What is a fast simple solver for a large Laplacian matrix? - c++

I need to solve some large (N~1e6) Laplacian matrices that arise in the study of resistor networks. The rest of the network analysis is being handled with boost graph and I would like to stay in C++ if possible. I know there are lots and lots of C++ matrix libraries but no one seems to be a clear leader in speed or usability. Also, the many questions on the subject, here and elsewhere seem to rapidly devolve into laundry lists which are of limited utility. In an attempt to help myself and others, I will try to keep the question concise and answerable:
What is the best library that can effectively handle the following requirements?
Matrix type: Symmetric Diagonal Dominant/Laplacian
Size: Very large (N~1e6), no dynamic resizing needed
Sparsity: Extreme (maximum 5 nonzero terms per row/column)
Operations needed: Solve for x in A*x=b and mat/vec multiply
Language: C++ (C ok)
Priority: Speed and simplicity to code. I would really rather avoid having to learn a whole new framework for this one problem or have to manually write too much helper code.
Extra love to answers with a minimal working example...

If you want to write your own solver, in terms of simplicity, it's hard to beat Gauss-Seidel iteration. The update step is one line, and it can be parallelized easily. Successive over-relaxation (SOR) is only slightly more complicated and converges much faster.
Conjugate gradient is also straightforward to code, and should converge much faster than the other iterative methods. The important thing to note is that you don't need to form the full matrix A, just compute matrix-vector products A*b. Once that's working, you can improve the convergance rate again by adding a preconditioner like SSOR (Symmetric SOR).
Probably the fastest solution method that's reasonable to write yourself is a Fourier-based solver. It essentially involves taking an FFT of the right-hand side, multiplying each value by a function of its coordinate, and taking the inverse FFT. You can use an FFT library like FFTW, or roll your own.
A good reference for all of these is A First Course in the Numerical Analysis of Differential Equations by Arieh Iserles.

Eigen is quite nice to use and one of the fastest libraries I know:
http://eigen.tuxfamily.org/dox/group__TutorialSparse.html

There is a lot of related post, you could have look.
I would recommend C++ and Boost::ublas as used in UMFPACK and BOOST's uBLAS Sparse Matrix

