About std::basic_ostream::write - c++

I'm reading up on the write method of basic_ostream objects and this is what I found on cppreference:
basic_ostream& write( const char_type* s, std::streamsize count );
Behaves as an UnformattedOutputFunction. After constructing and checking the sentry object, outputs the characters from successive locations in the character array whose first element is pointed to by s. Characters are inserted into the output sequence until one of the following occurs:
exactly count characters are inserted
inserting into the output sequence fails (in which case setstate(badbit) is called)
So I get that it writes a chunk of characters from a buffer into the stream. And the number of characters are the bytes specified by count. But there are a few things of which I'm not sure. These are my questions:
Should I use write only when I want to specify how many bytes I want to write to a stream? Because normally when you print a char array it will print the entire array until it reaches the null byte, but when you use write you can specify how many characters you want written.
char greeting[] = "Hello World";
std::cout << greeting; // prints the entire string
std::cout.write(greeting, 5); // prints "Hello"
But maybe I'm misinterpreting something with this one.
And I often see this in code samples that use write:
stream.write(reinterpret_cast<char*>(buffer), sizeof(buffer));
Why is the reinterpret_cast to char* being use? When should I know to do something like that when writing to a stream?
If anyone can help me with these two question it would be greatly appreciated.

•Should I use write only when I want to specify how many bytes I want to write to a stream?
Yes - you should use write when there's a specific number of bytes of data arranged contiguously in memory that you'd like written to the stream in order. But sometimes you might want a specific number of bytes and need to get them another way, such as by formatting a double's ASCII representation to have specific width and precision.
Other times you might use >>, but that has to be user-defined for non builtin types, and when it is defined - normally for better but it may be worse for your purposes - it prints whatever the class designer choose, including potentially data that's linked from the object via pointers or references and static data of interest, and/or values calculated on the fly. It may change the data representation: say converting binary doubles to ASCII representations, or ensuring a network byte order regardless of the host's endianness. It may also omit some of the object's data, such as cache entries, counters used to manage but not logically part of the data, array elements that aren't populated etc..
Why is the reinterpret_cast to char* being use? When should I know to do something like that when writing to a stream?
The write() function signature expects a const char* argument, so this conversion is being done. You'll need to use a cast whenever you can't otherwise get a char* to the data.
The cast reflects the way write() treats data starting at the first byte of the object as 8-bit values without any consideration of the actual pre-cast type of the data. This ties in with being able to do things like say a write() of the last byte of a float and first 3 bytes of a double appearing next in the same structure - all the data boundaries and interpretation is lost after the reinterpret_cast<>.
(You've actually got to be more careful of this when doing a read() of bytes from an input stream... say you read data that constituted a double when written into memory that's not aligned appropriately for a double, then try to use it as a double, you may get a SIGBUS or similar alignment exception from your CPU or degraded performance depending on your system.)

basic_ostream::write and its counterpart basic_istream::read, is used to perform unformatted I/O on a data stream. Typically, this is raw binary data which may or may not contain printable ascii characters.
The main difference between read/write and the other formatted operators like <<, >>, getline etc. is that the former doesn't make any assumptions on the data being worked on -- you have full control over what bytes get read from and written to the stream. Compared to the latter which may skip over whitespaces, discard or ignore them etc.
To answer your second question, the reinterpret_cast <char *> is there to satisfy the function signature and to work with the buffer a byte at a time. Don't let the type char fool you. The reason char is used is because it's the smallest builtin primitive type provided by the language. Perhaps a better name would be something like uint8 to indicate it's really an unsigned byte type.

Related

Detect endianness of binary file data

Recently I was (again) reading about 'endian'ness. I know how to identify the endianness of host, as there are lots of post on SO, and also I have seen this, which I think is pretty good resource.
However, one thing I like to know is to how to detect the endianness of input binary file. For example, I am reading a binary file (using C++) like following:
ifstream mydata("mydata.raw", ios::binary);
short value;
char buf[sizeof(short)];
int dataCount = 0;
short myDataMat[DATA_DIMENSION][DATA_DIMENSION];
while (mydata.read(reinterpret_cast<char*>(&buf), sizeof(buf)))
{
memcpy(&value, buf, sizeof(value));
myDataMat[dataCount / DATA_DIMENSION][dataCount%DATA_DIMENSION] = value;
dataCount++;
}
I like to know how I can detect the endianness in the mydata.raw, and whether endianness affects this program anyway.
Additional Information:
I am only manipulating the data in myDataMat using mathematical operations, and no pointer operation or bitwise operation is done on the data).
My machine (host) is little endian.
It is impossible to "detect" the endianity of data in general. Just like it is impossible to detect whether the data is an array of 4 byte integers, or twice that many 2 byte integers. Without any knowledge about the representation, raw data is just a mass of meaningless bits.
However, with some extra knowledge about the data representation, it become possible. Some examples:
Most file formats mandate particular endianity, in which case this is never a problem.
Unicode text files may optionally start with a byte order mark. Same idea can be implemented by other data representations.
Some file formats contain a checksum. You can guess one endianity, and if the checksum does not match, try again with another endianity. It will be unlikely that the checksum matches with wrong interpretation of the data.
Sometimes you can make guesses based on the data. Is the temperature outside 33'554'432 degrees, or maybe 2? You can pick the endianity that represents sane data. Of course, this type of guesswork fails miserably, when the aliens invade and start melting our planet.
You can't tell.
The endianness transformation is essentially an operator E(x) on a number x such that x = E(E(x)). So you don't know "which way round" the x elements are in your file.

Why does ostream::write() require ‘const char_type*’ instead of ‘const void*’ in C++?

The fwrite() function in C uses const void *restrict buffer as the first argument, so you can pass pointer to your struct as the first parameter directly.
http://en.cppreference.com/w/c/io/fwrite
e.g. fwrite(&someStruct, sizeof(someStruct), 1, file);
But in C++, the ostream::write() requires const char_type*, which forces you to use reinterpret_cast. (In Visual Studio 2013, it's const char*.)
http://en.cppreference.com/w/cpp/io/basic_ostream/write
e.g. file.write(reinterpret_cast<char*>(&someStruct), sizeof(someStruct));
In almost all cases, the binary data to be written to files is not a char array, so why does the standard prefer the style which seems more complex?
