Determine if an object is dynamically allocated or not in C++ - c++

I have a simple C++ class for which I need to know whether an object should be delete'd or not at a certain point in my program. The mechanism should be portable across platforms and modern C++ compilers.
One way of doing it I can think of is: have a member field which is not initialized by the constructor but instead is assigned by the overloaded operator new, like so:
class message
{
protected:
int id;
bool dynamic;
public:
message(int _id): id(_id)
{
// don't touch `dynamic` in the constructor
}
void* operator new(size_t size)
{
message* m = (message*)::operator new(size);
m->dynamic = true;
return m;
}
void operator delete(void* m)
{
if (((message*)m)->dynamic)
::operator delete(m);
}
};
Apart form that it "feels" wrong, what is wrong with this method?
Edit: should have mentioned that the object is either dynamic or static (and never stack-local) and thus is guaranteed to be either zeroed or initialized with new.

The constructor needs to set dynamic to false, and then instead of overriding new, you need a static method like:
static message *createMessage(int _id)
{
message *ret = new message(_id);
ret->dynamic = true;
return ret;
}
And then call that method instead of newing a message.

Don’t do this. Apart from the fact that it won’t work, an object shouldn’t be managing anything about its own lifetime. You can use a unique_ptr or shared_ptr with a custom deleter, and if the object is stack-allocated, you know at its allocation site; in that case, you can supply a no-op deleter such as the following:
struct null_deleter {
template<class T>
void operator()(const T*) const {}
};

Related

Uses of destructor = delete;

