I am looking to convert existing code in C to perform the following: I am attempting to write a hex dump program that prints out address: values printable characters.
Currently, the code for values is printing in the following format:
0003540: 05 04 06 75 6e 73 69 67 6e 65 64 20 63 68 61 72 ...unsigned char
Desired hex output:
0003540: 0504 0675 6e73 6967 6e65 6420 6368 6172 ...unsigned char
Current code printing in pairs:
addr = 0;
while ( ( cnt = ( long )
fread ( buf, sizeof ( unsigned char ), 16, filein ) ) > 0 ) {
b = buf;
/* Print the address in hexadecimal. */
fprintf ( fileout, "%07lx ", addr );
addr = addr + 16;
/* Print 16 data items, in pairs, in hexadecimal. */
cnt2 = 0;
for ( m = 0; m < 16; m++ ) {
cnt2 = cnt2 + 1;
if ( cnt2 <= cnt ) {
fprintf ( fileout, "%02x", *b++ );
}
else {
fprintf ( fileout, " " );
}
fprintf ( fileout, " " );
}
/* Print the printable characters, or a period if unprintable. */
fprintf ( fileout, " " );
cnt2 = 0;
for ( n = 0; n < 16; n++ ) {
cnt2 = cnt2 + 1;
if ( cnt2 <= cnt ) {
if ( ( buf[n] < 32 ) || ( buf[n] > 126 ) ) {
fprintf ( fileout, "%c", '.' );
}
else {
fprintf ( fileout, "%c", buf[n] );
}
}
}
fprintf( fileout, "\n" );
}
How can I alter this code to achieve the AB12 CD34 format?
Thanks!
Use the modulo (remainder) operator % to test if m is divisible by 2. Only write the space when it is:
for ( m = 0; m < 16; m++ ) {
if ( m > 0 && m % 2 == 0 ) {
fprintf ( fileout, " " );
}
fprintf ( fileout, "%02x", *b++ );
}
Edit 3:
for ( m = 0; m < 16; m++ ) {
if ( m > 0 && m % 2 == 0 ) {
fprintf ( fileout, " " ); // space between every second byte
}
if ( m < cnt ) {
fprintf ( fileout, "%02x", *b++ );
} else {
fprintf ( fileout, " " ); // blank if run out of bytes on this line
}
}
I think this can be simplified quite a bit. For example, I'd consider starting with something like this:
#include <stdio.h>
#include <ctype.h>
int main(){
char buffer[17];
size_t bytes;
int i;
while (0 < (bytes = fread(buffer, 1, 16, stdin))) {
for (i = 0; i < bytes / 2; i++) // print out bytes, 2 at a time
printf("%02x%02x ", buffer[i * 2], buffer[i * 2 + 1]);
if (i * 2 < bytes) // take care of (possible) odd byte
printf("%02x ", buffer[i * 2]);
for (; i < 8; i++) // right pad hex bytes
printf(" ");
for (i = 0; i < bytes; i++) // change unprintable to '.'
if (!isprint(buffer[i]))
buffer[i] = '.';
buffer[i] = '\0'; // terminate string
printf("\t%s\n", buffer); // print out characters
}
return 0;
}
Related
I'm doing practice of bit manipulation in arduino with a 74HC595 shift register.
I would like to create an algorithm that allows the binary digit to perform this way:
1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
.
.
.
1 0 0 0 0 0 0 1
In this type of function the decimal values are: (129,66,36,24,24,36,66,129) and so on in a loop.
How can I perform this type of shifting? I don't have any fluency thinking this type of operation, I have only performed a circular shift with "an algorithm" like:
//my circular shift
myByte = myByte*128 + myByte/2
But I don't know how to perform the output that I showed.
