Socket Client send using connection accepted by Server - c++

Is it right method client send data using the same connection accepted by server?.
The situation is like this, I have blue tooth server running on my PC and on the other side I have android phone with client and server. From android side the client start connection. I am using blue-tooth chat example from android samples.
And the server-client on android look like
BluetoothSocket socket;
InputStream tmpIn = null;
OutputStream tmpOut = null;
// Get the BluetoothSocket input and output streams
tmpIn = socket.getInputStream();
tmpOut = socket.getOutputStream();
And in the PC side I am using Bluez libraries to implement server and client.
The code includes blue tooth receive thread and a main thread, whenever the server accept a connection from android phone I just assign the socket value to a global variable and whenever the client need to send data it send using the same socket ,
Server:-
int GLOBAL_CLIENT;
void* recive_bluetooth_trd(void*)
{
...............................
..............................
client = accept(s, (struct sockaddr *)&rem_addr, &opt);
GLOBAL_CLIENT=client;
while(1){
bytes_read = read(client, buf, sizeof(buf));
....................
...................
}
Client:-
void clinet(char *msg, int length){
........................
int bytes_write=write(GLOBAL_CLIENT,message, length);
..........................
}
My question is, Is it a right method ? The problem is that some times the client send data successfully from PC but not receiving on android side.

The biggest problem I see is that you won't ever leave your while(1) loop, even when the client disconnects. Read will return immediately forever with 0 bytes read (check for a return code of <= 0), trying to signal that the socket is disconnected. Your code will go into a tight infinite loop and use up all the CPU resources it can get its single-threaded hands on.
You need to make sure you ALWAYS check your socket and IO return codes and handle the errors correctly. The error handling for sockets is usually about 3x the actual socket code.
Unless of course the .......... stuff is the important bits. Always tough to tell when people hide code relevant to the question they are asking.

Seems correct to me, but after read you have to NUL ('\0') terminate your buffer if you are treating with strings:
buf[bytes_read] = '\0';

Related

Can I create a chat program with IOCP?

I've just entered socket programming.
But I was given homework to implement a simple chat program with IOCP.
WSASend(), which is used in IOCP, forwards data to only one client connected to the socket, and how do I change this to transfer data to all connected clients?
After many attempts, the server was still transferring data only to the client that sent it.
When one client sends data to the server, I want the server to send it to all connected clients.
After many attempts, the server was still transferring data only to the client that sent it.
When one client sends data to the server, I want the server to send it to all connected clients.
This is a function that, in the IOCP program that I am currently dealing with, transfers data received to the client through a connected socket back to the client. I'm thinking about the problem here.
Of course there may be problems elsewhere. I'll show you if you want to see other parts of the code.
bool Session::SendMsg(int size) { // size : size of send data
ZeroMemory(&_sio.over, sizeof(_sio.over));
_sio.wbuf.len = size;
_sio.wbuf.buf = _sio.mbuf;
_sio.type = Iotype::Send;
DWORD trans;
// It sends data to only one client....
int ret = WSASend(_sock, &_sio.wbuf, 1, &trans, 0, &_sio.over, NULL);
if (ret == SOCKET_ERROR && WSAGetLastError() != WSA_IO_PENDING)
return false;
return true;
}