Consider the following class:
struct S { ~S() = delete; };
Shortly and for the purpose of the question: I cannot create instances of S like S s{}; for I could not destroy them.
As mentioned in the comments, I can still create an instance by doing S *s = new S;, but I cannot delete it as well.
Therefore, the only use I can see for a deleted destructor is something like this:
struct S {
~S() = delete;
static void f() { }
};
int main() {
S::f();
}
That is, define a class that exposes only a bunch of static functions and forbid any attempt to create an instance of that class.
What are the other uses (if any) of a deleted destructor?
If you have an object which should never, ever be deleted or stored on the stack (automatic storage), or stored as part of another object, =delete will prevent all of these.
struct Handle {
~Handle()=delete;
};
struct Data {
std::array<char,1024> buffer;
};
struct Bundle: Handle {
Data data;
};
using bundle_storage = std::aligned_storage_t<sizeof(Bundle), alignof(Bundle)>;
std::size_t bundle_count = 0;
std::array< bundle_storage, 1000 > global_bundles;
Handle* get_bundle() {
return new ((void*)global_bundles[bundle_count++]) Bundle();
}
void return_bundle( Handle* h ) {
Assert( h == (void*)global_bundles[bundle_count-1] );
--bundle_count;
}
char get_char( Handle const* h, std::size_t i ) {
return static_cast<Bundle*>(h).data[i];
}
void set_char( Handle const* h, std::size_t i, char c ) {
static_cast<Bundle*>(h).data[i] = c;
}
Here we have opaque Handles which may not be declared on the stack nor dynamically allocated. We have a system to get them from a known array.
I believe nothing above is undefined behavior; failing to destroy a Bundle is acceptable, as is creating a new one in its place.
And the interface doesn't have to expose how Bundle works. Just an opaque Handle.
Now this technique can be useful if other parts of the code need to know that all Handles are in that specific buffer, or their lifetime is tracked in specific ways. Possibly this could also be handled with private constructors and friend factory functions.
one scenario could be the prevention of wrong deallocation:
#include <stdlib.h>
struct S {
~S() = delete;
};
int main() {
S* obj= (S*) malloc(sizeof(S));
// correct
free(obj);
// error
delete obj;
return 0;
}
this is very rudimentary, but applies to any special allocation/deallocation-process (e.g. a factory)
a more 'c++'-style example
struct data {
//...
};
struct data_protected {
~data_protected() = delete;
data d;
};
struct data_factory {
~data_factory() {
for (data* d : data_container) {
// this is safe, because no one can call 'delete' on d
delete d;
}
}
data_protected* createData() {
data* d = new data();
data_container.push_back(d);
return (data_protected*)d;
}
std::vector<data*> data_container;
};
Why mark a destructor as delete?
To prevent the destructor from being invoked, of course ;)
What are the use cases?
I can see at least 3 different uses:
The class should never be instantiated; in this case I would also expect a deleted default constructor.
An instance of this class should be leaked; for example, a logging singleton instance
An instance of this class can only be created and disposed off by a specific mechanism; this could notably occur when using FFI
To illustrate the latter point, imagine a C interface:
struct Handle { /**/ };
Handle* xyz_create();
void xyz_dispose(Handle*);
In C++, you would want to wrap it in a unique_ptr to automate the release, but what if you accidentally write: unique_ptr<Handle>? It's a run-time disaster!
So instead, you can tweak the class definition:
struct Handle { /**/ ~Handle() = delete; };
and then the compiler will choke on unique_ptr<Handle> forcing you to correctly use unique_ptr<Handle, xyz_dispose> instead.
There are two plausible use cases. First (as some comments note) it could be acceptable to dynamically allocate objects, fail to delete them and allow the operating system to clean up at the end of the program.
Alternatively (and even more bizarre) you could allocate a buffer and create an object in it and then delete the buffer to recover the place but never prompt an attempt to call the destructor.
#include <iostream>
struct S {
const char* mx;
const char* getx(){return mx;}
S(const char* px) : mx(px) {}
~S() = delete;
};
int main() {
char *buffer=new char[sizeof(S)];
S *s=new(buffer) S("not deleting this...");//Constructs an object of type S in the buffer.
//Code that uses s...
std::cout<<s->getx()<<std::endl;
delete[] buffer;//release memory without requiring destructor call...
return 0;
}
None of these seems like a good idea except in specialist circumstances. If the automatically created destructor would do nothing (because the destructor of all members is trivial) then the compiler will create a no-effect destructor.
If the automatically created destructor would do something non-trivial you very likely compromise the validity of your program by failing to execute its semantics.
Letting a program leave main() and allowing the environment to 'clean-up' is a valid technique but best avoided unless constraints make it strictly necessary. At best it's a great way to mask genuine memory leaks!
I suspect the feature is present for completeness with the ability to delete other automatically generated members.
I would love to see a real practical use of this capability.
There is the notion of a static class (with no constructors) and so logically requiring no destructor. But such classes are more appropriately implemented as a namespace have no (good) place in modern C++ unless templated.
Creating an instance of an object with new and never deleting it is the safest way to implement a C++ Singleton, because it avoids any and all order-of-destruction issues. A typical example of this problem would be a "Logging" Singleton which is being accessed in the destructor of another Singleton class. Alexandrescu once devoted an entire section in his classical "Modern C++ Design" book on ways to cope with order-of-destruction issues in Singleton implementations.
A deleted destructor is nice to have so that even the Singleton class itself cannot accidentally delete the instance. It also prevents crazy usage like delete &SingletonClass::Instance() (if Instance() returns a reference, as it should; there is no reason for it to return a pointer).
At the end of the day, nothing of this is really noteworthy, though. And of course, you shouldn't use Singletons in the first place anyway.

