Pointer vs Reference difference when passing Eigen objects as arguments - c++

If a have a function that takes a Eigen matrix as an argument, what would be the difference between:
void foo(Eigen::MatrixXd& container){
for(i=0;i<container.rows();i++){
for(j=0;j<container.cols();j++){
container(i,j)=47;
}
}
}
and
void foo(Eigen::MatrixXd* container){
for(i=0;i<container->rows();i++){
for(j=0;j<container->cols();j++){
container->coeffRef(i,j)=47;
}
}
}
In Eigen documentation, they only present the first method - does that mean that there are any advantages to that approach? And what are the drawbacks of not using const when passing the Matrix reference in the first case?

References are nice because there is no such thing as a null reference, so using a reference parameter reduces the risk of someone calling your function with an invalid value.
On the other hand some coding standards recommend making parameters you intend to modify pointers instead of non-const references. This forces the caller to explicitly take the address of any value they pass in making it more obvious the value will be modified. The choice of pointer vs. non-const reference is up to you.
However, if you do not intend to modify the parameter then making it a const reference is definitely the way to go. It avoids the problem of passing invalid pointers, allows you to pass in temporaries, and the caller doesn't care if the parameter is taken by reference since it isn't going to be modified.

With C++ code, there is the expectation that if a parameter is passed as pointer rather than reference, then the null pointer is a valid argument.
That is, by default you should use reference parameters. Only use pointers if the parameter is in some way "optional" and you want the caller to be able to pass the null pointer to signify "no value".

see the line:
container(i,j)=47.
That's not a constant operation, so you're not going to be able to set it to const.
One way a reference is different than a pointer is that your container reference can't be null. Pass by reference is a good way to avoid some errors while getting the benefits of not copying.

Related

How to set pointer to something if it's null and I can't deference it? [duplicate]

In what circumstances should I prefer pass-by-reference? Pass-by-value?
There are four main cases where you should use pass-by-reference over pass-by-value:
If you are calling a function that needs to modify its arguments, use pass-by-reference or pass-by-pointer. Otherwise, you’ll get a copy of the argument.
If you're calling a function that needs to take a large object as a parameter, pass it by const reference to avoid making an unnecessary copy of that object and taking a large efficiency hit.
If you're writing a copy or move constructor which by definition must take a reference, use pass by reference.
If you're writing a function that wants to operate on a polymorphic class, use pass by reference or pass by pointer to avoid slicing.
There are several considerations, including:
Performance
Passing by value copies the data, so passing large data structures by value can inhibit performance. Passing by reference passes only a reference (basically the address) to the data. For large data structures, this can greatly improve performance. For smaller data structures (like an int), passing by reference can inhibit performance.
Modifications
Passing by value copies the data so if the target code modifies that copy, it will not affect the original. Passing by reference passes only the address of the data, so modifications made against that reference will be "visible" to the calling code.
Yes.
Pass by value for things like native types that are small enough that passing them directly is efficient. Otherwise use pass by (const) reference.