How can I do this? Thanks
For example you can use the following approach
#include <iostream>
#include <iomanip>
#include <limits>
int main()
{
unsigned char b = 0b10000001;
int width = std::numeric_limits<unsigned char>::digits / 2;
for ( int i = 0; i < width; i++ )
{
std::cout << std::hex << static_cast<int>( b ) << " - "
<< std::dec << static_cast<int>( b ) << '\n';
b = ( b & ( 0b1111 << width ) ) >> 1 | ( b & 0b1111 ) << 1;
}
for ( int i = 0; i < width; i++ )
{
std::cout << std::hex << static_cast<int>( b ) << " - "
<< std::dec << static_cast<int>( b ) << '\n';
b = ( b & ( 0b1111 << width ) ) << 1 | ( b & 0b1111 ) >> 1;
}
return 0;
}
The program output is
81 - 129
42 - 66
24 - 36
18 - 24
18 - 24
24 - 36
42 - 66
81 - 129
You're looking for a single operation that can be applied to an 8 bit number and result in the given pattern.
You want
x_(n+1) = f(x_(n))
for all given inputs and outputs. The problem is that there are a few potential inputs that have one of two possible outputs. You want both
36 = f(66)
and
129 = f(66)
This can't be done using only one variable. You can either implement a lookup table for the sequence you want (which is what I suggest). Or you can take two variables, implement circular shifts (in opposite directions) on each, and take the bitwise OR of the results.
uint8_t n1 = 128, n2 = 1;
for(;;)
{
std::cout << n1 | n2 << "\n";
n1 = circular_right_shift(n1);
n2 = circular_left_shift(n2);
}
Noticing that:
129,66,36,24,24,36,66,129 = 128+1; 64+2 ; 32+4; 16+8; 16+8; 32+4; 64+2; 128+1;
I ended up with this code:
int latchPin = 11;
int clockPin = 9;
int dataPin = 12;
int dt = 2000;
uint8_t n1 = 128, n2 = 1;
byte myByte = 0b10000001; //in BIN
void setup() {
Serial.begin(9600);
pinMode(latchPin,OUTPUT);
pinMode(dataPin,OUTPUT);
pinMode(clockPin,OUTPUT);
}
//circular shift to the left
void loop() {
digitalWrite(latchPin,LOW);
shiftOut(dataPin,clockPin,LSBFIRST,myByte);
digitalWrite(latchPin,HIGH);
int i;
myByte = 0b10000001; //restarting the value of 129
Serial.print("BIN: ");
Serial.print(myByte,BIN);
Serial.print(" --> ");
Serial.print("HEX: ");
Serial.print(myByte,HEX);
Serial.print(" --> ");
Serial.print("DEC: ");
Serial.println(myByte,DEC);
delay(200);
for (int i = 0; i < 7; i++) {
Serial.print("i: ");
Serial.println(i);
//int i1 = i+1;
//int myGap = myByte - (pow(2,i)); //no need to round when it's raised to 0;
//int firstpart = (myGap/2);
//int secondpart = 0.5 + pow(2,i1); //because it rounds the number. (i.e --> 1.9999 = 1)
//myByte = firstpart+ secondpart;
myByte = (myByte - (pow(2,i)))/2 + (0.5 + pow(2,i+1));
//Serial.print("firstpart: ");
//Serial.println(firstpart);
//Serial.print("secondpart: ");
//Serial.println(secondpart);
//delay(3000);
Serial.print("BIN: ");
Serial.print(myByte,BIN);
Serial.print(" --> ");
Serial.print("HEX: ");
Serial.print(myByte,HEX);
Serial.print(" --> ");
Serial.print("DEC: ");
Serial.println(myByte,DEC);
digitalWrite(latchPin,LOW);
shiftOut(dataPin,clockPin,LSBFIRST,myByte);
digitalWrite(latchPin,HIGH);
delay(100);
}
//myByte = myByte*2; //shift by right //using MSBFIRTS
//delay(dt);
}
And it works.
I get this error constantly in an embedded Linux application. I am trying to locate the problem and I narrowed it down to the following piece of code.
I want to solve this problem, if not I'd appreciate a couple of pointers what might have caused it.