Type information in placement new

I have a placement new operator that, quite predictably, allocates memory from a pool. However, I also need to know the object type to set up some meta fields. I could pass it as a second argument to placement new as a string, but since I specify the type when calling new anyway, isn't there any way to get it implicitly?
E.g. I could do this:
void* operator new(size_t count, Pool* pool, const char* type)
{
return pool->alloc(count, type); // type is used to associate metadata with the allocated chunk
}
Car* car = new(pool, "Car") Car(...);
But can't I do something like this?
template<class T>
void* operator new(size_t count, Pool* pool)
{
return pool->alloc(count, typeid(T).name());
}
Car* car = new(pool) Car(...);
No, sorry. Except for member allocator functions, which only work for class types you control, C++ neither uses the class type to select an operator new function nor provides any standard way for an operator new function to determine the type of the calling new-expression (if any).
You could give your Pool class a template member function to take care of both allocating and constructing:
template<typename T, typename... Args>
T* Pool::create(Args&& ... args) {
void* ptr = alloc(count, typeid(T).name());
try {
return ::new(ptr) T(std::forward<Args>(args)...);
} catch (...) {
dealloc(ptr);
throw;
}
}
// ...
Car* car = pool->create<Car>(vroom);
(Other comments about stuff you might already know: Remember to implement a matching placement-delete in case a class constructor throws an exception. Consider making an Allocator interface for compatibility with the standard library.)

Managing C type lifecycle using boost's shared_ptr?

I have a question similar to How to manage object life time using Boost library smart pointers? but, in my case, the "object" isn't a C++ object at all, but an opaque type returned/passed out from a C API. The type does not have pointer semantics, i.e., there is no dereferencing; it is, however, passed as an argument to other functions in the C API. The type also has a definitive close API which must be called in order to clean up internal resources.
So, I have a C API that's something along the lines of
opaque_legacy_type_t x;
XXopen(..., &x); // allocates/opens resource and fills out 'x' to be used later
XXdoSomethingWithResource(x, ...); // do something with resources related to 'x'
...more actions...
XXclose(x); // closes and cleans up resources related to 'x'
For various reasons, in my C++ code I would like to manage "instances" of opaque_legacy_type_t much like I would manage heap-allocated object instances, i.e. with similar sharing semantics as boost::shared_ptr<>. It seems that shared_ptr offers enough that I can manage calling XXclose by doing this:
opaque_legacy_type_t x;
XXopen(..., &x);
boost::shared_ptr<opaque_legacy_type_t> managed(x, XXclose);
But, since opaque_legacy_type_t doesn't have pointer semantics, the usage of managed is a bit clumsy.
What I'd like to do is have something like a managed_type that is similar to shared_ptr, and am looking for ideas that don't require me to write it all.
EDIT: I corrected my original screw-up in the example. The legacy API takes the opaque type by value rather than by pointer.
Since all of the legacy API take a pointer to the opaque type, you could use shared pointers directly. The key is for you to not declare the original structure on the stack, but rather allocate it via new:
int main () {
std::shared_ptr<opaque_legacy_type_t> x(new opaque_legacy_type_t,
[](opaqeue_legacy_type_t* p) { XXClose(p); delete p; });
XXopen(..., x.get());
XXdoSomethingWithResource(x.get(), ...);
}
EDIT: If some API take the opaque type by value instead of pointer, then pass the dereferenced pointer.
int main () {
std::shared_ptr<opaque_legacy_type_t> x(new opaque_legacy_type_t,
[](opaqeue_legacy_type_t* p) { XXClose(*p); delete p; });
XXopen(..., x.get());
XXdoSomethingWithResource(*x, ...);
}
You could use boost smart pointers together with the pimpl idom:
class shared_opaque_legacy_type_t {
struct impl {
opaque_legacy_type_t t;
impl(...) { XXOpen(..., t); }
~impl(...) { XXClose(t); }
}
boost::shared_ptr<impl> _impl;
public:
shared_opaque_lagacy_type_t(...) : _impl(new impl(...)) {}
opaque_legacy_type_t* get() {
return _impl->t;
}
};
shared_opaque_legacy_type_t x(...);
XXdoSomethingWithResource(x.get(), ...);
The drawback is that you could still call XXclose(x.get()) and invalidate your object.
UPDATE: Fixed it. :-)
You could write a wrapper to use with boost that will call the open() in the ctor and the close() in the dtor.
I voted for Rob's answer that just uses a shared_ptr with no wrapper, but if you really want to avoid dynamic allocation here's a simple little example of how to do that.
It's a template that directly holds the handle and does no allocation. You pass the constructor a functor that creates an object of the opaque type, and a deleter to call when the type needs to be destroyed. It's movable and non-copyable so now shared reference count is needed. It implements implicit conversion operators so you can use it where you'd use a value of the held type.
template<typename T,typename D>
class opaque_type_handle {
T handle;
D deleter;
bool needs_delete;
public:
template<typename F>
opaque_type_handle(F f,D d) : handle(f()), deleter(d), needs_delete(true) {}
opaque_type_handle(opaque_type_handle const &) = delete;
opaque_type_handle &operator=(opaque_type_handle const &) = delete;
opaque_type_handle(opaque_type_handle &&rhs) : handle(rhs.handle),deleter(rhs.deleter),needs_delete(true) {
rhs.needs_delete = false;
}
opaque_type_handle &operator=(opaque_type_handle &&rhs) {
handle = rhs.handle;
deleter = rhs.deleter;
needs_delete = true;
rhs.needs_delete = false;
returh *this;
}
~opaque_type_handle() {
if(needs_delete) {
deleter(handle);
}
}
operator T&() { return handle; }
operator T() const { return handle; }
};
Use it like so:
// wrap up the code for creating an opaque_legacy_type_t handle
typedef opaque_type_handle<opaque_legacy_type_t,decltype(&XXclose)> legacy_handle;
legacy_handle make_legacy_handle(...) {
return legacy_handle(
[](){
opaque_legacy_type_t tmp;
XXopen(..., &tmp);
return tmp;
},
&XXclose
);
}
legacy_handle x = make_legacy_handle(...);
XXdoSomethingWithResource(x,...);

