the callback in C style code, calculate some result and store it in a global object to be read later from other parts of your code, then it may indeed make sense to use this simple approach. On the plus side: It is very simple to understand. The downside? It feels a little bit like cheating, because you didn't really process the callback in your C++ code, you just used the results. If you think of the callback as an event and want each event to be properly processed in your member methods this approch won't be enough.
Another simple approach: Use C++ static objects
I guess many of us have already done this. Certainly I have. Thinking: Wait, we have a C++ concept of globals, that is using static. But we can keep the discussion short here: It may be more C++ style than using the C style from previous example, but the problems are the same - we still have globals, that are hard to bring together with non-static, regular member methods. For completeness, it would look like this in our class declaration:
class Presentation
{
public:
struct KeyInput {
int pressedKey;
};
static KeyInput KeyInputGlobal;
static void globalKeyHandler(GLFWwindow* window, int key, int scancode, int action, int mods) {
KeyInputGlobal.pressedKey = key;
}
int getCurrentKey()
{
return KeyInputGlobal.pressedKey;
}
...
}
Activating our callback would look the same, but we also have to define the static struct that receives the key pressed in our implementation:
void Presentation::initGLFW()
{
glfwInit();
glfwSetKeyCallback(window, globalKeyHandler);
}
//static
Presentation::KeyInput Presentation::KeyInputGlobal;
You might be inclined to just remove the static keyword from our callback method globalKeyHandler: The compiler will immediately tell you that you can no longer pass this to GLFW in glfwSetKeyCallback(). Now, if we only could connect static methods with regular methods somehow...
C++11 Event driven approach with statics and lambdas
The best solution I could find out is the following. It works and is somewhat elegant, but I still do not consider it perfect. Let's look at it and discuss:
void Presentation::initGLFW()
{
glfwInit();
static auto callback_static = [this](
GLFWwindow* window, int key, int scancode, int action, int mods) {
// because we have a this pointer we are now able to call a non-static member method:
key_callbackMember(window, key, scancode, action, mods);
};
glfwSetKeyCallback(window,
[](GLFWwindow* window, int key, int scancode, int action, int mods)
{
// only static methods can be called here as we cannot change glfw function parameter list to include instance pointer
callback_static(window, key, scancode, action, mods);
}
);
}
void Presentation::key_callbackMember(GLFWwindow* window, int key, int scancode, int action, int mods)
{
// we can now call anywhere in our code to process the key input:
app->handleInput(key, action);
}
The definition of callback_static is where we connect a static object with instance data, in this case this is an instance of our Presentation class. You can read the definition as follows: If callback_static is called anytime after this definition, all parameters will be passed to the member method key_callbackMember called at the Presentation instance just used. This definition has nothing to do with the GLFW library yet - it is just the preparation for the next step.
We now use a second lambda to register our callback with the library in glfwSetKeyCallback(). Again, if callback_static would not have been defined as static we could not pass it to GLFW here.
This is what happens at runtime after all the initializations, when GLFW calls our code:
GLFW recognizes a key event and calls our static object callback_static
callback_static has access to an instance of Presentation class and calls it's instance method key_callbackMember
Now that we are in 'object world' we can process the key event somewhere else. In this case we call the method handleInput on some arbitrary object app, that has been setup somewhere else in our code.
The good: We have achieved what we wanted with no need to define global objects outside our initialization method initGLFW. No need for C style globals.
The bad: Don't be fooled just because everything is neatly packed into one method. We still have static objects. And with them all the problems global objects have. E.g. multiple calls to our initialization method (with different instances of Presentation) would probably not have the effect you intended.
Summary
It is possible to connect C style callbacks of existing libraries to instances of classes in your own code. You can try to minimize houeskeeping code by defining the necessary objects in member methods of your code. But you still need one static object for each callback. If you want to connect several instances of your C++ code with a C style callback be prepared to introduce a more complicated management of your static objects than in the example above.
Hope this helps someone. Happy coding.
I can see that the init has the following override:
Init(CALLBACK_FUNC_EX callback_func, void * callback_parm)
where CALLBACK_FUNC_EX is
typedef void (*CALLBACK_FUNC_EX)(int, void *);
The type of pointer to non-static member function is different from pointer to ordinary function.
Type is void(*)(int) if it’s an ordinary or static member function.
Type is void(CLoggersInfra::*)(int) if it’s a non-static member function.
So you cannot pass a pointer to a non-static member function if it is expecting an ordinary function pointer.
Furthermore, a non-static member function has an implicit/hidden parameter to the object. The this pointer is implicitly passed as an argument to the member function call. So the member functions can be invoked only by providing an object.
If the API Init cannot be changed, a wrapper function (ordinary function or a class static member function) that invokes the member can be used. In the worst case, the object would be a global for the wrapper function to access.
CLoggersInfra* pLoggerInfra;
RedundencyManagerCallBackWrapper(int val)
{
pLoggerInfra->RedundencyManagerCallBack(val);
}
m_cRedundencyManager->Init(RedundencyManagerCallBackWrapper);
If the API Init can be changed, there are many alternatives - Object non-static member function pointer, Function Object, std::function or Interface Function.
See the post on callbacks for the different variations with C++ working examples.
This question and answer from the C++ FAQ Lite covers your question and the considerations involved in the answer quite nicely I think. Short snippet from the web page I linked:
Don’t.
Because a member function is meaningless without an object to invoke
it on, you can’t do this directly (if The X Window System was
rewritten in C++, it would probably pass references to objects around,
not just pointers to functions; naturally the objects would embody the
required function and probably a whole lot more).
There's surprisingly a simple way to do so in c++14 or above:
auto callback = [this](){ this->methodCB(); };
subscribeToEvent(callback);
**assuming subscribeToEvent gets std::function<void()>
Looks like std::mem_fn (C++11) does exactly what you need:
Function template std::mem_fn generates wrapper objects for pointers to members, which can store, copy, and invoke a pointer to member. Both references and pointers (including smart pointers) to an object can be used when invoking a std::mem_fn.