Related

Large Matrix Inversion

I am looking at taking the inverse of a large matrix, common size of 1000 x 1000, but sometimes exceeds 100000 x 100000 (which is currently failing due to time and memory). I know that the normal sentiment is 'don't take the inverse, find some other way to do it', but that is not possible at the moment. The reason for this is due to the usage of software that is already made that expects to get the matrix inverse. (Note: I am looking into ways of changing this, but that will take a long time)
At the moment we are using an LU decomposition method from numerical recopies, and I am currently in the process of testing the eigen library. The eigen library seems to be more stable and a bit faster, but I am still in testing phase for accuracy. I have taken a quick look at other libraries such as ATLAS and LAPACK but have not done any substantial testing with these yet.
It seems as though the eigen library does not use concurrent methods to compute the inverse (though does for LU factorization part of the inverse) and as far as I can tell ATLAS and LAPACK are similar in this limitation. (I am currently testing the speed difference for eigen with openMP and without.)
First question is can anyone explain how it would be possible to optimize matrix inversion by parallelization. I found an article here that talks about matrix inversion parallel algorithms, but I did not understand. It seems this article talks about another method? I am also not sure if scaLAPACK or PETSc are useful?
Second question, I read this article of using the GPUs to increase performance, but I have never coded for GPUs and so have no idea what is trying to convey, but the charts at the bottom looked rather alarming. How is this even possible, and how where do I start to go about implementing something like this if it is to be true.
I also found this article, have yet had the time to read through it to understand, but it seems promising, as memory is a current issue with our software.
Any information about these articles or the problems in general would be of great help. And again I apologize if this question seems vague, I will try to expand more if necessary.
First question is can anyone explain how it would be possible to optimize matrix inversion by parallelization.
I'd hazard a guess that this, and related topics in linear algebra, is one of the most studied topics in parallel computing. If you're stuck looking for somewhere to start reading, well good old Golub and Van Loan have a chapter on the topic. As to whether Scalapack and Petsc are likely to be useful, certainly the former, probably the latter. Of course, they both depend on MPI but that's kind of taken for granted in this field.
Second question ...
Use GPUs if you've got them and you can afford to translate your code into the programming model supported by your GPUs. If you've never coded for GPUs and have access to a cluster of commodity-type CPUs you'll get up to speed quicker by using the cluster than by wrestling with a novel technology.
As for the last article you refer to, it's now 10 years old in a field that changes very quickly (try finding a 10-year old research paper on using GPUs for matrix inversion). I can't comment on its excellence or other attributes, but the problem sizes you mention seem to me to be well within the capabilities of modern clusters for in-core (to use an old term) computation. If your matrices are very big, are they also sparse ?
Finally, I strongly support your apparent intention to use existing off-the-shelf codes rather than to try to develop your own.
100000 x 100000 is 80GB at double precision. You need a library that supports memory-mapped matrices on disk. I can't recommend a particular library and I didn't find anything with quick Google searches. But code from Numerical Recipes certainly isn't going to be adequate.
Regarding the first question (how to parallellize computing the inverse):
I assume you are computing the inverse by doing an LU decomposition of your matrix and then using the decomposition to solve A*B = I where A is your original matrix, B is the matrix you solve for, and I is the identity matrix. Then B is the inverse.
The last step is easy to parallellize. Divide your identity matrix along the columns. If you have p CPUs and your matrix is n-by-n, then every part has n/p columns and n rows. Lets call the parts I1, I2, etc. On every CPU, solve a system of the form A*B1 = I1, this gives you the parts B1, B2, etc., and you can combine them to form B which is the inverse.
An LU decomp on a GPU can be ~10x faster than on a CPU. Although this is now changing, GPU's have traditionally been designed around single precision arithmetic, and so on older hardware single precision arithmetic is generally much faster than double precision arithmetic. Also, storage requirements and performance will be greatly impacted by the structure of your matrices. A sparse 100,000 x 100,000 matrix LU decomp is a reasonable problem to solve and will not require much memory.
Unless you want to become a specialist and spend a lot of time tuning for hardware updates, I would strongly recommend using a commercial library. I would suggest CULA tools. They have both sparse and dense GPU libraries and in fact their free library offers SGETRF - a single precision (dense) LU decomp routine. You'll have to pay for their double precision libraries.
I know it's old post - but really - OpenCL (you download the relevant one based on your graphics card) + OpenMP + Vectorization (not in that order) is the way to go.
Anyhow - for me my experience with matrix anything is really to do with overheads from copying double double arrays in and out the system and also to pad up or initialize matrices with 0s before any commencement of computation - especially when I am working with creating .xll for Excel usage.
If I were to reprioritize the top -
try to vectorize the code (Visual Studio 2012 and Intel C++ has autovectorization - I'm not sure about MinGW or GCC, but I think there are flags for the compiler to analyse your for loops to generate the right assembly codes to use instead of the normal registers to hold your data, to populate your processor's vector registers. I think Excel is doing that because when I monitored Excel's threads while running their MINVERSE(), I notice only 1 thread is used.
I don't know much assembly language - so I don't know how to vectorize manually... (haven't had time to go learn this yet but sooooo wanna do it!)
Parallelize with OpenMP (omp pragma) or MPI or pthreads library (parallel_for) - very simple - but... here's the catch - I realise that if your matrix class is completely single threaded in the first place - then parallelizing the operation like mat multiply or inverse is scrappable - cuz parallelizing will deteriorate the speed due to initializing or copying to or just accessing the non-parallelized matrix class.
But... where parallelization helps is - if you're designing your own matrix class and you parallelize its constructor operation (padding with 0s etc), then your computation of LU(A^-1) = I will also be faster.
It's also mathematically straightforward to also optimize your LU decomposition, and also optimizing ur forward backward substitution for the special case of identity. (I.e. don't waste time creating any identity matrix - analyse where your for (row = col) and evaluate to be a function with 1 and the rest with 0.)
Once it's been parallelized (on the outer layers) - the matrix operations requiring element by element can be mapped to be computed by GPU(SSSSSS) - hundreds of processors to compute elements - beat that!. There is now sample Monte Carlo code available on ATI's website - using ATI's OpenCL - don't worry about porting code to something that uses GeForce - all u gotta do is recompile there.
For 2 and 3 though - remember that overheads are incurred so no point unless you're handling F*K*G HUGE matrices - but I see 100k^2? wow...
Gene

Is there any free ITERATIVE linear system solver in c++ that allows me to feed in an arbitrary initial guess?

I am looking for an iterative linear system solver to calculate a continuously changing field. For the simulation to work properly, I need to re-calculate the field (maybe several times) for every time step. Fortunately, I have a good initial guess for each time step, so it is better I can feed it into an iterative solver. And the coefficient matrix is very dense.
The problem is I checked several iterative solvers online like Gmm++, IML++, ITL, DUNE/ISTL and so on. They are either for sparse systems or don't provide interfaces for inputting initial guesses (I might be wrong since I didn't have time to go through all the documents).
So I have two questions:
1 Is there any such c++ solver available online?
2 Since the coefficient matrix can be as large as thousands * thousands, could a direct solver be quicker than an iterative solver with a really good initial guess?
Great Thanks!
He
If you check the header for Conjugate Gradient in IML++ (http://math.nist.gov/iml++/cg.h.txt), you'll see that you can very easily provide the initial guess for the solution in the very variable where you'd expect to get the solution.