Which way to delete pointer: delete/delete[]/free?

I am implementing standart template tree structure, and I came across small problem.
Idea that each node will hold pointer to some data. Later in order to delete element correctly I need to know if its a single pointer or pointer to an array.
Inside of my tree->ReleaseMemory() method I have this code:
if (node->_data != NULL) {
switch (_destructionMethod){
case tree_delete:
delete node->_data; break;
case tree_deleteList:
delete [] node->_data; break;
case tree_free:
free(node->_data); break;
}
}
where _destructionMethod has been set during initialisation of the node.
Is there any way I can choose correct destructor without predefining it in special variable for it during initialisation ?
Thanks!
First basic:
delete is used when you allocate memory with new:
int *p = new int;
int *a = new int[10];
//...
delete p;
delete []a; //note the difference!
free is used when you allocate memory with malloc:
int *p = (int*)malloc(sizeof(int) * 1);
int *a = (int*)malloc(sizeof(int) * 10);
//...
free(p);
free(a); //no difference!
Now your problem:
Is there any way I can choose correct destructor without predefining it in special variable for it during initialisation
Consider policy-based design. That means, write allocator that will encapsulate allocation and deallocation in a class and use that consistently in your code.
No, there is no portable way to find out what allocator a particular pointer originally came from.
There's no way to interrogate a pointer to find out how it was allocated, but a common idiom is to give the allocated object itself responsibility for its own destruction. It looks like your object types are not all class types, though, so you would need to wrap them in order to do this. For example:
class destroyable_node
{
virtual void destroy() = 0;
};
template <typename T> class object_node : public destroyable_node
{
private:
T * value_;
public:
// Presumes T is copy-constructable.
object_node(T value) : value_( new T(value) ) {}
operator T&() {return value_;}
operator T const &() const {return value_;}
void destroy() {delete value_;}
};
template<typename T> class array_node : public destroyable_node
{
private:
T * value_;
public:
array_node(T[] value)
: value_( new T[ sizeof(value)/sizeof(T) ] )
{
std::copy(value, value + sizeof(value)/sizeof(T), value_);
}
operator T*() {return value_;}
operator T const *() const {return value_;}
void destroy() {delete[] value_;}
};
...and so on.
Don't do this at all. Use a smart pointer, like shared_ptr from C++0x or Boost or if that is not an option, auto_ptr from C++. If you could have more than one object, consider using std::vector.
Manual resource management is messy and difficult to get right.
Maybe a better design is to implement an abstract interface used by your container with three concrete subclasses that know what kind of thing they hold pointers to. Your container would simply call a destroy() method in the base class and let the derived classes worry about calling the correct destructor.

