I wrote a code with glDepthTest and i try to understand what is the formula for projective Z-buffer value.
I run this code:
#define CUBE_SIDE_SIZE 512.0f
#define Z_SIZE -0.25f
#define WINDOW_WIDTH 1024
#define WINDOW_HEIGHT 768
void init(void)
{
glViewport(0,0,WINDOW_WIDTH,WINDOW_HEIGHT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0,WINDOW_WIDTH,0,WINDOW_HEIGHT, -1, 1);
}
void display(void)
{
GLfloat readPixel;
glClearColor(0.0,0.0,0.0,0.0);
glClearDepth(0.8);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glBegin(GL_QUADS);
glColor3f(1, 0, 0);
glVertex3f(0, 0, Z_SIZE);
glVertex3f(0, CUBE_SIDE_SIZE, Z_SIZE);
glVertex3f(CUBE_SIDE_SIZE, CUBE_SIDE_SIZE, Z_SIZE);
glVertex3f(CUBE_SIDE_SIZE, 0, Z_SIZE);
glEnd();
glDisable(GL_DEPTH_TEST);
glFlush();
glutSwapBuffers();
glReadPixels(0,0,1.0,1.0,GL_DEPTH_COMPONENT, GL_FLOAT, &readPixel);
}
The value of readPixel in this case is 0.625, so i think the calculation is: Z-buffer value = (farZ - Z_value) / (farZ - nearZ)
in my case:
[1 - (-0.25)] / ]1 - (- 1)] = 1.25 / 2 = 0.625
But when i do these changes:
1. #define Z_SIZE 0.25f
2. glOrtho(0,WINDOW_WIDTH,0,WINDOW_HEIGHT, 0, 1);
I get the value 0.8 in readPixel, it's like the depth test falied, but if i calculated the Z-buffer value it should be equals to (1 - 0.25) / (1 - 0) = 0.75 which is less then 0.8 (clear depth value).
Can you explain me this behaviour?
so i think the calculation is: Z-buffer value = (farZ - Z_value) / (farZ - nearZ)
Nope. There's an additional division factor 1/w getting into it. Which means that the depth buffer values don't follow a linear progression. They're monotonic though.
The calculation of NDC coordinates as as following
pos_view = ModelviewMatrix · vertex_position
pos_projected = ProjectionMatrix · pos_view
pos_clipped = clip_prmitive( pos_projected )
pos_NDC = pos_clipped.xyz / pos_clipped.w
pos_NDC.z is your depth buffer value. For all practical means to understand the transformation steps you can regard clip_primitive(…) as an identity transform, i.e. things go unchanged through it.
Related
I draw many lines to form a grid. I want to see the grid rotated on its X-axis, but I never get the intended result. I tried glRotatef and gluLookAt which does not work the way I want. Please see the pictures below.
this is the grid
this is how I want to see it
Edit: geez, posting the code here is also hard, lol, anyway here it is.
Edit2: removed, only leave the code that has issues.
Please find the code below, no matter how I set the gluLookAt, the grid result won't be in the perspective I want.
#include <GL/glut.h>
void display() {
...
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_LINES);
for (int i = 0; i < 720; i += 3)
{
glColor3f(0, 1, 1);
glVertex3f(linePoints[i], linePoints[i + 1], linePoints[i + 2]);
}
glEnd();
glFlush();
}
void init() {
glClearColor(0.0, 0.0, 0.0, 1.0);
glColor3f(1.0, 1.0, 1.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60.0, 4.0 / 3.0, 1, 40);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0, -2, 1.25, 0, 0, 0, 0, 1, 0);
}
Lets assume, that you have a grid in the xy plane of the world:
glColor3f(0, 1, 1);
glBegin(GL_LINES);
for (int i = 0; i <= 10; i ++)
{
// horizontal
glVertex3f(-50.0f + i*10.0f, -50.0f, 0.0f);
glVertex3f(-50.0f + i*10.0f, 50.0f, 0.0f);
// vertical
glVertex3f(-50.0f, -50.0f + i*10.0f, 0.0f);
glVertex3f( 50.0f, -50.0f + i*10.0f, 0.0f);
}
glEnd();
Ensure that the distance of to the far plane of the projection is large enough (see gluPerspective). All the geometry which is not in between the near an far plane of the Viewing frustum is clipped.
Further more ensure that the aspect ratio (4.0 / 3.0) match the ratio of the viewport rectangle (window).
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60.0, 4.0 / 3.0, 1, 200);
For the use of gluLookAt, the up vector of the view has to be perpendicular to the grid. If the grid is arranged parallel to the xy plane, then the up vector is z axis (0, 0, 1).
The target (center) is the center of the grid (0, 0, 0).