P.S.
1. Actually I used the write() method in ofstream with ios::binary mode, but according to the reference, it inherits ofstream. So I use ostream::write() above.
2. If you want to print a stream of characters, you could use operator<<().
Isn't write() method designed for writing raw data?
3. If write() is not the way to write binary data, then what is the way to do it within the standard? (Although this may bother portability of the code due to various memory align strategies on different platforms)
The portrayal of this as a C vs C++ thing is misleading. C++ provides std::fwrite(const void*, ...) just like C. Where C++ chooses to be more defensive is specifically the std::iostream versions.
"Almost in all cases the binary data to be written to files is not char array"
That's debatable. In C++ isn't not unusual to add a level of indirection in I/O, so objects are streamed or serialised to a convenient - and possibly portable (e.g. endian-standardised, without or with standardised structure padding) - representation, then deserialised/parsed when re-read. The logic is typically localised with the individual objects involved, such that a top-level object doesn't need to know details of the memory layout of its members. Serialisation and streaming tends to be thought of / buffered etc. at the byte level - fitting in better with character buffers, and read() and write() return a number of characters that could currently be transmitted - again at the character and not object level - so it's not very productive to pretend otherwise or you'll have a mess resuming partially successful I/O operations.
Raw binary writes / reads done naively are a bit dangerous as they don't handle these issues so it's probably a good thing that the use of these functions is made slightly harder, with reinterpret_cast<> being a bit of a code smell / warning.
That said, one unfortunate aspect of the C++ use of char* is that it may encourage some programmers to first read to a character array, then use inappropriate casts to "reinterpret" the data on the fly - like an int* aimed at the character buffer in a way that may not be appropriately aligned.
If you want to print a stream of characters, you could use operator<<(). Isn't write() method designed for writing raw data?
To print a stream of characters with operator<<() is problematic, as the only relevant overload takes a const char* and expects a '\0'/NUL-terminated buffer. That makes it useless if you want to print one or more NULs in the output. Further, when starting with a longer character buffer operator<< would often be clumsy, verbose and error prone, needing a NUL swapped in and back around the streaming, and would sometimes be a significant performance and/or memory use issue e.g. when writing some - but not the end - of a long string literal into which you can't swap a NUL, or when the character buffer may be being read from other threads that shouldn't see the NUL.
The provided std::ostream::write(p, n) function avoids these problems, letting you specify exactly how much you want printed.
char_type is not exactly char *, it's the template parameter of the stream that represents the stream's character type:
template<typename _CharT, typename _Traits>
class basic_ostream : virtual public basic_ios<_CharT, _Traits>
{
public:
// Types (inherited from basic_ios):
typedef _CharT char_type;
<...>
And std::ostream is just the char instantiation:
typedef basic_ostream<char> ostream;
In C/C++, char is the data type for representing a byte, so char[] is the natural data type for binary data.
Your question, I think, is better directed at the fact C/C++ was not designed to have distinct data types for "bytes" and "characters", rather than at the design of the stream libraries.
Ree,
From the cplusplus.com site the signature of ostream::write is :
ostream& write (const char* s, streamsize n);
I have just checked it on VS2013, you can write easily :
std::ofstream outfile("new.txt", std::ofstream::binary);
char buffer[] = "This is a string";
outfile.write(buffer, strlen(buffer));

Can I make a single binary write for a C++ struct which contains a vector

I am trying to build and write a binary request and have a "is this possible" type question. It might be important for me to mention the recipiant of the request is not aware of the data structure I have included below, it's just expecting a sequence of bytes, but using a struct seemed like a handy way to prepare the pieces of the request, then write them easily.
Writing the header and footer is fine as they are fixed size but I'm running into problems with the struct "Details", because of the vector. For now Im writing to a file so I can check the request is to spec, but the intention is to write to a PLC using boost asio serial port eventually
I can use syntax like so to write a struct, but that writes pointer addresses rather than values when it gets to the vector
myFile.write((char*) &myDataRequest, drSize);
I can use this sytax to write a vector by itself, but I must include the indexer at 0 to write the values
myFile.write((char*) &myVector[0], vectorSize);
Is there an elegant way to binary write a struct containing a vector (or other suitable collection), doing it in one go? Say for example if I declared the vector differently, or am I resigned to making multiple writes for the content inside the struct. If I replace the vector with an array I can send the struct in one go (without needing to include any indexer) but I dont know the required size until run time so I don't think it is suitable.
My Struct
struct Header
{ ... };
struct Details
{
std::vector<DataRequest> DRList;
};
struct DataRequest
{
short numAddresses; // Number of operands to be read Bytes 0-1
unsigned char operandType; // Byte 2
unsigned char Reserved1; //Should be 0xFF Byte 3
std::vector<short> addressList; // either, starting address (for sequence), or a list of addresses (for non-sequential)
};
struct Footer
{ ... };
It's not possible because the std::vector object doesn't actually contain an array but rather a pointer to a block of memory. However, I'm tempted to claim that being able to write a raw struct like that is not desireable:
I believe that by treating a struct as a block of memory you may end up sending padding bytes, I don't think this is desireable.
Depending on what you write to you may find that writes are buffered anyway, so multiple write calls aren't actually less efficient.
Chances are that you want to do something with the fields being sent over. In particular, with the numeric values you send. This requires enforcing a byte order which both sides of the transmission agree on. In order to be portable, you should exlicitely convert the byte order to make sure that your software is portable (if this is required).
To make a long story short: I suspect writing out each field one by one is not less efficient, it also is more correct.
This is not really a good strategy, since even if you could do this you're copying memory content directly to file. If you change the architecture/processor your client will get different data. If you write a method taking your struct and a filename, which writes the structs values individually and iterates over the vector writing out its content, you'll have full control over the binary format your client expects and are not dependent on the compilers current memory representation.