Winsock - Client disconnected, closesocket loop / maximum connections

I am learning Winsock and trying to create some easy programs to get to know it. I managed to create server which can handle multiple connections also manage them and client according to all tutorials, it is working how it was supposed to but :
I tried to make loop where I check if any of clients has disconnected and if it has, I wanted to close it.
I managed to write something which would check if socket is disconnected but it does not connect 2 or more sockets at one time
Anyone can give me reply how to make working loop checking through every client if it has disconnected and close socket ? It is all to make something like max clients connected to server at one time. Thanks in advance.
while (true)
{
ConnectingSocket = accept (ListeningSocket, (SOCKADDR*)&addr, &addrlen);
if (ConnectingSocket!=INVALID_SOCKET)
{
Connections[ConnectionsCounter] = ConnectingSocket;
char *Name = new char[64];
ZeroMemory (Name,64);
sprintf (Name, "%i",ConnectionsCounter);
send (Connections[ConnectionsCounter],Name,64,0);
cout<<"New connection !\n";
ConnectionsCounter++;
char data;
if (ConnectionsCounter>0)
{
for (int i=0;i<ConnectionsCounter;i++)
{
if (recv(Connections[i],&data,1, MSG_PEEK))
{
closesocket(Connections[i]);
cout<<"Connection closed.\n";
ConnectionsCounter=ConnectionsCounter-1;
}
}
}
}
Sleep(50);
}
it seems that you want to manage multiple connections using a single thread. right?
Briefly socket communication has two mode, block and non-block. The default one is block mode. let's focus your code:
for (int i=0;i<ConnectionsCounter;i++)
{
if (recv(Connections[i],&data,1, MSG_PEEK))
{
closesocket(Connections[i]);
cout<<"Connection closed.\n";
ConnectionsCounter=ConnectionsCounter-1;
}
}
In the above code, you called the recv function. and it will block until peer has sent msg to you, or peer closed the link. So, if you have two connection now namely Connections[0] and Connections[1]. If you were recv Connections[0], at the same time, the Connections[1] has disconnected, you were not know it. because you were blocking at recv(Connections[0]). when the Connections[0] sent msg to you or it closed the socket, then loop continue, finally you checked it disconnect, even through it disconnected 10 minutes ago.
To solve it, I think you need a book Network Programming for Microsoft Windows . There are some method, such as one thread one socket pattern, asynchronous communication mode, non-block mode, and so on.
Forgot to point out the bug, pay attention here:
closesocket(Connectons[i]);
cout<<"Connection closed.\n";
ConnectionsCounter=ConnectionsCounter-1;
Let me give an example to illustrate it. now we have two Connections with index 0 and 1, and then ConnectionsCount should be 2, right? When the Connections[0] is disconnected, the ConnectionsCounter is changed from 2 to 1. and loop exit, a new client connected, you save the new client socket as Connections[ConnectionsCounter(=1)] = ConnectingSocket; oops, gotting an bug. because the disconnected socket's index is 0, and index 1 was used by another link. you are reusing the index 1.
why not try to use vector to save the socket.
hope it helps~

ZMQ doesn't work with the raw socket in Linux but works in Windows

I have a client program written with raw socket communicating with a server. It uses 'select' to poll the socket descriptor and get the message from the server. After getting message, I use a ZMQ socket to send the message out.
This works perfectly in windows. But in Linux, after I call the ZMQ 'send' function, I cannot receive message from the server any more. It seems the raw socket has been affected somehow.
The program is a multithread program but I have dealt with ZMQ carefully. The client program is running in a thread A and the ZMQ socket is only used by that thread A. I think I used ZMQ correctly as it is working well in Windows. But how comes the issue in Linux?
Anybody knows if this is normal? I am suspecting this is a ZMQ issue. As long as I remove the ZMQ 'send' function, the program works well. Anybody knows how to solve this issue? and why it is working well in Windows, not in Linux?
I found it doesn't work even in single thread situation. ZMQ creates more than ten threads automatically for me. I don't use any multithread this time, and the code flow is like this:
create a raw socket A;
connect to a business server B;
STATE = 1
while (raw socket A is connected){
if (STATE==1){
send(Request 1);
}else if (STATE==2){
send(Request 2);
}
int ret = select(fd + 1, &readSet, &writeSet, &errorSet, &timeout);
if (ret > 0){
if (FD_ISSET(fd, &readSet)) {
char buf[8192];
int nResult = receive( buf, sizeof(buf));
if (buf is X){
zmq.send(messageX)
STATE=2
}else if (buf is Y){
STATE=3
}else{...}
}// socket is ready for reading
}
}
After zmq.send(message), I cannot receive any new message!! The server side code is closed to me so that I cannot debug from server side. If I remove "zmq.send(message)", everything works fine. In Windows, this program works fine too.
Well, it is hard to tell u whats wrong without a code. But you should probably look at ZMQ versions in Linux and Windows because the "formats of sending" etc can differ between versions and stuff that works in one version will not in another.

