USB Mass Storage linux [closed] - c++

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 9 years ago.
Improve this question
I am new in linux device driver. I wan to write a C/C++ code to perform file transfer from raspberry pi to usb flash drive. I having difficult for the starting point, so i try on libusb for HID device sample code from signal11 and the code works fine for detecting my optical mouse with its device ID. Then i try to obtain usb flash drive vendor id somehow it give me very wired number. Finally i come out with a very silly try out by writing a bash script for cp a file to usb flash drive and activate the script in C++ and it works but i feel it is not a proper way to do it. Then i start with SCSI protocol and i very hard to understand how it works.Any guideline is appreciated.
int scsi_get_serial(int fd, void *buf, size_t buf_len) {
// we shall retrieve page 0x80 as per http://en.wikipedia.org/wiki/SCSI_Inquiry_Command
unsigned char inq_cmd[] = {INQUIRY, 1, 0x80, 0, buf_len, 0};
unsigned char sense[32];
struct sg_io_hdr io_hdr;
int result;
memset(&io_hdr, 0, sizeof (io_hdr));
io_hdr.interface_id = 'S';
io_hdr.cmdp = inq_cmd;
io_hdr.cmd_len = sizeof (inq_cmd);
io_hdr.dxferp = buf;
io_hdr.dxfer_len = buf_len;
io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
io_hdr.sbp = sense;
io_hdr.mx_sb_len = sizeof (sense);
io_hdr.timeout = 5000;
result = ioctl(fd, SG_IO, &io_hdr);
if (result < 0)
return result;
if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK)
return 1;
return 0;
}
int main(int argc, char** argv) {
//char *dev = "/dev/sda";
char *dev = "/dev/sg2";
char scsi_serial[255];
int rc;
int fd;
fd = open(dev, O_RDONLY | O_NONBLOCK);
if (fd < 0) {
perror(dev);
}
memset(scsi_serial, 0, sizeof (scsi_serial));
rc = scsi_get_serial(fd, scsi_serial, 255);
// scsi_serial[3] is the length of the serial number
// scsi_serial[4] is serial number (raw, NOT null terminated)
if (rc < 0) {
printf("FAIL, rc=%d, errno=%d\n", rc, errno);
} else
if (rc == 1) {
printf("FAIL, rc=%d, drive doesn't report serial number\n", rc);
} else {
if (!scsi_serial[3]) {
printf("Failed to retrieve serial for %s\n", dev);
return -1;
}
printf("Serial Number: %.*s\n", (size_t) scsi_serial[3], (char *) & scsi_serial[4]);
}
close(fd);
return (EXIT_SUCCESS);
}
I get this serial number: 00/1F
Then i try write this in test.sh
cp /home/Desktop/stl4.pdf /media/mini_flash
and run system("./test.sh") in C++

The question seems contradictory, at first you say you want to copy a file using a kernel driver, which seems strange to say the least. Then you say you use libusb, which is an userspace library. Then you say that you try to execute a shell script with cp.
Maybe what you want is simply a code snippet that copies a file form an userspace C/C++ program? Try one of these snippets.
In detail, if all you want to do is a C++ equivalent of cp /home/Desktop/stl4.pdf /media/mini_flash, then this is enough:
ifstream in("/home/Desktop/stl4.pdf",ios::binary);
ofstream out("/media/mini_flash/stl4.pdf",ios::binary);
out<<in.rdbuf();
in.close();
out.close();

Related

How do I trim a raw device address area in C++?