If you want convenience for marshalling/unmarshalling you should take a look at the boost::serialization library. They do offer a binary archive (besides text and xml) but it has its own format (e.g. it has a version number, which serialization lib was used to dump the data) so it is probably not what your client wants.
What exactly is the format expected at the other end? You have to write
that, period. You can't just write any random bytes. The probability
that just writing an std::vector like you're doing will work is about
as close to 0 as you can get. But the probability that writing a
struct with only int will work is still less than 50%. If the other
side is expecting a specific sequence of bytes, then you have to write
that sequence, byte by byte. To write an int, for example, you must
still write four (or whatever the protocol requires) bytes, something
like:
byte[0] = (value >> 24) & 0xFF;
byte[1] = (value >> 16) & 0xFF;
byte[2] = (value >> 8) & 0xFF;
byte[3] = (value ) & 0xFF;
(Even here, I'm supposing that your internal representation of negative
numbers corresponds to that of the protocol. Usually the case, but not
always.)
Typically, of course, you build your buffer in a std::vector<char>,
and then write &buffer[0], buffer.size(). (The fact that you need a
reinterpret_cast for the buffer pointer should signal that your
approach is wrong.)

Binary file write problem in C++

This is my function which creates a binary file
void writefile()
{
ofstream myfile ("data.abc", ios::out | ios::binary);
streamoff offset = 1;
if(myfile.is_open())
{
char c='A';
myfile.write(&c, offset );
c='B';
myfile.write(&c, offset );
c='C';
myfile.write(&c,offset);
myfile.write(StartAddr,streamoff (16) );
myfile.close();
}
else
cout << "Some error" << endl ;
}
The value of StartAddr is 1000, hence the expected output file is:
A B C 1000 NUL NUL NUL
However, strangely my output file appends this: data.abc
So the final outcome is: A B C 1000 NUL NUL NUL data.abc
Please help me out with this. How to deal with this? Why is this strange behavior?
I recommend you quit with binary writing and work on writing the data in a textual format. You've already encountered some of the problems with writing data. There are still issues for you to come across about reading the data and portability. Expect more pain if you continue this route.
Use textual representations. For simplicity you can put one field per line and use std::getline to read it in. The textual representation allows you to view the data in any text editor, easily. Try using Notepad to view a binary file!
Oh, but binary data is soo much faster and takes up less space in the file. You've already wasted enough time and money than you would gain by using binary data. The speed of computers and huge memory capacities (disk and RAM) make binary representations a thing of the past (except in extreme cases).
As a learning tool, go ahead and use binary. For ease of development and quick schedules (IOW, finishing early), use textual representations.
Search Stack Overflow for "C++ micro optimization" for the justifications.
There are several issues with this code.
For starters, if you want to write individual characters t a stream, you don't need to use ostream::write. Instead, just use ostream::put, as shown here:
myfile.put('A');
Second, if you want to write out a string into a file stream, just use the stream insertion operator:
myfile << StartAddr;
This is perfectly safe, even in binary mode.
As for the particular problem you're reporting, I think that the issue is that you're trying to write out a string of length four (StartAddr), but you've told the stream to write out sixteen bytes. This means that you're writing out the four bytes for the string contents, then the null terminator, and then nine bytes of whatever happens to be in memory after the buffer. In your case, this is two more null bytes, then the meaningless text that you saw after that. To fix this, either change your code to write fewer bytes or, if StartAddr is a string, then just write it using <<.
With the line myfile.write(StartAddr,streamoff (16) ); you are instructing the myfile object to write 16 bytes to the stream starting at the address StartAddr. Imagine that StartAddr is an array of 16 bytes:
char StartAddr[16] = "1000\0\0\0data.b32\0";
myfile.write(StartAddr, sizeof(StartAddr));
Would generate the output that you see. Without seeing the declaration / definition of StartAddr I cannot say for certain, but it appears you are writing out a five byte nul terminated string "1000" followed by whatever happens to reside in the next 11 bytes after StartAddr. In this case, it appears a couple of nul bytes followed by the constant nul terminated string "data.b32" (which the compiler must put somewhere in memory) are what follow StartAddr.
Regardless, it is clear that you overread a buffer.
If you are trying to write a 16 bit integer type to a stream you have a couple of options, both based on the fact that there are typically 8 bits in a byte. The 'cleanest' one would be something like:
char x = (StartAddr & 0xFF);
myfile.write(x);
x = (StartAddr >> 8);
myfile.write(x);
This assumes StartAddr is a 16 bit integer type and does not take into account any translation that might occur (such as potential conversion of a value of 10 [a linefeed] into a carriage return / linefeed sequence).
Alternatively, you could write something like:
myfile.write(reinterpret_cast<char*>(&StartAddr), sizeof(StartAddr));

What's the rationale for null terminated strings?

As much as I love C and C++, I can't help but scratch my head at the choice of null terminated strings:
Length prefixed (i.e. Pascal) strings existed before C
Length prefixed strings make several algorithms faster by allowing constant time length lookup.
Length prefixed strings make it more difficult to cause buffer overrun errors.
Even on a 32 bit machine, if you allow the string to be the size of available memory, a length prefixed string is only three bytes wider than a null terminated string. On 16 bit machines this is a single byte. On 64 bit machines, 4GB is a reasonable string length limit, but even if you want to expand it to the size of the machine word, 64 bit machines usually have ample memory making the extra seven bytes sort of a null argument. I know the original C standard was written for insanely poor machines (in terms of memory), but the efficiency argument doesn't sell me here.
Pretty much every other language (i.e. Perl, Pascal, Python, Java, C#, etc) use length prefixed strings. These languages usually beat C in string manipulation benchmarks because they are more efficient with strings.
C++ rectified this a bit with the std::basic_string template, but plain character arrays expecting null terminated strings are still pervasive. This is also imperfect because it requires heap allocation.