The point of view (eye position) is ought to be above and in front of the grid, for instance (0, -55, 50). Note the point of view is used for a grid with the bottom left of (-50, -50, 0) and a top right of (50, 50, 0).
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0, -55.0, 50.0, 0, 0, 0, 0, 0, 1);
The code below creates 2 square polygons, red and green.
I'm trying to place a red square on top of the green, but I can't.
The depth buffer is declared, cleaned when necessary, an orthogonal system is configured correctly.
If I specify a value outside the range (2;-2), the polygon disappears as it should.
#include <...>
constexpr auto FPS_RATE = 120;
int windowHeight = 600, windowWidth = 600, windowDepth = 600;
void init();
void idleFunction();
void displayFunction();
double getTime();
double getTime()
{
using Duration = std::chrono::duration<double>;
return std::chrono::duration_cast<Duration>(
std::chrono::high_resolution_clock::now().time_since_epoch()
).count();
}
const double frame_delay = 1.0 / FPS_RATE;
double last_render = 0;
void init()
{
glutDisplayFunc(displayFunction);
glutIdleFunc(idleFunction);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-windowWidth / 2, windowWidth / 2, -windowHeight / 2, windowHeight / 2, 2, -2);
glClearColor(0.0, 0.0, 0.0, 0.0);
}
void idleFunction()
{
const double current_time = getTime();
if ((current_time - last_render) > frame_delay)
{
last_render = current_time;
glutPostRedisplay();
}
}
void displayFunction()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
//move the red square to the foreground
glTranslatef(-32.5, -32.5, 2);
glColor3f(1, 0, 0);
glBegin(GL_POLYGON);
glVertex3i(-150, 150, 0);
glVertex3i(150, 150, 0);
glVertex3i(150, -150, 0);
glVertex3i(-150, -150, 0);
glEnd();
glPopMatrix();
glPushMatrix();
//move the green square to the background
glTranslatef(32.5, 32.5, -2);
glColor3f(0, 1, 0);
glBegin(GL_POLYGON);
glVertex3i(-150, 150, 0);
glVertex3i(150, 150, 0);
glVertex3i(150, -150, 0);
glVertex3i(-150, -150, 0);
glEnd();
glPopMatrix();
glutSwapBuffers();
}
int main(int argc, char* argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(windowWidth, windowHeight);
glutInitWindowPosition((GetSystemMetrics(SM_CXSCREEN) - windowWidth) / 2, (GetSystemMetrics(SM_CYSCREEN) - windowHeight) / 2);
glutCreateWindow("Window");
init();
glutMainLoop();
return 0;
}
You've to enable the Depth Test:
glEnable( GL_DEPTH_TEST );
The default depth test function (glDepthFunc) is < (GL_LESS).
If the distance to the far plane is 2.0 and the geometry is drawn with z coordinate of 2.0, then the geometry is clipped by the far plane, because the depth of the geometry is not less than the initialization depth of the depth buffer.
Change the depth function to <= (GL_LEQUAL):
glDepthFunc( GL_LEQUAL );
In a Right-handed system the viewspace z-axis points out of the viewport.
So if the z coordinate is "less than", then the object is "behind" an other object.
The projection matrix transforms from view space to normalized device space. In compare to the view space, the normalized device space is a left handed system, where the z-axis points in the viewport. The normalized device z-coordinate in range [-1, 1] (from the front to the back), is mapped to the depth value (in general in range [0, 1]), which is used for the depth test.
To deal with that glOrtho inverts the z-axis, if the near parameter is set less then the far parameter (this is how the function is suggested to be used).
This cause that the depth (z) order doesn't change, when the geometry is transformed form view space to normalized device space.
Note, glOrtho(-w, w, -h, h, -z, z) is the same as glScaled(1.0/w, 1.0/h, -1.0/z)
Since the z-axis is not inverted by the orthographic projection in your example, because near > far,
glOrtho(-windowWidth / 2, windowWidth / 2, -windowHeight / 2, windowHeight / 2, 2, -2);
the z coordinate has to be greater, to be "behind".
If the green rectangle should be behind the red one, then you've to change the orthographic projection (near < far). e.g.:
glOrtho(-windowWidth / 2, windowWidth / 2, -windowHeight / 2, windowHeight / 2, -2, 2);
If you don't want to change the projection, then you've to swap the z-coordinates of the geometry:
glPushMatrix();
//move the red square to the foreground
glTranslatef(-32.5, -32.5, -2.0); // foreground because near > far
// ...
glPopMatrix();
glPushMatrix();
//move the green square to the background
glTranslatef(32.5, 32.5, 2.0); // background because near > far
// ...
glPopMatrix();
I write a program to draw one line.