Implementing Smart Pointer - Dynamic Allocation with templates

I'm in the process of writing a smart pointer countedptr and I've hit a speed bump. The basic function of countedptr is to work like any other smart pointer and also have a count of how many pointers are pointing to a single object. So far, the code is:
[SOLVED]
#include "std_lib_facilities.h"
template <class T>
class counted_ptr{
private:
T* pointer;
int* count;
public:
counted_ptr(T* p = 0, int* c = new int(1)) : pointer(p), count(c) {} // default constructor
explicit counted_ptr(const counted_ptr& p) : pointer(p.pointer), count(p.count) { ++*count; } // copy constructor
~counted_ptr() { --*count; delete pointer; }
counted_ptr& operator=(const counted_ptr& p)
{
pointer = p.pointer;
count = p.count;
++*count;
return *this;
}
T* operator->() const{ return pointer; }
T& operator*() const { return *pointer; }
int Get_count() const { return *count; }
};
int main()
{
counted_ptr<double> one;
counted_ptr<double>two(one);
int a = one.Get_count();
cout << a << endl;
}
When I try to do something like
one->pointer = new double(5);
then I get a compiler error saying "request for member 'pointer' in '*(&one)->counted_ptr::operator->with T = double' which is of non-class type double".
I considered making a function to do this, and while I could make a function to allocate an array of T's, I can't think of a way of making one for allocating actual objects. Any help is appreciated, thanks.
Old Solution
What about another assignment operator?
counted_ptr& counted_ptr::operator=(T* p)
{
if (! --*count) { delete count; }
pointer = p;
count = new int(1);
return *this;
}
...
one = new double(5);
Also, your destructor always deletes a shared pointer, which is probably what caused *one to be a random nomber. Perhaps you want something like:
counted_ptr::~counted_ptr() { if (! --*count) { delete pointer; delete count; } }
New Solution
As you want repointing a counted_ptr (eg one = new double(5)) to update all related counted_ptrs, place both the pointer and the count in a helper class, and have your pointer class hold a pointer to the helper class (you might already be headed down this path). You could go two ways in filling out this design:
Make the helper class a simple struct (and a private inner class) and place all the logic in the outer class methods
Make counted_ptr the helper class. counted_ptr maintains a reference count but doesn't automatically update the count; it's not a smart pointer, it only responds to release and retain messages. If you're at all familiar with Objective-C, this is basically its traditional memory management (autoreleasing aside). counted_ptr may or may not delete itself when the reference count reaches 0 (another potential difference from Obj-C). counted_ptrs shouldn't be copyable. The intent is that for any plain pointer, there should be at most one counted_ptr.
Create a smart_ptr class that has a pointer to a counted_ptr, which is shared among smart_ptr instances that are supposed to hold the same plain pointer. smart_ptr is responsible for automatically updating the count by sending its counted_ptr release and retain methods.
counted_ptr may or may not be a private inner class of shared_ptr.
Here's an interface for option two. Since you're doing this as an exercise, I'll let you fill out the method definitions. Potential implementations would be similar to what's already been posted except that you don't need a copy constructor and copy assignment operator for counted_ptr, counted_ptr::~counted_ptr doesn't call counted_ptr::release (that's smart_ptr::~smart_ptr's job) and counted_ptr::release might not free counted_ptr::_pointer (you might leave that up to the destructor).
// counted_ptr owns its pointer an will free it when appropriate.
template <typename T>
class counted_ptr {
private:
T *_pointer;
size_t _count;
// Make copying illegal
explicit counted_ptr(const counted_ptr&);