zeromq: reset REQ/REP socket state

When you use the simple ZeroMQ REQ/REP pattern you depend on a fixed send()->recv() / recv()->send() sequence.
As this article describes you get into trouble when a participant disconnects in the middle of a request because then you can't just start over with receiving the next request from another connection but the state machine would force you to send a request to the disconnected one.
Has there emerged a more elegant way to solve this since the mentioned article has been written?
Is reconnecting the only way to solve this (apart from not using REQ/REP but use another pattern)
As the accepted answer seem so terribly sad to me, I did some research and have found that everything we need was actually in the documentation.
The .setsockopt() with the correct parameter can help you resetting your socket state-machine without brutally destroy it and rebuild another on top of the previous one dead body.
(yeah I like the image).
ZMQ_REQ_CORRELATE: match replies with requests
The default behaviour of REQ sockets is to rely on the ordering of messages to match requests and responses and that is usually sufficient. When this option is set to 1, the REQ socket will prefix outgoing messages with an extra frame containing a request id. That means the full message is (request id, 0, user frames…). The REQ socket will discard all incoming messages that don't begin with these two frames.
Option value type int
Option value unit 0, 1
Default value 0
Applicable socket types ZMQ_REQ
ZMQ_REQ_RELAXED: relax strict alternation between request and reply
By default, a REQ socket does not allow initiating a new request with zmq_send(3) until the reply to the previous one has been received. When set to 1, sending another message is allowed and has the effect of disconnecting the underlying connection to the peer from which the reply was expected, triggering a reconnection attempt on transports that support it. The request-reply state machine is reset and a new request is sent to the next available peer.
If set to 1, also enable ZMQ_REQ_CORRELATE to ensure correct matching of requests and replies. Otherwise a late reply to an aborted request can be reported as the reply to the superseding request.
Option value type int
Option value unit 0, 1
Default value 0
Applicable socket types ZMQ_REQ
A complete documentation is here
The good news is that, as of ZMQ 3.0 and later (the modern era), you can set a timeout on a socket. As others have noted elsewhere, you must do this after you have created the socket, but before you connect it:
zmq_req_socket.setsockopt( zmq.RCVTIMEO, 500 ) # milliseconds
Then, when you actually try to receive the reply (after you have sent a message to the REP socket), you can catch the error that will be asserted if the timeout is exceeded:
try:
send( message, 0 )
send_failed = False
except zmq.Again:
logging.warning( "Image send failed." )
send_failed = True
However! When this happens, as observed elsewhere, your socket will be in a funny state, because it will still be expecting the response. At this point, I cannot find anything that works reliably other than just restarting the socket. Note that if you disconnect() the socket and then re connect() it, it will still be in this bad state. Thus you need to
def reset_my_socket:
zmq_req_socket.close()
zmq_req_socket = zmq_context.socket( zmq.REQ )
zmq_req_socket.setsockopt( zmq.RCVTIMEO, 500 ) # milliseconds
zmq_req_socket.connect( zmq_endpoint )
You will also notice that because I close()d the socket, the receive timeout option was "lost", so it is important set that on the new socket.
I hope this helps. And I hope that this does not turn out to be the best answer to this question. :)
There is one solution to this and that is adding timeouts to all calls. Since ZeroMQ by itself does not really provide simple timeout functionality I recommend using a subclass of the ZeroMQ socket that adds a timeout parameter to all important calls.
So, instead of calling s.recv() you would call s.recv(timeout=5.0) and if a response does not come back within that 5 second window it will return None and stop blocking. I had made a futile attempt at this when I run into this problem.
I'm actually looking into this at the moment, because I am retro fitting a legacy system.
I am coming across code constantly that "needs" to know about the state of the connection. However the thing is I want to move to the message passing paradigm that the library promotes.
I found the following function : zmq_socket_monitor
What it does is monitor the socket passed to it and generate events that are then passed to an "inproc" endpoint - at that point you can add handling code to actually do something.
There is also an example (actually test code) here : github
I have not got any specific code to give at the moment (maybe at the end of the week) but my intention is to respond to the connect and disconnects such that I can actually perform any resetting of logic required.
Hope this helps, and despite quoting 4.2 docs, I am using 4.0.4 which seems to have the functionality
as well.
Note I notice you talk about python above, but the question is tagged C++ so that's where my answer is coming from...
Update: I'm updating this answer with this excellent resource here: https://blog.cloudflare.com/when-tcp-sockets-refuse-to-die/ Socket programming is complicated so do checkout the references in this post.
None of the answers here seem accurate or useful. The OP is not looking for information on BSD socket programming. He is trying to figure out how to robustly handle accept()ed client-socket failures in ZMQ on the REP socket to prevent the server from hanging or crashing.