I am using ‘/dev/nvme1’ as my data path, now I want to tell SSD i don’t need [offset, len] anymore, is there a posix API to do that? To send a trim command to SSD FTL.
After some research, I found a piece of code here:
int block_device_discard(int fd, int64_t offset, int64_t len)
{
uint64_t range[2] = {(uint64_t)offset, (uint64_t)len};
int ret = ioctl(fd, BLKSECDISCARD, range);
if (ret < 0) {
return errno;
}
return 0;
}
Note that if your device is not able to support BLKSECDISCARD, the command will return an error.
Not sure if it works yet, will update the result later.
References:
https://rwmj.wordpress.com/2014/03/11/blkdiscard-blkzeroout-blkdiscardzeroes-blksecdiscard/
how to TRIM a block on SSD disk?
https://www.man7.org/linux/man-pages/man2/ioctl.2.html
https://static.lwn.net/images/pdf/LDD3/ch06.pdf

How to implement mmap for bar0

I'm trying to write my own Linux PCIe driver. I would like to write my mmap function so that it maps bar0, I realize I can do this without writing a driver but I'm doing this mostly for learning purposes.
My first question is why would you need to implement mmap if you can mmap bar0 without any driver development?
My second question is why is my mmap not working?
Here is my mmap code and the userspace app I use to access it
static int dma_proxy_mmap(struct file *filp, struct vm_area_struct *vma)
{
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,vma->vm_end - vma->vm_start,vma->vm_page_prot))
{
return -EAGAIN;
}
printk(KERN_ALERT "mmap done\n");
return 0;
}
and here is my user space code
int main()
{
int proxy_fd;
int *MyMmap;
proxy_fd = open("/dev/scull", O_RDWR);
MyMmap = (int*)mmap(0,32, PROT_READ | PROT_WRITE, MAP_SHARED, proxy_fd, 0);
if (MyMmap == MAP_FAILED) {
printf("mmap failed");
}
MyMmap[0] = 10;
printf ("Decimals: %d\n", MyMmap[0]);
}
I know it's not working correctly because my pcie card is designed to write a different value regardless of what I send to it to write which I've verified is working by mmaping to resource0 of that board.