Large matrix inversion methods

Hi I've been doing some research about matrix inversion (linear algebra) and I wanted to use C++ template programming for the algorithm , what i found out is that there are number of methods like: Gauss-Jordan Elimination or LU Decomposition and I found the function LU_factorize (c++ boost library)
I want to know if there are other methods , which one is better (advantages/disadvantages) , from a perspective of programmers or mathematicians ?
If there are no other faster methods is there already a (matrix) inversion function in the boost library ? , because i've searched alot and didn't find any.
As you mention, the standard approach is to perform a LU factorization and then solve for the identity. This can be implemented using the LAPACK library, for example, with dgetrf (factor) and dgetri (compute inverse). Most other linear algebra libraries have roughly equivalent functions.
There are some slower methods that degrade more gracefully when the matrix is singular or nearly singular, and are used for that reason. For example, the Moore-Penrose pseudoinverse is equal to the inverse if the matrix is invertible, and often useful even if the matrix is not invertible; it can be calculated using a Singular Value Decomposition.
I'd suggest you to take a look at Eigen source code.
Please Google or Wikipedia for the buzzwords below.
First, make sure you really want the inverse. Solving a system does not require inverting a matrix. Matrix inversion can be performed by solving n systems, with unit basis vectors as right hand sides. So I'll focus on solving systems, because it is usually what you want.
It depends on what "large" means. Methods based on decomposition must generally store the entire matrix. Once you have decomposed the matrix, you can solve for multiple right hand sides at once (and thus invert the matrix easily). I won't discuss here factorization methods, as you're likely to know them already.
Please note that when a matrix is large, its condition number is very likely to be close to zero, which means that the matrix is "numerically non-invertible". Remedy: Preconditionning. Check wikipedia for this. The article is well written.
If the matrix is large, you don't want to store it. If it has a lot of zeros, it is a sparse matrix. Either it has structure (eg. band diagonal, block matrix, ...), and you have specialized methods for solving systems involving such matrices, or it has not.
When you're faced with a sparse matrix with no obvious structure, or with a matrix you don't want to store, you must use iterative methods. They only involve matrix-vector multiplications, which don't require a particular form of storage: you can compute the coefficients when you need them, or store non-zero coefficients the way you want, etc.
The methods are:
For symmetric definite positive matrices: conjugate gradient method. In short, solving Ax = b amounts to minimize 1/2 x^T A x - x^T b.
Biconjugate gradient method for general matrices. Unstable though.
Minimum residual methods, or best, GMRES. Please check the wikipedia articles for details. You may want to experiment with the number of iterations before restarting the algorithm.
And finally, you can perform some sort of factorization with sparse matrices, with specially designed algorithms to minimize the number of non-zero elements to store.
depending on the how large the matrix actually is, you probably need to keep only a small subset of the columns in memory at any given time. This might require overriding the low-level write and read operations to the matrix elements, which i'm not sure if Eigen, an otherwise pretty decent library, will allow you to.
For These very narrow cases where the matrix is really big, There is StlXXL library designed for memory access to arrays that are mostly stored in disk
EDIT To be more precise, if you have a matrix that does not fix in the available RAM, the preferred approach is to do blockwise inversion. The matrix is split recursively until each matrix does fit in RAM (this is a tuning parameter of the algorithm of course). The tricky part here is to avoid starving the CPU of matrices to invert while they are pulled in and out of disk. This might require to investigate in appropiate parallel filesystems, since even with StlXXL, this is likely to be the main bottleneck. Although, let me repeat the mantra; Premature optimization is the root of all programming evil. This evil can only be banished with the cleansing ritual of Coding, Execute and Profile
You might want to use a C++ wrapper around LAPACK. The LAPACK is very mature code: well-tested, optimized, etc.
One such wrapper is the Intel Math Kernel Library.

How are FFTs different from DFTs and how would one go about implementing them in C++?