Null terminated strings have to reserve a character (namely, null), which cannot exist in the string, while length prefixed strings can contain embedded nulls.
Several of these things have come to light more recently than C, so it would make sense for C to not have known of them. However, several were plain well before C came to be. Why would null terminated strings have been chosen instead of the obviously superior length prefixing?
EDIT: Since some asked for facts (and didn't like the ones I already provided) on my efficiency point above, they stem from a few things:
Concat using null terminated strings requires O(n + m) time complexity. Length prefixing often require only O(m).
Length using null terminated strings requires O(n) time complexity. Length prefixing is O(1).
Length and concat are by far the most common string operations. There are several cases where null terminated strings can be more efficient, but these occur much less often.
From answers below, these are some cases where null terminated strings are more efficient:
When you need to cut off the start of a string and need to pass it to some method. You can't really do this in constant time with length prefixing even if you are allowed to destroy the original string, because the length prefix probably needs to follow alignment rules.
In some cases where you're just looping through the string character by character you might be able to save a CPU register. Note that this works only in the case that you haven't dynamically allocated the string (Because then you'd have to free it, necessitating using that CPU register you saved to hold the pointer you originally got from malloc and friends).
None of the above are nearly as common as length and concat.
There's one more asserted in the answers below:
You need to cut off the end of the string
but this one is incorrect -- it's the same amount of time for null terminated and length prefixed strings. (Null terminated strings just stick a null where you want the new end to be, length prefixers just subtract from the prefix.)
From the horse's mouth
None of BCPL, B, or C supports
character data strongly in the
language; each treats strings much
like vectors of integers and
supplements general rules by a few
conventions. In both BCPL and B a
string literal denotes the address of
a static area initialized with the
characters of the string, packed into
cells. In BCPL, the first packed byte
contains the number of characters in
the string; in B, there is no count
and strings are terminated by a
special character, which B spelled
*e. This change was made partially
to avoid the limitation on the length
of a string caused by holding the
count in an 8- or 9-bit slot, and
partly because maintaining the count
seemed, in our experience, less
convenient than using a terminator.
Dennis M Ritchie, Development of the C Language
C doesn't have a string as part of the language. A 'string' in C is just a pointer to char. So maybe you're asking the wrong question.
"What's the rationale for leaving out a string type" might be more relevant. To that I would point out that C is not an object oriented language and only has basic value types. A string is a higher level concept that has to be implemented by in some way combining values of other types. C is at a lower level of abstraction.
in light of the raging squall below:
I just want to point out that I'm not trying to say this is a stupid or bad question, or that the C way of representing strings is the best choice. I'm trying to clarify that the question would be more succinctly put if you take into account the fact that C has no mechanism for differentiating a string as a datatype from a byte array. Is this the best choice in light of the processing and memory power of todays computers? Probably not. But hindsight is always 20/20 and all that :)
The question is asked as a Length Prefixed Strings (LPS) vs zero terminated strings (SZ) thing, but mostly expose benefits of length prefixed strings. That may seem overwhelming, but to be honest we should also consider drawbacks of LPS and advantages of SZ.
As I understand it, the question may even be understood as a biased way to ask "what are the advantages of Zero Terminated Strings ?".
Advantages (I see) of Zero Terminated Strings:
very simple, no need to introduce new concepts in language, char
arrays/char pointers can do.
the core language just include minimal syntaxic sugar to convert
something between double quotes to a
bunch of chars (really a bunch of
bytes). In some cases it can be used
to initialize things completely
unrelated with text. For instance xpm
image file format is a valid C source
that contains image data encoded as a
string.
by the way, you can put a zero in a string literal, the compiler will
just also add another one at the end of the literal: "this\0is\0valid\0C".
Is it a string ? or four strings ? Or a bunch of bytes...
flat implementation, no hidden indirection, no hidden integer.
no hidden memory allocation involved (well, some infamous non
standard functions like strdup
perform allocation, but that's mostly
a source of problem).
no specific issue for small or large hardware (imagine the burden to
manage 32 bits prefix length on 8
bits microcontrollers, or the
restrictions of limiting string size
to less than 256 bytes, that was a problem I actually had with Turbo Pascal eons ago).
implementation of string manipulation is just a handful of
very simple library function
efficient for the main use of strings : constant text read
sequentially from a known start
(mostly messages to the user).
the terminating zero is not even mandatory, all necessary tools
to manipulate chars like a bunch of
bytes are available. When performing
array initialisation in C, you can
even avoid the NUL terminator. Just
set the right size. char a[3] =
"foo"; is valid C (not C++) and
won't put a final zero in a.
coherent with the unix point of view "everything is file", including
"files" that have no intrinsic length
like stdin, stdout. You should remember that open read and write primitives are implemented
at a very low level. They are not library calls, but system calls. And the same API is used
for binary or text files. File reading primitives get a buffer address and a size and return
the new size. And you can use strings as the buffer to write. Using another kind of string
representation would imply you can't easily use a literal string as the buffer to output, or
you would have to make it have a very strange behavior when casting it to char*. Namely
not to return the address of the string, but instead to return the actual data.
very easy to manipulate text data read from a file in-place, without useless copy of buffer,
just insert zeroes at the right places (well, not really with modern C as double quoted strings are const char arrays nowaday usually kept in non modifiable data segment).
prepending some int values of whatever size would implies alignment issues. The initial
length should be aligned, but there is no reason to do that for the characters datas (and
again, forcing alignment of strings would imply problems when treating them as a bunch of
bytes).
length is known at compile time for constant literal strings (sizeof). So why would
anyone want to store it in memory prepending it to actual data ?
in a way C is doing as (nearly) everyone else, strings are viewed as arrays of char. As array length is not managed by C, it is logical length is not managed either for strings. The only surprising thing is that 0 item added at the end, but that's just at core language level when typing a string between double quotes. Users can perfectly call string manipulation functions passing length, or even use plain memcopy instead. SZ are just a facility. In most other languages array length is managed, it's logical that is the same for strings.
in modern times anyway 1 byte character sets are not enough and you often have to deal with encoded unicode strings where the number of characters is very different of the number of bytes. It implies that users will probably want more than "just the size", but also other informations. Keeping length give use nothing (particularly no natural place to store them) regarding these other useful pieces of information.