The hard part is writing a template that could apply to either (in which case, you usually want to use pass by reference -- the potential penalty for passing a large object by value is much worse than the potential penalty for passing by reference when passing by value would have been preferred).
Edit: this, of course, is assuming a situation where the required semantics would allow either one -- obviously if you're working with something like polymorphic objects, there's no real "preference" involved, because you must use a pointer or reference to get correct behavior.
As others already have replied to your question sufficiently well, I would like to add an important point:
If the class does not have public copy-constructor, then you don't have choice to pass by value; you have to pass by reference (or you can pass pointer).
The following program would not compile:
class A
{
public:
A(){}
private:
A(const A&) {}
};
//source of error : pass by value
void f(A ) {}
int main() {
A a;
f(a);
return 0;
}
Error:
prog.cpp: In function ‘int main()’:
prog.cpp:10: error: ‘A::A(const A&)’ is private
prog.cpp:18: error: within this context
prog.cpp:18: error: initializing argument 1 of ‘void f(A)’
See yourself at ideone : http://www.ideone.com/b2WLi
But once you make function f pass by reference, then it compiles fine : http://www.ideone.com/i6XXB
here's the simple rule:
pass by reference when the value is large.
the other answers are amazing. Just trying to make this simplest.
You have tagged your question with both C and C++.
Therefore, I suggest that you consider using pass by reference in C++ which supports this feature and that you do not consider using it in C which does not support this feature.
pass by reference can be called only in below conditions:
Pass-by-references is more efficient than pass-by-value, because it does not copy the arguments. The formal parameter is an alias for the argument. When the called function read or write the formal parameter, it is actually read or write the argument itself.
The difference between pass-by-reference and pass-by-value is that modifications made to arguments passed in by reference in the called function have effect in the calling function, whereas modifications made to arguments passed in by value in the called function can not affect the calling function.
Use pass-by-reference if you want to modify the argument value in the calling function. Otherwise, use pass-by-value to pass arguments.
The difference between pass-by-reference and pass-by-pointer is
that pointers can be NULL or reassigned whereas references cannot.
Use pass-by-pointer if NULL is a valid parameter value or if you want to reassign the pointer.
Otherwise, use constant or non-constant references to pass arguments.
While pointers are references, "reference" in c++ usually refers to the practice of tagging a parameter of SomeType&.
Which you should never do. The only place it is appropriate is as a magic syntax required to implement the various pre-defined operators. Otherwise:
You should never pass out parameters by reference - pass by pointer, otherwise you make code reviews all but impossible. Pass by reference makes it impossible to tell by examining a call which parameters can be expected to be changed.
You should never pass in parameter by reference either. Again, this means you are performing a meta optimization. You should always just pass-by-value, otherwise you are guilty of peeking inside an object, examining its implementation and deciding that pass-by-reference is preferred for some reason.
Any c++ class should implement all the copy and assignment constructors and overloads necessary to be passed around by value. Otherwise it has not done its job, of abstracting the programmer from the implementation details of the class.