Linux C++ LibUSB Write Register in USB HUB

In Linux, I have a USB hub with the 'register' shown in the image below. This register is supposed to disable power on a certain port on the hub.
I tried to use LibUSB ( my code is shown below ) to write the register, 0x0A, with all zeros to disable all ports. The problem is, the hub is controlled by the standard Linux USB Hub driver and so the Kernel driver is detached. The write also fails. The failure messages are shown below.
Error messages:
$ /mnt/apps/UsbPowerControl
5 Devices in list.
Vendor:Device = 1908:1320
Vendor:Device = 0403:6001
Vendor:Device = 289d:0010
Vendor:Device = 0424:2513
Vendor:Device = 1d6b:0002
Opening Device = 0424:2513
Device Opened
Kernel Driver Active
Kernel Driver Detached!
Claimed Interface
Data-><-
Writing Data...
libusb: error [submit_bulk_transfer] submiturb failed error -1 errno=2
Write Error
Released Interface
How can I use LibUSB to write this Hub register, to dynamically disable and enable the ports, without unregistering the Linux driver and having my write fail?
#include <iostream>
#include <cassert>
#include <libusb-1.0/libusb.h>
using namespace std;
#define VENDOR_ID 0x0424
#define PRODUCT_ID 0x2513
int main() {
libusb_device **devs; //pointer to pointer of device, used to retrieve a list of devices
libusb_device_handle *dev_handle; //a device handle
libusb_context *ctx = NULL; //a libusb session
int r; //for return values
ssize_t cnt; //holding number of devices in list
r = libusb_init(&ctx); //initialize the library for the session we just declared
if(r < 0) {
cout<<"Init Error "<<r<<endl; //there was an error
return 1;
}
libusb_set_debug(ctx, 3); //set verbosity level to 3, as suggested in the documentation
cnt = libusb_get_device_list(ctx, &devs); //get the list of devices
if(cnt < 0) {
cout<<"Get Device Error"<<endl; //there was an error
return 1;
}
cout<<cnt<<" Devices in list."<<endl;
for (size_t idx = 0; idx < cnt; ++idx) {
libusb_device *device = devs[idx];
libusb_device_descriptor desc = {0};
int rc = libusb_get_device_descriptor(device, &desc);
assert(rc == 0);
printf("Vendor:Device = %04x:%04x\n", desc.idVendor, desc.idProduct);
}
printf("Opening Device = %04x:%04x\n", VENDOR_ID, PRODUCT_ID);
dev_handle = libusb_open_device_with_vid_pid(ctx, VENDOR_ID, PRODUCT_ID); //these are vendorID and productID I found for my usb device
if(dev_handle == NULL)
cout<<"Cannot open device"<<endl;
else
cout<<"Device Opened"<<endl;
libusb_free_device_list(devs, 1); //free the list, unref the devices in it
unsigned char *data = new unsigned char[1]; //data to write
data[0]=0b00000000;
int actual; //used to find out how many bytes were written
if(libusb_kernel_driver_active(dev_handle, 0) == 1) { //find out if kernel driver is attached
cout<<"Kernel Driver Active"<<endl;
if(libusb_detach_kernel_driver(dev_handle, 0) == 0) //detach it
cout<<"Kernel Driver Detached!"<<endl;
}
r = libusb_claim_interface(dev_handle, 0); //claim interface 0 (the first) of device (mine had jsut 1)
if(r < 0) {
cout<<"Cannot Claim Interface"<<endl;
return 1;
}
cout<<"Claimed Interface"<<endl;
cout<<"Data->"<<data<<"<-"<<endl; //just to see the data we want to write : abcd
cout<<"Writing Data..."<<endl;
r = libusb_bulk_transfer(dev_handle, (0x0A | LIBUSB_ENDPOINT_OUT), data, 1, &actual, 0); //my device's out endpoint was 2, found with trial- the device had 2 endpoints: 2 and 129
if(r == 0 && actual == 1) //we wrote the 1 bytes successfully
cout<<"Writing Successful!"<<endl;
else
cout<<"Write Error"<<endl;
r = libusb_release_interface(dev_handle, 0); //release the claimed interface
if(r!=0) {
cout<<"Cannot Release Interface"<<endl;
return 1;
}
cout<<"Released Interface"<<endl;
libusb_close(dev_handle); //close the device we opened
libusb_exit(ctx); //needs to be called to end the
delete[] data; //delete the allocated memory for data
return 0;
}
int libusb_detach_kernel_driver ( libusb_device_handle * dev,
int interface_number
)
...
If successful, you will then be able to claim the interface and perform I/O.
...
int libusb_kernel_driver_active ( libusb_device_handle * dev,
int interface_number
)
...
If a kernel driver is active, you cannot claim the interface, and libusb will be unable to perform I/O.
...
Due to what is written above, the short answer to the question "How to do I/O without detaching driver" is "You can't".
Why write fails? This is another matter. I'd suggest looking into a number of things:
Check out the value returned from libusb_bulk_transfer, maybe it will give you the idea of what is happening.
Sounds stupid, but I always check it out before anything else: process privileges.
Also, I can suggest another way of approaching the solution, namely sysfs.
I assume that your device(am I right?) supports EEPROM and SMBus access. It means that this support should be manifested in the kernel somewhere around /sys/bus/i2c/devices/[some_device_id]/eeprom (probably another device number, another directory position, etc, because it is all driver-related), but if it can be found and read just as any other file (which is likely, unless something is wrong with the device), then it probably should be able to write into it as well. If the read works, then I suggest to compare the hexdump -C of the found file to the datasheet, and if the data seems legit, try writing directly into your register(file offset).
Anyway, accessing character device files and sysfs files is a general way of accessing drivers' data in linux. Probably you don't even need to use libusb's API to write that single byte.