That said, no need to complain in the rare case where standard C strings are indeed inefficient. Libs are available. If I followed that trend, I should complain that standard C does not include any regex support functions... but really everybody knows it's not a real problem as there is libraries available for that purpose. So when string manipulation efficiency is wanted, why not use a library like bstring ? Or even C++ strings ?
EDIT: I recently had a look to D strings. It is interesting enough to see that the solution choosed is neither a size prefix, nor zero termination. As in C, literal strings enclosed in double quotes are just short hand for immutable char arrays, and the language also has a string keyword meaning that (immutable char array).
But D arrays are much richer than C arrays. In the case of static arrays length is known at run-time so there is no need to store the length. Compiler has it at compile time. In the case of dynamic arrays, length is available but D documentation does not state where it is kept. For all we know, compiler could choose to keep it in some register, or in some variable stored far away from the characters data.
On normal char arrays or non literal strings there is no final zero, hence programmer has to put it itself if he wants to call some C function from D. In the particular case of literal strings, however the D compiler still put a zero at the end of each strings (to allow easy cast to C strings to make easier calling C function ?), but this zero is not part of the string (D does not count it in string size).
The only thing that disappointed me somewhat is that strings are supposed to be utf-8, but length apparently still returns a number of bytes (at least it's true on my compiler gdc) even when using multi-byte chars. It is unclear to me if it's a compiler bug or by purpose. (OK, I probably have found out what happened. To say to D compiler your source use utf-8 you have to put some stupid byte order mark at beginning. I write stupid because I know of not editor doing that, especially for UTF-8 that is supposed to be ASCII compatible).
I think, it has historical reasons and found this in wikipedia:
At the time C (and the languages that
it was derived from) were developed,
memory was extremely limited, so using
only one byte of overhead to store the
length of a string was attractive. The
only popular alternative at that time,
usually called a "Pascal string"
(though also used by early versions of
BASIC), used a leading byte to store
the length of the string. This allows
the string to contain NUL and made
finding the length need only one
memory access (O(1) (constant) time).
But one byte limits the length to 255.
This length limitation was far more
restrictive than the problems with the
C string, so the C string in general
won out.
Calavera is right, but as people don't seem to get his point, I'll provide some code examples.
First, let's consider what C is: a simple language, where all code has a pretty direct translation into machine language. All types fit into registers and on the stack, and it doesn't require an operating system or a big run-time library to run, since it were meant to write these things (a task to which is superbly well-suited, considering there isn't even a likely competitor to this day).
If C had a string type, like int or char, it would be a type which didn't fit in a register or in the stack, and would require memory allocation (with all its supporting infrastructure) to be handled in any way. All of which go against the basic tenets of C.
So, a string in C is:
char s*;
So, let's assume then that this were length-prefixed. Let's write the code to concatenate two strings:
char* concat(char* s1, char* s2)
{
/* What? What is the type of the length of the string? */
int l1 = *(int*) s1;
/* How much? How much must I skip? */
char *s1s = s1 + sizeof(int);
int l2 = *(int*) s2;
char *s2s = s2 + sizeof(int);
int l3 = l1 + l2;
char *s3 = (char*) malloc(l3 + sizeof(int));
char *s3s = s3 + sizeof(int);
memcpy(s3s, s1s, l1);
memcpy(s3s + l1, s2s, l2);
*(int*) s3 = l3;
return s3;
}
Another alternative would be using a struct to define a string:
struct {
int len; /* cannot be left implementation-defined */
char* buf;
}
At this point, all string manipulation would require two allocations to be made, which, in practice, means you'd go through a library to do any handling of it.
The funny thing is... structs like that do exist in C! They are just not used for your day-to-day displaying messages to the user handling.
So, here is the point Calavera is making: there is no string type in C. To do anything with it, you'd have to take a pointer and decode it as a pointer to two different types, and then it becomes very relevant what is the size of a string, and cannot just be left as "implementation defined".
Now, C can handle memory in anyway, and the mem functions in the library (in <string.h>, even!) provide all the tooling you need to handle memory as a pair of pointer and size. The so-called "strings" in C were created for just one purpose: showing messages in the context of writting an operating system intended for text terminals. And, for that, null termination is enough.
Obviously for performance and safety, you'll want to keep the length of a string while you're working with it rather than repeatedly performing strlen or the equivalent on it. However, storing the length in a fixed location just before the string contents is an incredibly bad design. As Jörgen pointed out in the comments on Sanjit's answer, it precludes treating the tail of a string as a string, which for example makes a lot of common operations like path_to_filename or filename_to_extension impossible without allocating new memory (and incurring the possibility of failure and error handling). And then of course there's the issue that nobody can agree how many bytes the string length field should occupy (plenty of bad "Pascal string" languages used 16-bit fields or even 24-bit fields which preclude processing of long strings).
C's design of letting the programmer choose if/where/how to store the length is much more flexible and powerful. But of course the programmer has to be smart. C punishes stupidity with programs that crash, grind to a halt, or give your enemies root.
Lazyness, register frugality and portability considering the assembly gut of any language, especially C which is one step above assembly (thus inheriting a lot of assembly legacy code).
You would agree as a null char would be useless in those ASCII days, it (and probably as good as an EOF control char ).
let's see in pseudo code
function readString(string) // 1 parameter: 1 register or 1 stact entries
pointer=addressOf(string)
while(string[pointer]!=CONTROL_CHAR) do
read(string[pointer])
increment pointer
total 1 register use
case 2
function readString(length,string) // 2 parameters: 2 register used or 2 stack entries
pointer=addressOf(string)
while(length>0) do
read(string[pointer])
increment pointer
decrement length
total 2 register used
That might seem shortsighted at that time, but considering the frugality in code and register ( which were PREMIUM at that time, the time when you know, they use punch card ). Thus being faster ( when processor speed could be counted in kHz), this "Hack" was pretty darn good and portable to register-less processor with ease.