Any suggestions how to reproduce this stack smashing problem is greately appreciated:
uint8_t laststate = HIGH;
uint8_t counter = 0;
uint8_t j = 0;
uint8_t i = 0;
int data[5] = {0,0,0,0,0};
int try_again = 1;
float h = 0.0;
float c = 0.0;
int try_count = 0;
const int max_tries = 30;
if (this->DHT22_SETUP_ != 1)
{
fprintf(stderr,"You havent set up Gpio !\n");
}
else
{
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
data[4] = 0;
//f = 0.0;
h = 0.0;
c = 0.0;
j = 0;
i = 0;
counter = 0;
laststate = HIGH;
/* pull pin down for 18 milliseconds */
pinMode( this->DHT22Pin, OUTPUT );
digitalWrite( this->DHT22Pin, LOW );
delay( 18 );
/* prepare to read the pin */
pinMode( this->DHT22Pin, INPUT );
/* detect change and read data */
for ( i = 0; i < MAX_TIMINGS; i++ )
{
counter = 0;
while ( digitalRead( this->DHT22Pin ) == laststate )
{
counter++;
delayMicroseconds( 1 );
if ( counter == 255 )
{
break;
}
}
laststate = digitalRead( this->DHT22Pin );
if ( counter == 255 )
break;
/* ignore first 3 transitions */
if ( (i >= 4) && (i % 2 == 0) )
{
/* shove each bit into the storage bytes */
data[j / 8] <<= 1;
if ( counter > 16 )
data[j / 8] |= 1;
j++;
}
}
/*
* check we read 40 bits (8bit x 5 ) + verify checksum in the last byte
* print it out if data is good
*/
if ((j >= 40) &&
(data[4] == ( (data[0] + data[1] + data[2] + data[3]) & 0xFF) ) )
{
h = (float)((data[0] << 8) + data[1]) / 10;
if ( h > 100 )
{
h = data[0]; // for DHT11
}
c = (float)(((data[2] & 0x7F) << 8) + data[3]) / 10;
if ( c > 125 )
{
c = data[2]; // for DHT11
}
if ( data[2] & 0x80 )
{
c = -c;
}
//f = c * 1.8f + 32;
#ifdef DEBUG
printf( "Humidity = %.1f %% Temperature = %.1f *C (%.1f *F)\n", h, c, f );
#endif
try_again = 0;
if (h == 0)
{
try_again = 1;
}
}
else
{
/* Data not good */
try_again = 1;
return 0.0;
//printf ("Data not good, skipping\n");
}
/* Return humidity */
return h;
}
Thanks in advance.
If MAX_TIMINGS is >83, and if counter doesn't reach 255 before i goes over that 83 threshold, then the detect change and read data loop is repeated that many times, and therefore the block of ignore first 3 transitions if-expression is executed >40 times (there may be some off-by-one errors in my quick analysis) and therefore j ends up being >40 which means that j / 8 will be >4 which means it is out of bounds of data array and therefore accessing data[j / 8] in that case has undefined behaviour.
Here's a nice easy way:
class T {
char big[<Some number bigger than your stack size>];
}
int main() {
T bang;
return 0;
}
The allocation of T on the stack will result in your stacksmash. What you have done is likely similar just not with a single class.
How would it be possible to feed the TEA cipher without exceeding a systems ram with large files?
I have tried doing this however it has all ended with massive failure and hours of tinkering that leads to nothing. So could someone give me an example of how this can be done or any meaningful information on how to do it?
void decodeXtea(unsigned int* v, unsigned int* w, unsigned int* k) {
register unsigned int v0=v[0], v1=v[1], i, sum=0xC6EF3720;
register unsigned int delta=0x9E3779B9;
for(i=0; i<32; i++) {
v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + k[(sum>>11) & 3]);
sum -= delta;
v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + k[sum & 3]);
}
w[0]=v0; w[1]=v1;
}
void TeaDecode ( const std::string& str, const std::string& key, std::string* out )
{
unsigned int v[2];
unsigned int w[2];
unsigned int k[4];
unsigned int keybuffer [ 4 ];
// Clear buffers
memset ( v, 0, sizeof(v) );
memset ( w, 0, sizeof(w) );
memset ( k, 0, sizeof(k) );
memset ( keybuffer, 0, sizeof(keybuffer) );
out->clear ();
// Count the number of passes that we need
int numBlocks = str.length() / 4;
int numPasses = numBlocks - 1;
if ( numPasses <= 0 )
return;
// Process the key
int len = key.length ();
if ( len > 16 )
len = 16;
memcpy ( keybuffer, key.c_str(), len );
for ( int i = 0; i < 4; ++i )
k[i] = keybuffer[i];
// Create a temporary buffer to store the result
unsigned char* buffer = new unsigned char [ numPasses * 4 + 4 ];
memset ( buffer, 0, numPasses * 4 + 4 );
// Decode it!