The line sometimes disappear when I move camera to positive z-axis (especially when z-axis greater than 10000).
There are some test result.
When z set 20541, the line can be seen.
When z set 20542, the line CAN'T be seen.
When z set 30320, the line can be seen.
When z set 30321, the line CAN'T be seen.
and so forth ...
The code is attached. What's wrong?
P.S.
The code is written by OpenGL 1.0, but I can still get the same test result when written by OpenGL 3.0 + glm library.
#include <glut.h>
/*
System Info
-------------
OS: Win7 professional 64-bit SP1
CPU: Intel i3-4170 # 3.70GHz
GPU: HD Graphics 4400
*/
void display(void) {
// 20541 ok, 20542 not visible
// 30320 ok, 30321 not visible
const GLfloat z = 20541;
const GLfloat far = 1000, near = 0.1;
GLfloat vertices[4 * 3] = {
-far, -far, z - far,
far, far, z - far,
};
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0, 0, z, 0, 0, z - 1, 0, 1, 0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-0.1, 0.1, -0.1, 0.1, near, far);
glColor3f(0, 1, 1); // blue
glBegin(GL_LINES);
glVertex3f(vertices[0], vertices[1], vertices[2]);
glVertex3f(vertices[3], vertices[4], vertices[5]);
glEnd();
glFlush();
}
int main() {
glutCreateWindow("");
glutDisplayFunc(display);
glutMainLoop();
return 0;
}
This issue seems to be a numerical instability of the floating point arithmetic. Since you are projecting points that are exactly on the far-plane, they get clipped when the floating-point result is a little bit larger than the expected result.
Let's assume a C++ implementation of what the gpu basically does:
glm::vec4 test_fp(float z)
{
//Construct matrices
auto ortho = glm::frustum(-0.1f, 0.1f, -0.1f, 0.1f, 0.1f, 1000.0f);
auto lookat = glm::lookAt(glm::vec3(0, 0, z), glm::vec3(0, 0, z - 1.0f), glm::vec3(0, 1, 0));
//We are only interested in the z-value
glm::vec4 tvec(0, 0, z - 1000.0f, 1);
//Calculate ndc vector
auto result = ortho * lookat * tvec;
//Homogenize
result /= result.w;
return result;
}
When now calling this function with the values you provided we get the following results:
auto a = test_fp(20541.0); //< [0, 0, 1.00000000, 1]
auto b = test_fp(20542.0); //< [0, 0, 1.00000191, 1]
auto c = test_fp(30320.0); //< [0, 0, 1.00000000, 1]
auto d = test_fp(30321.0); //< [0, 0, 1.00000191, 1]
As you can see, the results of b and d diverge from the mathematical correct result and are slightly above 1.0. Since values above 1.0 are behind the far-plane, they are clipped away and are not visible, which is exactly the behavior you have.
Okay, so my program opens a file, reads in xyz-points, then draws a line strip out of it. I originally had this program written in SharpGL (implemnted as WPF window) and it worked, but not well due to using immediate mode, so I have moved onto OpenGL in C++. I have (somewhat) figured out VBO's and I now I am trying to add mouse functionality now. My problem is I can't move the picture with my mouse, I want to be able to click and 'drag' the picture. My mouseClickFunc and mouseMotion work (my cout statements execute), however it seems like my translate call is never being executed (i.e. the picture starts partially 'clipped' in the scene and I would like the ability to drag it and center it). I know this is a shot in the dark but I am really not sure what to do.
MotionFunc:
void mouseMotion(int x, int y)
{
if (moveable)
{
xMove += xTransform(x) - xTransform(xDown);
yMove += yTransform(y) - yTransform(yDown);
xDown = x;
yDown = y;
cout << yMove << "---" << xMove << endl;
glutSwapBuffers();
glutPostRedisplay();
}
}
Display Function:
void RenderFunction(void)
{
++FrameCount;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glOrtho(xMin - 1, xMax + 1, yMin - 1, yMax + 1, -diameter * zScale, diameter * zScale);
// Reset the modelview matrix.
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glPushMatrix();
glTranslatef(xMove, -yMove, 0);
//glViewport((GLint)xMove*100, (GLint)-yMove*100, CurrentWidth, CurrentHeight);
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDrawArrays(GL_LINE_STRIP, 0, 29000);
glPopMatrix();
glutSwapBuffers();
glutPostRedisplay();
}
I am sure there is more code that I need to show, this is just where I think the problem is. Any help would be greatly appreciated.
Here is a picture of a console output and the screen (OpenGL context) as I see it.
UPDATE: Updated my code. It looks like my coordinates are moving, but the picture is not if that makes sense. If you look at my output, if I keep 'dragging' the picture, you can see in the console that the variable xMove and yMove can get as large or small as they want, again translate is just never moving it.