For argument sake I will implement 2 common string operation
stringLength(string)
pointer=addressOf(string)
while(string[pointer]!=CONTROL_CHAR) do
increment pointer
return pointer-addressOf(string)
complexity O(n) where in most case PASCAL string is O(1) because the length of the string is pre-pended to the string structure (that would also mean that this operation would have to be carried in an earlier stage).
concatString(string1,string2)
length1=stringLength(string1)
length2=stringLength(string2)
string3=allocate(string1+string2)
pointer1=addressOf(string1)
pointer3=addressOf(string3)
while(string1[pointer1]!=CONTROL_CHAR) do
string3[pointer3]=string1[pointer1]
increment pointer3
increment pointer1
pointer2=addressOf(string2)
while(string2[pointer2]!=CONTROL_CHAR) do
string3[pointer3]=string2[pointer2]
increment pointer3
increment pointer1
return string3
complexity O(n) and prepending the string length wouldn't change the complexity of the operation, while I admit it would take 3 time less time.
On another hand, if you use PASCAL string you would have to redesign your API for taking in account register length and bit-endianness, PASCAL string got the well known limitation of 255 char (0xFF) beacause the length was stored in 1 byte (8bits), and it you wanted a longer string (16bits->anything) you would have to take in account the architecture in one layer of your code, that would mean in most case incompatible string APIs if you wanted longer string.
Example:
One file was written with your prepended string api on an 8 bit computer and then would have to be read on say a 32 bit computer, what would the lazy program do considers that your 4bytes are the length of the string then allocate that lot of memory then attempt to read that many bytes.
Another case would be PPC 32 byte string read(little endian) onto a x86 (big endian), of course if you don't know that one is written by the other there would be trouble.
1 byte length (0x00000001) would become 16777216 (0x0100000) that is 16 MB for reading a 1 byte string.
Of course you would say that people should agree on one standard but even 16bit unicode got little and big endianness.
Of course C would have its issues too but, would be very little affected by the issues raised here.
In many ways, C was primitive. And I loved it.
It was a step above assembly language, giving you nearly the same performance with a language that was much easier to write and maintain.
The null terminator is simple and requires no special support by the language.
Looking back, it doesn't seem that convenient. But I used assembly language back in the 80s and it seemed very convenient at the time. I just think software is continually evolving, and the platforms and tools continually get more and more sophisticated.
Assuming for a moment that C implemented strings the Pascal way, by prefixing them by length: is a 7 char long string the same DATA TYPE as a 3-char string? If the answer is yes, then what kind of code should the compiler generate when I assign the former to the latter? Should the string be truncated, or automatically resized? If resized, should that operation be protected by a lock as to make it thread safe? The C approach side stepped all these issues, like it or not :)
Somehow I understood the question to imply there's no compiler support for length-prefixed strings in C. The following example shows, at least you can start your own C string library, where string lengths are counted at compile time, with a construct like this:
#define PREFIX_STR(s) ((prefix_str_t){ sizeof(s)-1, (s) })
typedef struct { int n; char * p; } prefix_str_t;
int main() {
prefix_str_t string1, string2;
string1 = PREFIX_STR("Hello!");
string2 = PREFIX_STR("Allows \0 chars (even if printf directly doesn't)");
printf("%d %s\n", string1.n, string1.p); /* prints: "6 Hello!" */
printf("%d %s\n", string2.n, string2.p); /* prints: "48 Allows " */
return 0;
}
This won't, however, come with no issues as you need to be careful when to specifically free that string pointer and when it is statically allocated (literal char array).
Edit: As a more direct answer to the question, my view is this was the way C could support both having string length available (as a compile time constant), should you need it, but still with no memory overhead if you want to use only pointers and zero termination.
Of course it seems like working with zero-terminated strings was the recommended practice, since the standard library in general doesn't take string lengths as arguments, and since extracting the length isn't as straightforward code as char * s = "abc", as my example shows.
"Even on a 32 bit machine, if you allow the string to be the size of available memory, a length prefixed string is only three bytes wider than a null terminated string."
First, extra 3 bytes may be considerable overhead for short strings. In particular, a zero-length string now takes 4 times as much memory. Some of us are using 64-bit machines, so we either need 8 bytes to store a zero-length string, or the string format can't cope with the longest strings the platform supports.
There may also be alignment issues to deal with. Suppose I have a block of memory containing 7 strings, like "solo\0second\0\0four\0five\0\0seventh". The second string starts at offset 5. The hardware may require that 32-bit integers be aligned at an address that is a multiple of 4, so you have to add padding, increasing the overhead even further. The C representation is very memory-efficient in comparison. (Memory-efficiency is good; it helps cache performance, for example.)
One point not yet mentioned: when C was designed, there were many machines where a 'char' was not eight bits (even today there are DSP platforms where it isn't). If one decides that strings are to be length-prefixed, how many 'char's worth of length prefix should one use? Using two would impose an artificial limit on string length for machines with 8-bit char and 32-bit addressing space, while wasting space on machines with 16-bit char and 16-bit addressing space.
If one wanted to allow arbitrary-length strings to be stored efficiently, and if 'char' were always 8-bits, one could--for some expense in speed and code size--define a scheme were a string prefixed by an even number N would be N/2 bytes long, a string prefixed by an odd value N and an even value M (reading backward) could be ((N-1) + M*char_max)/2, etc. and require that any buffer which claims to offer a certain amount of space to hold a string must allow enough bytes preceding that space to handle the maximum length. The fact that 'char' isn't always 8 bits, however, would complicate such a scheme, since the number of 'char' required to hold a string's length would vary depending upon the CPU architecture.
The null termination allows for fast pointer based operations.