After some studying, I created a small app that calculates DFTs (Discrete Fourier Transformations) from some input. It works well enough, but it is quite slow.
I read that FFTs (Fast Fourier Transformations) allow quicker calculations, but how are they different? And more importantly, how would I go about implementing them in C++?
If you don't need to manually implement the algorithm, you could take a look at the Fastest Fourier Transform in the West
Even thought it's developed in C, it officially works in C++ (from the FAQ)
Question 2.9. Can I call FFTW from
C++?
Most definitely. FFTW should compile
and/or link under any C++ compiler.
Moreover, it is likely that the C++
template class is
bit-compatible with FFTW's
complex-number format (see the FFTW
manual for more details).
FFT has n*log(n) compexity compared to DFT which has n^2.
There are lot of literature about that, and I strongly advise that you check that first, because such wide topic can not be full explaned here.
http://en.wikipedia.org/wiki/Fast_Fourier_transform (check external links )
If you need library I advise you to use existing one, for instance.
http://www.fftw.org/
This library has efficiently implementation of FFT and is also used in propariaretery software (MATLAB for instance)
Steven Smith's book The Scientist and Engineer's Guide to Digital Signal Processing , specifically Chapter 8 on the DFT and Chapter 12 on the FFT, does a much better job of explaining the two transforms that I ever could.
By the way, the whole book is available for free (link above) and it's a very good introduction to signal processing.
Regarding the C++ code request, I've only used the Fastest Fourier Transform in the West (already cited by superexsl) or DSP libraries such as those from TI or Analog Devices.
The results of a correctly implemented DFT are essentially identical to the results of a correctly implemented FFT (they differ only by rounding errors). As others have pointed out here, the major difference is that of performance. DFT has O(n^2) operations while the FFT has O(nlogn) operations.
The best, most readable publication I have ever found (the one I still refer to) is The Fast Fourier Transform and its Applications by E Oran Brigham. The first few chapters provide a very thorough overview of the continuous and discrete forms of the Fourier Transform. He then uses that to develop the fast version of the DFT based on the Cooley-Tukey Algorithm for the radix-2 (n is a power of 2) and mixed-radix cases (though the latter being somewhat more shallow treatise than the former).
The basic approach in the radix-2 algorithm to perform a linear time operation on the input X and to recursively split the result in half and perform a similar linear time operation on the two halves. The mixed radix case is similar, though you need to divide X into equal portions each time, so it helps if n doesn't have any large prime factors.
I've found this nice explanation with some algorithms described.
FastFourierTransform
About implementation,
first i'd make sure your implementation returns correct results (compare the output from matlab or octave - which have built in fourier transformates)
optimize when necessary, use profilers
don't use unnecesary for loops

Least Squares Regression in C/C++

How would one go about implementing least squares regression for factor analysis in C/C++?
the gold standard for this is LAPACK. you want, in particular, xGELS.
When I've had to deal with large datasets and large parameter sets for non-linear parameter fitting I used a combination of RANSAC and Levenberg-Marquardt. I'm talking thousands of parameters with tens of thousands of data-points.
RANSAC is a robust algorithm for minimizing noise due to outliers by using a reduced data set. Its not strictly Least Squares, but can be applied to many fitting methods.
Levenberg-Marquardt is an efficient way to solve non-linear least-squares numerically.
The convergence rate in most cases is between that of steepest-descent and Newton's method, without requiring the calculation of second derivatives. I've found it to be faster than Conjugate gradient in the cases I've examined.
The way I did this was to set up the RANSAC an outer loop around the LM method. This is very robust but slow. If you don't need the additional robustness you can just use LM.
Get ROOT and use TGraph::Fit() (or TGraphErrors::Fit())?
Big, heavy piece of software to install just of for the fitter, though. Works for me because I already have it installed.
Or use GSL.
If you want to implement an optimization algorithm by yourself Levenberg-Marquard seems to be quite difficult to implement. If really fast convergence is not needed, take a look at the Nelder-Mead simplex optimization algorithm. It can be implemented from scratch in at few hours.
http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
Have a look at
http://www.alglib.net/optimization/
They have C++ implementations for L-BFGS and Levenberg-Marquardt.
You only need to work out the first derivative of your objective function to use these two algorithms.
I've used TNT/JAMA for linear least-squares estimation. It's not very sophisticated but is fairly quick + easy.
Lets talk first about factor analysis since most of the discussion above is about regression. Most of my experience is with software like SAS, Minitab, or SPSS, that solves the factor analysis equations, so I have limited experience in solving these directly. That said, that the most common implementations do not use linear regression to solve the equations. According to this, the most common methods used are principal component analysis and principal factor analysis. In a text on Applied Multivariate Analysis (Dallas Johnson), no less that seven methods are documented each with their own pros and cons. I would strongly recommend finding an implementation that gives you factor scores rather than programming a solution from scratch.
The reason why there's different methods is that you can choose exactly what you're trying to minimize. There a pretty comprehensive discussion of the breadth of methods here.