You pop your matrix before drawing things, which resets the matrix to the state of last push matrix. Move glPopMatrix(); below draw call
You're popping the matrix before you call glDrawArrays(), so this naturally negates the effect of the translation. It also negates the glOrtho() call, but that should be issued on the projection matrix and not on the modelview matrix in the first place.
And, of course, the problem is in your code, and not in OpenGL.
In this code excerpt :
glLoadIdentity();
glPushMatrix();
glTranslatef(xMove, -yMove, 0);
//glViewport((GLint)xMove*100, (GLint)-yMove*100, CurrentWidth, CurrentHeight);
glOrtho(xMin - 1, xMax + 1, yMin - 1, yMax + 1, -diameter * zScale, diameter * zScale);
glPopMatrix();
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDrawArrays(GL_LINE_STRIP, 0, 29000);
you are :
setting the identity as the view matrix
push it into the queue
modify it by glTranslate
pop it of the stack
render the image
Therefore, your translation is ignored.
This is correct operation :
glLoadIdentity();
glPushMatrix();
glTranslatef(xMove, -yMove, 0);
//glViewport((GLint)xMove*100, (GLint)-yMove*100, CurrentWidth, CurrentHeight);
glOrtho(xMin - 1, xMax + 1, yMin - 1, yMax + 1, -diameter * zScale, diameter * zScale);
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDrawArrays(GL_LINE_STRIP, 0, 29000);
glPopMatrix();
You are multiplying projection before translation, remember to always read matrix transformation from bottome to top in OpenGL 1.1 which you should upgrade IMO. Another issue is that you are poping the matrix before drawing.
Correct code:
//glViewport((GLint)xMove*100, (GLint)-yMove*100, CurrentWidth, CurrentHeight);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(xMin - 1, xMax + 1, yMin - 1, yMax + 1, -diameter * zScale, diameter * zScale);
// Reset the modelview matrix.
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glPushMatrix();
glTranslatef(xMove, -yMove, 0);
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDrawArrays(GL_LINE_STRIP, 0, 29000);
glPopMatrix();
While attempting to render a 3D object using OpenGL (and the GLFW library), the model experiences lots of flickering. Im reading the .obj file using a library that I've written on my own.
Written below is my render function:
Unfortunately, in order to understand how faces and vertices are being inputted, I will have to provide all my code, which is linked:
Zipped code along with executable and sample .obj:
Source
Im using .obj files from here to test the program. Right now, the program doesn't support normals and textures, which isnt an issue since most of the models on the site dont have them. Also, (right now) it only reads from "123.obj" so the file should'nt be named anything else. And it only accepts a single space, not more than that.
float render()
{
glfwSetTime(0.0f);
int win_width;
int win_height;
glfwGetWindowSize(&win_width, &win_height);
float win_aspect = (float)win_width / (float)win_height;
glViewport(0, 0, win_width, win_height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(90, win_aspect, 0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0, 0, 50.0, 0, 0, 0, 0.0, 1.0, 0.0);
glEnable(GL_DEPTH);
glEnable(GL_DEPTH_TEST);
glEnable(GL_COLOR_MATERIAL);
glEnable(GL_NORMALIZE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glRotatef(angle , 0 , 1, 0);
glColor3f(0.0f, 0.0f, 0.0f);
int index = 0;
for(int a = 0; a < faces.size(); a++)
{
if(faces[a].vertices.size() == 3)
{
glBegin(GL_TRIANGLES);
}
else
{
glBegin(GL_QUADS);
}
for(int b = 0; b < faces[a].vertices.size(); b++)
{
index = faces[a].vertices[b];
glVertex3f(vertices[index].Dimensions[_x], vertices[index].Dimensions[_y], vertices[index].Dimensions[_z]);
}
glEnd();
}
glfwSwapBuffers();
return (float)glfwGetTime();
Here's the problem
gluPerspective(90, win_aspect, 0, 100.0);
You cannot set 0 as your nearclip, set it to something larger like 0.1, or 1.0.
gluPerspective(90, win_aspect, 1.0, 100.0);
With nearclip at 0, all of your depths get mapped to z = 1, and you get z fighting.
EDIT : if you're interested, here's some theory on perspective depth:
For a given distance from the camera x, your perspective transform outputs a certian depth value z. At the farclip, this value will be the maximum of 1, and at nearclip it will be 0.
Between these values however, relationship is not linear like you may expect. The curve looks similar to the following diagrams:
Diagram
When you go to the extreme of setting your nearclip to 0, your curve is heavily warped, so now all distances map to z = 1.
Because of all this, you should also try to keep the ratio far:near smaller than 10000:1