Not a Rationale necessarily but a counterpoint to length-encoded
Certain forms of dynamic length encoding are superior to static length encoding as far as memory is concerned, it all depends on usage. Just look at UTF-8 for proof. It's essentially an extensible character array for encoding a single character. This uses a single bit for each extended byte. NUL termination uses 8 bits. Length-prefix I think can be reasonably termed infinite length as well by using 64 bits. How often you hit the case of your extra bits is the deciding factor. Only 1 extremely large string? Who cares if you're using 8 or 64 bits? Many small strings (Ie Strings of English words)? Then your prefix costs are a large percentage.
Length-prefixed strings allowing time savings is not a real thing. Whether your supplied data is required to have length provided, you're counting at compile time, or you're truly being provided dynamic data that you must encode as a string. These sizes are computed at some point in the algorithm. A separate variable to store the size of a null terminated string can be provided. Which makes the comparison on time-savings moot. One just has an extra NUL at the end... but if the length encode doesn't include that NUL then there's literally no difference between the two. There's no algorithmic change required at all. Just a pre-pass you have to manually design yourself instead of having a compiler/runtime do it for you. C is mostly about doing things manually.
Length-prefix being optional is a selling point. I don't always need that extra info for an algorithm so being required to do it for a every string makes my precompute+compute time never able to drop below O(n). (Ie hardware random number generator 1-128. I can pull from an "infinite string". Let's say it only generates characters so fast. So our string length changes all the time. But my usage of the data probably doesn't care how many random bytes I have. It just wants the next available unused byte as soon as it can get it after a request. I could be waiting on the device. But I could also have a buffer of characters pre-read. A length comparison is a needless waste of computation. A null check is more efficient.)
Length-prefix is a good guard against buffer overflow? So is sane usage of library functions and implementation. What if I pass in malformed data? My buffer is 2 bytes long but I tell the function it's 7! Ex: If gets() was intended to be used on known data it could've had an internal buffer check that tested compiled buffers and malloc() calls and still follow spec. If it was meant to be used as a pipe for unknown STDIN to arrive at unknown buffer then clearly one can't know abut the buffer size which means a length arg is pointless, you need something else here like a canary check. For that matter, you can't length-prefix some streams and inputs, you just can't. Which means the length check has to be built into the algorithm and not a magic part of the typing system. TL;DR NUL-terminated never had to be unsafe, it just ended up that way via misuse.
counter-counter point: NUL-termination is annoying on binary. You either need to do length-prefix here or transform NUL bytes in some way: escape-codes, range remapping, etc... which of course means more-memory-usage/reduced-information/more-operations-per-byte. Length-prefix mostly wins the war here. The only upside to a transform is that no additional functions have to be written to cover the length-prefix strings. Which means on your more optimized sub-O(n) routines you can have them automatically act as their O(n) equivalents without adding more code. Downside is, of course, time/memory/compression waste when used on NUL heavy strings. Depending on how much of your library you end up duplicating to operate on binary data, it may make sense to work solely with length-prefix strings. That said one could also do the same with length-prefix strings... -1 length could mean NUL-terminated and you could use NUL-terminated strings inside length-terminated.
Concat: "O(n+m) vs O(m)" I'm assuming your referring to m as the total length of the string after concatenating because they both have to have that number of operations minimum (you can't just tack-on to string 1, what if you have to realloc?). And I'm assuming n is a mythical amount of operations you no longer have to do because of a pre-compute. If so, then the answer is simple: pre-compute. If you're insisting you'll always have enough memory to not need to realloc and that's the basis of the big-O notation then the answer is even more simple: do binary search on allocated memory for end of string 1, clearly there's a large swatch of infinite zeros after string 1 for us to not worry about realloc. There, easily got n to log(n) and I barely tried. Which if you recall log(n) is essentially only ever as large as 64 on a real computer, which is essentially like saying O(64+m), which is essentially O(m). (And yes that logic has been used in run-time analysis of real data structures in-use today. It's not bullshit off the top of my head.)
Concat()/Len() again: Memoize results. Easy. Turns all computes into pre-computes if possible/necessary. This is an algorithmic decision. It's not an enforced constraint of the language.
String suffix passing is easier/possible with NUL termination. Depending on how length-prefix is implemented it can be destructive on original string and can sometimes not even be possible. Requiring a copy and pass O(n) instead of O(1).
Argument-passing/de-referencing is less for NUL-terminated versus length-prefix. Obviously because you're passing less information. If you don't need length, then this saves a lot of footprint and allows optimizations.
You can cheat. It's really just a pointer. Who says you have to read it as a string? What if you want to read it as a single character or a float? What if you want to do the opposite and read a float as a string? If you're careful you can do this with NUL-termination. You can't do this with length-prefix, it's a data type distinctly different from a pointer typically. You'd most likely have to build a string byte-by-byte and get the length. Of course if you wanted something like an entire float (probably has a NUL inside it) you'd have to read byte-by-byte anyway, but the details are left to you to decide.
TL;DR Are you using binary data? If no, then NUL-termination allows more algorithmic freedom. If yes, then code quantity vs speed/memory/compression is your main concern. A blend of the two approaches or memoization might be best.
Many design decisions surrounding C stem from the fact that when it was originally implemented, parameter passing was somewhat expensive. Given a choice between e.g.
void add_element_to_next(arr, offset)
char[] arr;
int offset;
{
arr[offset] += arr[offset+1];
}
char array[40];
void test()
{
for (i=0; i<39; i++)
add_element_to_next(array, i);
}
versus
void add_element_to_next(ptr)
char *p;
{
p[0]+=p[1];
}
char array[40];
void test()
{
int i;
for (i=0; i<39; i++)
add_element_to_next(arr+i);
}
the latter would have been slightly cheaper (and thus preferred) since it only required passing one parameter rather than two. If the method being called didn't need to know the base address of the array nor the index within it, passing a single pointer combining the two would be cheaper than passing the values separately.