const char* p = str.c_str();
v[1] = *(unsigned int*)&p[numPasses * 4];
for ( int i = 0; i < numPasses; ++i )
{
v[0] = *(unsigned int*)&p[(numPasses-i-1)*4];
decodeXtea ( &v[0], &w[0], &k[0] );
*(unsigned int*)&buffer[(numPasses-i-1)*4] = w[0];
v[1] = w[1];
}
out->assign ( (char *)buffer, numPasses*4 );
delete [] buffer;
}
void encodeXtea(unsigned int* v, unsigned int* w, unsigned int* k) {
register unsigned int v0=v[0], v1=v[1], i, sum=0;
register unsigned int delta=0x9E3779B9;
for(i=0; i<32; i++) {
v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + k[sum & 3]);
sum += delta;
v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + k[(sum>>11) & 3]);
}
w[0]=v0; w[1]=v1;
}
void TeaEncode ( const std::string& str, const std::string& key, std::string* out )
{
unsigned int v[2];
unsigned int w[2];
unsigned int k[4];
unsigned int keybuffer [ 4 ];
// Clear buffers
memset ( v, 0, sizeof(v) );
memset ( w, 0, sizeof(w) );
memset ( k, 0, sizeof(k) );
memset ( keybuffer, 0, sizeof(keybuffer) );
out->clear ();
// Process the key
int len = key.length ();
if ( len > 16 )
len = 16;
memcpy ( keybuffer, key.c_str(), len );
for ( int i = 0; i < 4; ++i )
k[i] = keybuffer[i];
// Copy the input string to a buffer of size multiple of 4
int strbuflen = str.length ();
if ( strbuflen == 0 )
return;
if ( (strbuflen % 4) > 0 )
strbuflen += 4 - (strbuflen % 4);
unsigned char* strbuf = new unsigned char [ strbuflen ];
memset ( strbuf, 0, strbuflen );
memcpy ( strbuf, str.c_str(), str.length() );
// Encode it!
v[1] = 0;
for ( int i = 0; i < strbuflen; i += 4 )
{
v[0] = *(unsigned int*)&strbuf[i];
encodeXtea ( &v[0], &w[0], &k[0] );
out->append ( (char*)&w[0], 4 );
v[1] = w[1];
}
out->append ( (char*)&v[1], 4 );
delete [] strbuf;
}
This fixed it.
void readSystem(string fname,string outFileName,string key,string mode)
{
//size_t buffer_size = 1<<20;
size_t buffer_size;
if(mode == "E")
{
buffer_size = 32;
}
else
{
buffer_size = 36;
}
//char *buffer = new char[buffer_size];
string buffer(buffer_size,'\0');
string data,output;
//data.resize(buffer_size);
// The input
std::ifstream fin(fname,ios::binary);
// The output
ofstream outFile(outFileName,ios::binary);// | ios::app);
// Anti overwrite
if(getSize(outFileName) > 0)
{
cout << "Overwrite error" << endl;
exit(0);
}
while (fin)
{
// Try to read next chunk of data
// fin.read(buffer, buffer_size);
fin.read(&buffer.front(), buffer_size);
// Get the number of bytes actually read
size_t count = fin.gcount();
data = buffer;
//data = encode(data,key);
if(mode == "E")
{
data = encode(data,key);
}
if(mode == "D")
{
data = decode(data,key);
}
//blockXor(data,key);
//outFile.write(data.c_str(),count);
outFile.write(data.c_str(),data.length());
// If nothing has been read, break
if (!count)
break;
// Do whatever you need with first count bytes in the buffer
}
outFile.close();
fin.close();
// delete[] buffer;
}
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
I have a binary string with ASCII like this