C++ code to find BSSID OF associated network [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Want to know the ESSID of wireless network via C++ in UBUNTU
Hello I have written the following code which is a part of a project. It is used to find the ESSID of the current associated network. But it has a flaw that it also the displays the ESSID of the network with which I am not associated i.e. if I try to associate myself with a wireless n/w and if it is unsuccessfull i.e. NO DHCP OFFERS ARE RECEIVED, then also it will display the that ESSID with which I have made my attempt.
Is it possible to find the BSSID of current associated wireless network as it is the only way with which I can mark b/w associated and non associated, e.g. with an ioctl call?
int main (void)
{
int errno;
struct iwreq wreq;
CStdString result = "None";
int sockfd;
char * id;
char ESSID[20];
memset(&wreq, 0, sizeof(struct iwreq));
if((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
fprintf(stderr, "Cannot open socket \n");
fprintf(stderr, "errno = %d \n", errno);
fprintf(stderr, "Error description is : %s\n",strerror(errno));
return result ;
}
CLog::Log(LOGINFO,"Socket opened successfully");
FILE* fp = fopen("/proc/net/dev", "r");
if (!fp)
{
// TBD: Error
return result;
}
char* line = NULL;
size_t linel = 0;
int n;
char* p;
int linenum = 0;
while (getdelim(&line, &linel, '\n', fp) > 0)
{
// skip first two lines
if (linenum++ < 2)
continue;
p = line;
while (isspace(*p))
++p;
n = strcspn(p, ": \t");
p[n] = 0;
strcpy(wreq.ifr_name, p);
id = new char[IW_ESSID_MAX_SIZE+100];
wreq.u.essid.pointer = id;
wreq.u.essid.length = 100;
if ( ioctl(sockfd,SIOCGIWESSID, &wreq) == -1 ) {
continue;
}
else
{
strcpy(ESSID,id);
return ESSID;
}
free(id);
}
free(line);
fclose(fp);
return result;
}
Note: Since this question seems to be duplicated in two places, I'm repeating my answer here as well.
You didn't mention whether you were using an independent basic service set or not (i.e., an ad-hoc network with no controlling access point), so if you're not trying to create an ad-hoc network, then the BSSID should be the MAC address of the local access point. The ioctl() constant you can use to access that information is SIOCGIWAP. The ioctl payload information will be stored inside of your iwreq structure at u.ap_addr.sa_data.

Capturing stdout from a system() command optimally [duplicate]