While there are many reasonable ways in which C could have encoded string lengths, the approaches that had been invented up to that time would have all required functions that should be able to work with part of a string to accept the base address of the string and the desired index as two separate parameters. Using zero-byte termination made it possible to avoid that requirement. Although other approaches would be better with today's machines (modern compilers often pass parameters in registers, and memcpy can be optimized in ways strcpy()-equivalents cannot) enough production code uses zero-byte terminated strings that it's hard to change to anything else.
PS--In exchange for a slight speed penalty on some operations, and a tiny bit of extra overhead on longer strings, it would have been possible to have methods that work with strings accept pointers directly to strings, bounds-checked string buffers, or data structures identifying substrings of another string. A function like "strcat" would have looked something like [modern syntax]
void strcat(unsigned char *dest, unsigned char *src)
{
struct STRING_INFO d,s;
str_size_t copy_length;
get_string_info(&d, dest);
get_string_info(&s, src);
if (d.si_buff_size > d.si_length) // Destination is resizable buffer
{
copy_length = d.si_buff_size - d.si_length;
if (s.src_length < copy_length)
copy_length = s.src_length;
memcpy(d.buff + d.si_length, s.buff, copy_length);
d.si_length += copy_length;
update_string_length(&d);
}
}
A little bigger than the K&R strcat method, but it would support bounds-checking, which the K&R method doesn't. Further, unlike the current method, it would be possible to easily concatenate an arbitrary substring, e.g.
/* Concatenate 10th through 24th characters from src to dest */
void catpart(unsigned char *dest, unsigned char *src)
{
struct SUBSTRING_INFO *inf;
src = temp_substring(&inf, src, 10, 24);
strcat(dest, src);
}
Note that the lifetime of the string returned by temp_substring would be limited by those of s and src, which ever was shorter (which is why the method requires inf to be passed in--if it was local, it would die when the method returned).
In terms of memory cost, strings and buffers up to 64 bytes would have one byte of overhead (same as zero-terminated strings); longer strings would have slightly more (whether one allowed amounts of overhead between two bytes and the maximum required would be a time/space tradeoff). A special value of the length/mode byte would be used to indicate that a string function was given a structure containing a flag byte, a pointer, and a buffer length (which could then index arbitrarily into any other string).
Of course, K&R didn't implement any such thing, but that's most likely because they didn't want to spend much effort on string handling--an area where even today many languages seem rather anemic.
According to Joel Spolsky in this blog post,
It's because the PDP-7 microprocessor, on which UNIX and the C programming language were invented, had an ASCIZ string type. ASCIZ meant "ASCII with a Z (zero) at the end."
After seeing all the other answers here, I'm convinced that even if this is true, it's only part of the reason for C having null-terminated "strings". That post is quite illuminating as to how simple things like strings can actually be quite hard.
I don't buy the "C has no string" answer. True, C does not support built-in higher-level types but you can still represent data-structures in C and that's what a string is. The fact a string is just a pointer in C does not mean the first N bytes cannot take on special meaning as a the length.
Windows/COM developers will be very familiar with the BSTR type which is exactly like this - a length-prefixed C string where the actual character data starts not at byte 0.
So it seems that the decision to use null-termination is simply what people preferred, not a necessity of the language.
One advantage of NUL-termination over length-prefixing, which I have not seen anyone mention, is the simplicity of string comparison. Consider the comparison standard which returns a signed result for less-than, equal, or greater-than. For length-prefixing the algorithm has to be something along the following lines:
Compare the two lengths; record the smaller, and note if they are equal (this last step might be deferred to step 3).
Scan the two character sequences, subtracting characters at matching indices (or use a dual pointer scan). Stop either when the difference is nonzero, returning the difference, or when the number of characters scanned is equal to the smaller length.
When the smaller length is reached, one string is a prefix of the other. Return negative or positive value according to which is shorter, or zero if of equal length.
Contrast this with the NUL-termination algorithm:
Scan the two character sequences, subtracting characters at matching indices [note that this is handled better with moving pointers]. Stop when the difference is nonzero, returning the difference. NOTE: If one string is a PROPER prefix of the other, one of the characters in the subtraction will be NUL, i.e zero, and the comparison will naturally stop there.
If the difference is zero, -only then- check if either character is NUL. If so, return zero, otherwise continue to next character.
The NUL-terminated case is simpler, and very easy to implement efficiently with a dual pointer scan. The length-prefixed case does at least as much work, nearly always more. If your algorithm has to do a lot of string comparisons [e.g a compiler!], the NUL-terminated case wins out. Nowadays that might not be as important, but back in the day, heck yeah.
gcc accept the codes below:
char s[4] = "abcd";
and it's ok if we treat is as an array of chars but not string. That is, we can access it with s[0], s[1], s[2], and s[3], or even with memcpy(dest, s, 4). But we'll get messy characters when we trying with puts(s), or worse with strcpy(dest, s).
I think the better question is why you think C owes you anything? C was designed to give you what you need, nothing more. You need to loose the mentality that the language must provide you with everything. Or just continue to use your higher level languages that will give you the luxary of String, Calendar, Containers; and in the case of Java you get one thing in tonnes of variety. Multiple types String, multiple types of unordered_map(s).
Too bad for you, this was not the purpose of C. C was not designed to be a bloated language that offers from a pin to an anchor. Instead you must rely on third party libraries or your own. And there is nothing easier than creating a simple struct that will contain a string and its size.
struct String
{
const char *s;
size_t len;
};
You know what the problem is with this though. It is not standard. Another language might decide to organize the len before the string. Another language might decide to use a pointer to end instead. Another might decide to use six pointers to make the String more efficient. However a null terminated string is the most standard format for a string; which you can use to interface with any language. Even Java JNI uses null terminated strings.
Lastly, it is a common saying; the right data structure for the task. If you find that need to know the size of a string more than anything else; well use a string structure that allows you to do that optimally. But don't make claims that that operation is used more than anything else for everybody. Like, why is knowing the size of a string more important than reading its contents. I find that reading the contents of a string is what I mostly do, so I use null terminated strings instead of std::string; which saves me 5 pointers on a GCC compiler. If I can even save 2 pointers that is good.