^#^#^#^A^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^A^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^A^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^A^#^#^#^#^#^#^#^#^#^#^#^#^#^#^#^A^#^#^O ^#^#^#^#^#^BÜ-^#^#^#^A^#^#^O ^#^#^#^#^#^BÜ-^#^#^#^A^#^#^#^#^#^#^#^#^EÜ?^#^#^#^A^#^#^#^#^#^#^#^#^EÜ?^#^#^#^A^#^#.à^#^#^#^#^#^Häð^#^#^#^A^#^#.à^#^#^#^#^#^Häð^#^#^#^A^#^#><80>^#^#^#^#^#^KÖ<80>^#^#^#^A^#^#><80>^
Perl code:
#!/usr/bin/env perl
use warnings;
use strict;
use Data::Dumper;
open(INDEX, $ARGV[0]);
binmode(INDEX);
my $buff;
my $ret = read(INDEX, $buff, 4);
my $fragment = unpack 'N', $buff;
$ret = read(INDEX, $buff, 4);
my $timestamp = unpack 'N', $buff;
$ret = read(INDEX, $buff, 8);
my $offset = unpack 'N', $buff;
print "timestamp = $timestamp fragment # $fragment offset = $offset\n";
Output:
timestamp = 0 fragment # 1 offset = 0
timestamp = 0 fragment # 1 offset = 0
timestamp = 0 fragment # 1 offset = 0
timestamp = 0 fragment # 1 offset = 0
timestamp = 4000 fragment # 1 offset = 187437
timestamp = 4000 fragment # 1 offset = 187437
timestamp = 8000 fragment # 1 offset = 384063
timestamp = 8000 fragment # 1 offset = 384063
timestamp = 12000 fragment # 1 offset = 582896
timestamp = 12000 fragment # 1 offset = 582896
I want to replicate the above work done by unpack in C++
How to do it?
What I was trying:
#include <iostream>
#include <stdlib.h>
using namespace std;
int main ()
{
int k;
char buf1[5];
char buf2[5];
char buf3[9];
int i;
char *str;
//Assume str contains the entire binary data
for(int i=0;str[i];)
{
while(k<32)
{
buf1[k]=str[i];
++k;++i;
}
k=0;
while(k<32)
{
buf2[k]=str[i];
++k;
}
k=0;
while(k<64)
{
buf3[k]=str[i];
++k;++i;
}
k=0;
uint32_t a1,b1,a2,b2;
uint64_t a3,b3;
a1=atoi(buf1);
b1=ntohl(a1);
a2=atoi(buf2);
b2=ntohl(a2);
a3=atoi(buf1);
b3=ntohl(a3);
print "timestamp ="<< b2 << "fragment #"<<b1<<" offset ="<<b3<<"\n";
}
return 0;
}
Here you go:
#include <stdint.h>
#include <iostream>
#include <fstream>
using namespace std;
int main( int argc, char *argv[] )
{
if (argc < 2)
{
cerr << "Input filename required" << endl;
return 1;
}
ifstream f( argv[1], ios::binary );
if (!f.good())
{
cerr << "Cannot open input file '" << argv[1] << "'" << endl;
return 1;
}
while (!f.eof())
{
uint8_t buf[8];
f.read( reinterpret_cast< char * >( buf ), 4 );
uint32_t fragment = ( ( buf[0] * 256U + buf[1] ) * 256U + buf[2] ) * 256U + buf[3];
f.read( reinterpret_cast< char * >( buf ), 4 );
uint32_t timestamp = ( ( buf[0] * 256U + buf[1] ) * 256U + buf[2] ) * 256U + buf[3];
f.read( reinterpret_cast< char * >( buf ), 8 );
uint64_t offset = ( ( ( ( ( ( buf[0] * 256LL + buf[1] ) * 256LL + buf[2] ) * 256LL + buf[3] )
* 256LL + buf[4] ) * 256LL + buf[5] ) * 256LL + buf[6] ) * 256LL + buf[7];
if (f.good())
{
cout << "timestamp = " << timestamp;
cout << " fragment = " << fragment;
cout << " offset = " << offset << endl;
}
}
return 0;
}
Read 4 bytes, then use
uint32_t n;
n = buf[0] << 24
| buf[1] << 16
| buf[2] << 8
| buf[3] << 0;
For example,
uint32_t n;
unsigned char buf[4];
size_t bytes_read = fread (buf, 1, 4, stream);
if (bytes_read < 4) {
if (ferror(stream)) {
// Error
// ...