This question already has answers here:
How do I execute a command and get the output of the command within C++ using POSIX?
(12 answers)
Closed 7 years ago.
I'm trying to start an external application through system() - for example, system("ls"). I would like to capture its output as it happens so I can send it to another function for further processing. What's the best way to do that in C/C++?
From the popen manual:
#include <stdio.h>
FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);
Try the popen() function. It executes a command, like system(), but directs the output into a new file. A pointer to the stream is returned.
FILE *lsofFile_p = popen("lsof", "r");
if (!lsofFile_p)
{
return -1;
}
char buffer[1024];
char *line_p = fgets(buffer, sizeof(buffer), lsofFile_p);
pclose(lsofFile_p);
EDIT: misread question as wanting to pass output to another program, not another function. popen() is almost certainly what you want.
System gives you full access to the shell. If you want to continue using it, you can
redirect it's output to a temporary file, by system("ls > tempfile.txt"), but choosing a secure temporary file is a pain. Or, you can even redirect it through another program: system("ls | otherprogram");
Some may recommend the popen() command. This is what you want if you can process the output yourself:
FILE *output = popen("ls", "r");
which will give you a FILE pointer you can read from with the command's output on it.
You can also use the pipe() call to create a connection in combination with fork() to create new processes, dup2() to change the standard input and output of them, exec() to run the new programs, and wait() in the main program to wait for them. This is just setting up the pipeline much like the shell would. See the pipe() man page for details and an example.
The functions popen() and such don't redirect stderr and such; I wrote popen3() for that purpose.
Here's a bowdlerised version of my popen3():
int popen3(int fd[3],const char **const cmd) {
int i, e;
int p[3][2];
pid_t pid;
// set all the FDs to invalid
for(i=0; i<3; i++)
p[i][0] = p[i][1] = -1;
// create the pipes
for(int i=0; i<3; i++)
if(pipe(p[i]))
goto error;
// and fork
pid = fork();
if(-1 == pid)
goto error;
// in the parent?
if(pid) {
// parent
fd[STDIN_FILENO] = p[STDIN_FILENO][1];
close(p[STDIN_FILENO][0]);
fd[STDOUT_FILENO] = p[STDOUT_FILENO][0];
close(p[STDOUT_FILENO][1]);
fd[STDERR_FILENO] = p[STDERR_FILENO][0];
close(p[STDERR_FILENO][1]);
// success
return 0;
} else {
// child
dup2(p[STDIN_FILENO][0],STDIN_FILENO);
close(p[STDIN_FILENO][1]);
dup2(p[STDOUT_FILENO][1],STDOUT_FILENO);
close(p[STDOUT_FILENO][0]);
dup2(p[STDERR_FILENO][1],STDERR_FILENO);
close(p[STDERR_FILENO][0]);
// here we try and run it
execv(*cmd,const_cast<char*const*>(cmd));
// if we are there, then we failed to launch our program
perror("Could not launch");
fprintf(stderr," \"%s\"\n",*cmd);
_exit(EXIT_FAILURE);
}
// preserve original error
e = errno;
for(i=0; i<3; i++) {
close(p[i][0]);
close(p[i][1]);
}
errno = e;
return -1;
}
The most efficient way is to use stdout file descriptor directly, bypassing FILE stream:
pid_t popen2(const char *command, int * infp, int * outfp)
{
int p_stdin[2], p_stdout[2];
pid_t pid;
if (pipe(p_stdin) == -1)
return -1;
if (pipe(p_stdout) == -1) {
close(p_stdin[0]);
close(p_stdin[1]);
return -1;
}
pid = fork();
if (pid < 0) {
close(p_stdin[0]);
close(p_stdin[1]);
close(p_stdout[0]);
close(p_stdout[1]);
return pid;
} else if (pid == 0) {
close(p_stdin[1]);
dup2(p_stdin[0], 0);
close(p_stdout[0]);
dup2(p_stdout[1], 1);
dup2(::open("/dev/null", O_WRONLY), 2);
/// Close all other descriptors for the safety sake.
for (int i = 3; i < 4096; ++i) {
::close(i);
}
setsid();
execl("/bin/sh", "sh", "-c", command, NULL);
_exit(1);
}
close(p_stdin[0]);
close(p_stdout[1]);
if (infp == NULL) {
close(p_stdin[1]);
} else {
*infp = p_stdin[1];
}
if (outfp == NULL) {
close(p_stdout[0]);
} else {
*outfp = p_stdout[0];
}
return pid;
}
To read output from child use popen2() like this:
int child_stdout = -1;
pid_t child_pid = popen2("ls", 0, &child_stdout);
if (!child_pid) {
handle_error();
}
char buff[128];
ssize_t bytes_read = read(child_stdout, buff, sizeof(buff));
To both write and read:
int child_stdin = -1;
int child_stdout = -1;
pid_t child_pid = popen2("grep 123", &child_stdin, &child_stdout);
if (!child_pid) {
handle_error();
}
const char text = "1\n2\n123\n3";
ssize_t bytes_written = write(child_stdin, text, sizeof(text) - 1);
char buff[128];
ssize_t bytes_read = read(child_stdout, buff, sizeof(buff));
The functions popen() and pclose() could be what you're looking for.
Take a look at the glibc manual for an example.
In Windows, instead of using system(), use CreateProcess, redirect the output to a pipe and connect to the pipe.
I'm guessing this is also possible in some POSIX way?
Actually, I just checked, and:
popen is problematic, because the process is forked. So if you need to wait for the shell command to execute, then you're in danger of missing it. In my case, my program closed even before the pipe got to do it's work.
I ended up using system call with tar command on linux. The return value from system was the result of tar.
So: if you need the return value, then not no only is there no need to use popen, it probably won't do what you want.
In this page: capture_the_output_of_a_child_process_in_c describes the limitations of using popen vs. using fork/exec/dup2/STDOUT_FILENO approach.
I'm having problems capturing tshark output with popen.
And I'm guessing that this limitation might be my problem:
It returns a stdio stream as opposed to a raw file descriptor, which
is unsuitable for handling the output asynchronously.
I'll come back to this answer if I have a solution with the other approach.
I'm not entirely certain that its possible in standard C, as two different processes don't typically share memory space. The simplest way I can think of to do it would be to have the second program redirect its output to a text file (programname > textfile.txt) and then read that text file back in for processing. However, that may not be the best way.