As already noted -- this problem is complicated by the fact that ZMQ tries to pretend that the servers listen()ing socket is the same as an accept()ed socket (and there is no where in the documentation that describes how to set basic timeouts on such sockets.)
My answer:
After doing a lot of digging through the code, the only relevant socket options passed along to accept()ed socks seem to be keep alive options from the parent listen()er. So the solution is to set the following options on the listen socket before calling send or recv:
void zmq_setup(zmq::context_t** context, zmq::socket_t** socket, const char* endpoint)
{
// Free old references.
if(*socket != NULL)
{
(**socket).close();
(**socket).~socket_t();
}
if(*context != NULL)
{
// Shutdown all previous server client-sockets.
zmq_ctx_destroy((*context));
(**context).~context_t();
}
*context = new zmq::context_t(1);
*socket = new zmq::socket_t(**context, ZMQ_REP);
// Enable TCP keep alive.
int is_tcp_keep_alive = 1;
(**socket).setsockopt(ZMQ_TCP_KEEPALIVE, &is_tcp_keep_alive, sizeof(is_tcp_keep_alive));
// Only send 2 probes to check if client is still alive.
int tcp_probe_no = 2;
(**socket).setsockopt(ZMQ_TCP_KEEPALIVE_CNT, &tcp_probe_no, sizeof(tcp_probe_no));
// How long does a con need to be "idle" for in seconds.
int tcp_idle_timeout = 1;
(**socket).setsockopt(ZMQ_TCP_KEEPALIVE_IDLE, &tcp_idle_timeout, sizeof(tcp_idle_timeout));
// Time in seconds between individual keep alive probes.
int tcp_probe_interval = 1;
(**socket).setsockopt(ZMQ_TCP_KEEPALIVE_INTVL, &tcp_probe_interval, sizeof(tcp_probe_interval));
// Discard pending messages in buf on close.
int is_linger = 0;
(**socket).setsockopt(ZMQ_LINGER, &is_linger, sizeof(is_linger));
// TCP user timeout on unacknowledged send buffer
int is_user_timeout = 2;
(**socket).setsockopt(ZMQ_TCP_MAXRT, &is_user_timeout, sizeof(is_user_timeout));
// Start internal enclave event server.
printf("Host: Starting enclave event server\n");
(**socket).bind(endpoint);
}
What this does is tell the operating system to aggressively check the client socket for timeouts and reap them for cleanup when a client doesn't return a heart beat in time. The result is that the OS will send a SIGPIPE back to your program and socket errors will bubble up to send / recv - fixing a hung server. You then need to do two more things:
1. Handle SIGPIPE errors so the program doesn't crash
#include <signal.h>
#include <zmq.hpp>
// zmq_setup def here [...]
int main(int argc, char** argv)
{
// Ignore SIGPIPE signals.
signal(SIGPIPE, SIG_IGN);
// ... rest of your code after
// (Could potentially also restart the server
// sock on N SIGPIPEs if you're paranoid.)
// Start server socket.
const char* endpoint = "tcp://127.0.0.1:47357";
zmq::context_t* context;
zmq::socket_t* socket;
zmq_setup(&context, &socket, endpoint);
// Message buffers.
zmq::message_t request;
zmq::message_t reply;
// ... rest of your socket code here
}
2. Check for -1 returned by send or recv and catch ZMQ errors.
// E.g. skip broken accepted sockets (pseudo-code.)
while (1):
{
try
{
if ((*socket).recv(&request)) == -1)
throw -1;
}
catch (...)
{
// Prevent any endless error loops killing CPU.
sleep(1)
// Reset ZMQ state machine.
try
{
zmq::message_t blank_reply = zmq::message_t();
(*socket).send (blank_reply);
}
catch (...)
{
1;
}
continue;
}
Notice the weird code that tries to send a reply on a socket failure? In ZMQ, a REP server "socket" is an endpoint to another program making a REQ socket to that server. The result is if you go do a recv on a REP socket with a hung client, the server sock becomes stuck in a broken receive loop where it will wait forever to receive a valid reply.
To force an update on the state machine, you try send a reply. ZMQ detects that the socket is broken, and removes it from its queue. The server socket becomes "unstuck", and the next recv call returns a new client from the queue.
To enable timeouts on an async client (in Python 3), the code would look something like this:
import asyncio
import zmq
import zmq.asyncio
#asyncio.coroutine
def req(endpoint):
ms = 2000 # In milliseconds.
sock = ctx.socket(zmq.REQ)
sock.setsockopt(zmq.SNDTIMEO, ms)
sock.setsockopt(zmq.RCVTIMEO, ms)
sock.setsockopt(zmq.LINGER, ms) # Discard pending buffered socket messages on close().
sock.setsockopt(zmq.CONNECT_TIMEOUT, ms)
# Connect the socket.
# Connections don't strictly happen here.
# ZMQ waits until the socket is used (which is confusing, I know.)
sock.connect(endpoint)
# Send some bytes.
yield from sock.send(b"some bytes")
# Recv bytes and convert to unicode.
msg = yield from sock.recv()
msg = msg.decode(u"utf-8")
Now you have some failure scenarios when something goes wrong.
By the way -- if anyone's curious -- the default value for TCP idle timeout in Linux seems to be 7200 seconds or 2 hours. So you would be waiting a long time for a hung server to do anything!
Sources:
https://github.com/zeromq/libzmq/blob/84dc40dd90fdc59b91cb011a14c1abb79b01b726/src/tcp_listener.cpp#L82 TCP keep alive options preserved for client sock
http://www.tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO/ How does keep alive work
https://github.com/zeromq/libzmq/blob/master/builds/zos/README.md Handling sig pipe errors
https://github.com/zeromq/libzmq/issues/2586 for information on closing sockets
https://blog.cloudflare.com/when-tcp-sockets-refuse-to-die/
https://github.com/zeromq/libzmq/issues/976
Disclaimer:
I've tested this code and it seems to be working, but ZMQ does complicate testing this a fair bit because the client re-connects on failure? If anyone wants to use this solution in production, I recommend writing some basic unit tests, first.
The server code could also be improved a lot with threading or polling to be able to handle multiple clients at once. As it stands, a malicious client can temporarily take up resources from the server (3 second timeout) which isn't ideal.