counted_ptr& operator=(const counted_ptr<T>& p);
public:
counted_ptr(T* p=0, size_t c=1);
~counted_ptr();
void retain(); // increase reference count.
bool release(); // decrease reference count. Return true iff count is 0
void reassign(T *p); // point to something else.
size_t count() const;
counted_ptr& operator=(T* p);
T& operator*() const;
T* operator->() const;
};
template <typename T>
class smart_ptr {
private:
counted_ptr<T> *_shared;
void release(); // release the shared pointer
void retain(); // retain the shared pointer
public:
smart_ptr(T* p=0, int c=1); // make a smart_ptr that points to p
explicit smart_ptr(counted_ptr<T>& p); // make a smart_ptr that shares p
explicit smart_ptr(smart_ptr& p); // copy constructor
~smart_ptr();
// note: a smart_ptr's brethren are the smart_ptrs that share a counted_ptr.
smart_ptr& operator=(smart_ptr& p); /* Join p's brethren. Doesn't alter pre-call
* brethren. p is non-const because this->_shared can't be const. */
smart_ptr& operator=(counted_ptr<T>& p); /* Share p. Doesn't alter brethren.
* p is non-const because *this isn't const. */
smart_ptr& operator=(T* p); // repoint this pointer. Alters brethren
size_t count() const; // reference count
T& operator*() const; // delegate these to _shared
T* operator->() const;
};
Hopefully, the only ambiguous points above are the intentional ones.
(Sorry, newbie here, and can't leave comments). What Adatapost added, "one=new double(5);" should work. One other change needed, though: the reference counting needs a little help.
...
~counted_ptr() {
--*count;
// deallocate objects whose last reference is gone.
if (!*count)
{
delete pointer;
delete count;
}
}
counted_ptr& operator=(const counted_ptr& p)
{
// be careful to accommodate self assignment
++*p.count;
// may lose a reference here
--*count;
if (!*count)
{
delete pointer;
delete count;
}
count=p.count;
pointer=p.pointer;
return *this;
}
Of course, there's some code repetition here. It might make sense to refactor that code into its own function, e.g.
private:
/** remove our reference */
void release()
{
--*count;
if (!*count)
{
delete pointer;
delete count;
}
}
Did you, perhaps, mean "one.pointer=new double(5);"? Writing "one->pointer=new double(5);" invokes counted_ptr<double>::operator->. That is, it is approximately equivalent to:
double *tmp = one.operator->(); // returns one.pointer
tmp->pointer = new double(5);
But a double pointer isn't a structure, and so it doesn't have a pointer member.
Since the immediate problem has already been solved, I want to offer something more long term:
As you continue to develop this code, you'll definitely want to offer it up for full review by experienced programmers, whether here or elsewhere. There were a few obvious problems with your code as you posted it, though outis has helped correct them. But even once your code all compiles and seems to work in your own tests, there may be tests and situations which you haven't yet learned to think about. Smart pointers can easily have subtle problems that don't show up until very specific situations. So you'll want others to look over your code to find anything which you may have missed.
Please don't take this as any kind of insult towards your current code. I'm just offering this as friendly advice to ensure you learn the most you can out of this project.
Unless you are not doing this for academic reasons, you might want to use consider using the use_count() member of boost::shared_ptr. It's not entirely efficient, but it does work and you're better off using something well tested, mature, and thread safe. If you are doing this for learning purposes, be sure to check out the treatment of Reference Counting and Smart Pointers in More Effective C++.
You need to decrement the count and possibly delete the pointer to the old value in operator = before you overwrite it. You also need 'delete count' everywhere you have 'delete pointer' to avoid leaking memory