}
else if (feof(stream)) {
// Premature EOF
// ...
}
}
else {
n = buf[0] << 24
| buf[1] << 16
| buf[2] << 8
| buf[3] << 0;
}
The question I have is quite simple, but I couldn't find a solution so far:
How can I convert a UTF8 encoded string to a latin1 encoded string in C++ without using any extra libs like libiconv?
Every example I could find so far is for latin1 to UTF8 conversion?
typedef unsigned value_type;
template <typename Iterator>
size_t get_length (Iterator p)
{
unsigned char c = static_cast<unsigned char> (*p);
if (c < 0x80) return 1;
else if (!(c & 0x20)) return 2;
else if (!(c & 0x10)) return 3;
else if (!(c & 0x08)) return 4;
else if (!(c & 0x04)) return 5;
else return 6;
}
template <typename Iterator>
value_type get_value (Iterator p)
{
size_t len = get_length (p);
if (len == 1)
return *p;
value_type res = static_cast<unsigned char> (
*p & (0xff >> (len + 1)))
<< ((len - 1) * 6);
for (--len; len; --len)
res |= (static_cast<unsigned char> (*(++p)) - 0x80) << ((len - 1) * 6);
return res;
}
This function will return the unicode code point at p. You can now convert a string using
for (std::string::iterator p = s_utf8.begin(); p != s_utf8.end(); ++p)
{
value_type value = get_value<std::string::iterator&>(p));
if (value > 0xff)
throw "AAAAAH!";
s_latin1.append(static_cast<char>(value));
}
No guarantees, the code is quite old :)
Here is a version of filmor's answer that I wrote for my purposes. A bit more readable, probably a bit slower. I didn't need the template stuff since I was always dealing with char *, and in my case I wanted to replace non-Latin1 character's with _. Just in case it helps someone:
int GetUtf8CharacterLength( unsigned char utf8Char )
{
if ( utf8Char < 0x80 ) return 1;
else if ( ( utf8Char & 0x20 ) == 0 ) return 2;
else if ( ( utf8Char & 0x10 ) == 0 ) return 3;
else if ( ( utf8Char & 0x08 ) == 0 ) return 4;
else if ( ( utf8Char & 0x04 ) == 0 ) return 5;
return 6;
}
char Utf8ToLatin1Character( char *s, int *readIndex )
{
int len = GetUtf8CharacterLength( static_cast<unsigned char>( s[ *readIndex ] ) );
if ( len == 1 )
{
char c = s[ *readIndex ];
(*readIndex)++;
return c;
}
unsigned int v = ( s[ *readIndex ] & ( 0xff >> ( len + 1 ) ) ) << ( ( len - 1 ) * 6 );
(*readIndex)++;
for ( len-- ; len > 0 ; len-- )
{
v |= ( static_cast<unsigned char>( s[ *readIndex ] ) - 0x80 ) << ( ( len - 1 ) * 6 );
(*readIndex)++;
}
return ( v > 0xff ) ? 0 : (char)v;
}
// overwrites s in place
char *Utf8ToLatin1String( char *s )
{
for ( int readIndex = 0, writeIndex = 0 ; ; writeIndex++ )
{
if ( s[ readIndex ] == 0 )
{
s[ writeIndex ] = 0;
break;
}
char c = Utf8ToLatin1Character( s, &readIndex );
if ( c == 0 )
{
c = '_';
}
s[ writeIndex ] = c;
}
return s;
}
Test code:
char s2[ 256 ] = "lif\xc3\xa9 is b\xc3\xa9tt\xc3\xa9r with acc\xc3\xa9nts";
Utf8ToLatin1String( s2 );
latin1 (aka ISO-8859-1) defines the first 256 code points of Unicode. Thus, in UTF-8, if your character is 8 bits, then it will exactly map to the latin1 equivalent. If it's more than 8 bits in length, then there is no correspondent within latin1 and you should map it to some "unknown character" (e.g., \0 or ?).