TCP IOCP won't receive after acceptex

I'm trying to write an IOCP server. Basically, I have it accepting new connections. For the purpose of my testing, I'm running and connecting to 127.0.0.1.
I create the pseudo socket prior to calling AcceptEx(). Once a connection is accepted, the new pseudo socket is used for communication. This new socket is associated with an io completion port [CreateIoCompletionPort], I then assign it a few options, [SO_EXCLUSIVEADDRUSE] and [SO_CONDITIONAL_ACCEPT], and then I call WSARecv() to accept incoming data.
The problem is that once my remote connection connects to the server, it sends data, but that data is never received. I'm wondering if someone could offer some ideas as to why it's not receiving data? Perhaps my logic is flawed? I stepped through my code several times. no errors are recorded.
EDIT: Fixed the wording. I create the socket before AcceptEx() call.
Basic logic in my code:
// Create socket, associate with IOCP
WSASocket(af, type, proto, lpProtoInfo, g, dwFlags);
HANDLE hIOCP = GetPool()->GetQueueHandle();
CreateIoCompletionPort(hSource, hIOCP, 0, 0) != NULL;
// Server bind and listen
bind(m_shSocket, pAddr, nAddrLen);
listen(m_shSocket, nBacklog);
// Creation of the pseudo socket
SOCKET s = ::WSASocket(m_iSocketAf, m_iSocketType, m_iSocketProto, m_pWpi, m_SocketGroup, m_dwSocketFlags);
DWORD dwBytes;
BOOL bRet = m_fnAcceptEx(m_shSocket, s, chOutput, 0, sizeof(SOCKADDR_STORAGE) + 16, sizeof(SOCKADDR_STORAGE) + 16, &dwBytes, m_pcbAccept);
// ... New Connection comes in, it's accepted ...
// Associate new pseudo socket with IOCP
HANDLE hNewIOCP = GetPool()->GetQueueHandle();
CreateIoCompletionPort((HANDLE) s, hNewIOCP , 0, 0) != NULL;
// ... Remote socket sends ...
// ... Remote socket and Pseudo socket call WSARecv ...
// ... Pseudo socket does not receive ...
NOTE: I tried sending from the pseudo socket to the remote socket, same problem as sending data in the reverse way.
You need to post some code but your description doesn't make sense. That's NOT how AcceptEx() based servers operate.
With an AcceptEx() based server you create your accepted socket before you post the AcceptEx(). You then post the AcceptEx() with the listening socket and the new socket and a buffer which allows you to receive the remote address and, optionally, data.
So if you are describing your code in your original question then your code is wrong or you're not using AcceptEx(). I'm currently ignoring the 'few options' that you throw into the mix as they simply further confuse things at present without any code to analyse.
You might be interested in downloading my free IOCP based server framework, which includes working AcceptEx() and traditional Accept() based server code. You can get it from here: http://www.serverframework.com/products---the-free-framework.html
Are you calling GetQueuedCompletionStatus to get the data?
In case you are not doing this just to learn for yourself, I would also recommend that you use boost::asio - an excellent library that allows you to let someone else do the tedious code for handling the io completion ports.
I figured it out. I'm an idiot. I was sending zero bytes.