Is pass-by-value/reference defined implementation or behavior wise?

Q: Is pass-by-value/reference defined strictly by behavior or implementation wise in C++, and can you provide an authoritative citation?
I had a conversion with a friend about pass-by-value/reference in C++. We came to a disagreement on the definition of pass-by-value/reference. I understand that passing a pointer to a function is still pass-by-value since the value of the pointer is copied, and this copy is used in the function. Subsequently, dereferencing the pointer in the function and mutating it will modify the original variable. This is where the disagreement appears.
His stance: Just because a pointer value was copied and passed to the function, performing operations on the dereferenced pointer has the ability to affect the original variable, so it has the behavior of pass-by-reference, passing a pointer to a function.
My stance: Passing a pointer to a function does copy the value of the pointer, and operations in the function may affect the original variable; however, just because it may affect the original, this behavior does not constitute it to be pass-by-reference since it is the implementation of the language that is what defines these terms, pass-by-value/reference.
Quoting from the definition given by the highest voted answer here: Language Agnostic
Pass by Reference
When a parameter is passed by reference, the caller and the callee use the same variable for the parameter. If the callee modifies the parameter variable, the effect is visible to the caller's variable.
Pass by Value
When a parameter is passed by value, the caller and callee have two independent variables with the same value. If the callee modifies the parameter variable, the effect is not visible to the caller.
I still have an ambiguous feeling after reading these. For example, the pass by value/reference quotes can support either of our claims. Can anyone clear up the definitions of whether these definition stem from behavior or implementation and provide a citation? Thanks!
Edit: I should be a little more careful of my vocabulary. Let me extend my question with a clarification. What I mean when questioning pass-by-reference is not talking purely about the C++ implementation of & reference, but instead also the theory. In C++, is it that the & pass-by-reference is true PBR because not only can it modify the original value, but also the memory address of the value. This leads to this, example with pointers also count as PBR?
void foo(int ** bar){
*bar = *bar+(sizeof(int*));
cout<<"Inside:"<<*bar<<endl;
}
int main(){
int a = 42;
int* ptrA = &a;
cout<<"Before"<<ptrA<<endl;
foo(&ptrA);
cout<<"After:"<<ptrA<<endl;
}
The output would be that After ptrA is equal to Inside, meaning that not only can the function modify a, but ptrA. Because of this, does this define call-by-reference as a theory: being able to not only modify the value, but the memory address of the value. Sorry for the convoluted example.
You talk a lot about pointers here, which they are indeed passed by value most of the time, but you don't mention actual C++ references, which are actual references.
int a{};
int& b = a;
// Prints true
std::cout << std::boolalpha << (&b == &a) << std::endl;
Here, as you can see, both variables have the same address. Put it simply, especially in this case, references act as being another name for a variable.
References in C++ are special. They are not objects, unlike pointers. You cannot have an array of references, because it would require that references has a size. Reference are not required to have a storage at all.
What about actually passing a variable by reference then?
Take a look at this code:
void foo(int& i) {
i++;
}
int main() {
int i{};
foo(i);
// prints 1
std::cout << i << std::endl;
}
In that particular case, the compiler must have a way to send to which variable the reference is bound. Indeed references are not required to have any storage, but they are not required to not have one either. In this case, if optimizations are disabled, it is most likely that the compiler implements the behavior of references using pointers.
Of course, if optimizations are enabled, it may skip the passing and completely inline the function. In that case, the reference don't exist, or don't have any storage, because the original variable will be used directly.
Other similar optimization happens with pointers too, but that's not the point: The point is, the way references are implemented is implementation defined. They are most likely implemented in term of pointers, but they are not forced to, and the way a reference is implemented may vary from case to case. The behavior of references are defined by the standard, and really is pass-by-reference.
What about pointers? Do they count as passing by reference?
I would say no. Pointers are objects, just like int, or std::string. You can even pass a reference to a pointer, allowing you to change the original pointer.
However, pointers do have reference semantics. They are not reference indeed, just like std::reference_wrapper is not a reference either, but they have reference semantics. I wouldn't call passing a pointer "passing by reference", because you don't have an actual reference, but you indeed have reference semantics.
A lot of things have reference semantics, pointers, std::reference_wrapper, a handle to a resource, even GLuint, which are handle to an opengl object, all have reference semantics, but they are not references. You don't have a reference to the actual object, but you can change the pointed-to object through these handles.
There are other good articles and answers you can read about. They are all very informative about value and reference semantics.
isocpp.org: Reference and Value Semantics
Andrzej's C++ blog: Value semantics
Stack Overflow: What are the differences between a pointer variable and a reference variable in C++?
Passing by value/reference (you forgot one which is passing the address to the location in memory by using a pointer) is part of the implementation of C++.
There is one more way to pass variables to functions, and that is by address. Passing an argument by address involves passing the address of the argument variable (using a pointer) rather than the argument variable itself. Because the argument is an address, the function parameter must be a pointer. The function can then dereference the pointer to access or change the value being pointed to.
Take a look here at what I have always thought to be an authoritative Source: Passing Arguments by Address.
You're correct in regards to a value being copied when passing by value. This is the default behavior in C++. The advantage of passing by value into a function is that the original value cannot be changed by the function when the value is passed into it and this prevents any unwanted bugs and/or side effects when changing the value of an argument.
The problem with passing by Value is that you will incur a huge performance penalty if you pass an entire struct or class many times into your function as you will be passing entire copies of the value you are trying to pass AND in the case of a mutator method in a class, you will not be able to change the original values and will therefore end up creating multiple copies of the data you are trying to modify because you will be forced to return the new value from the function itself instead of from the location in memory where the data structure resides. This is just completely inefficient.
You only want to pass by value when you don't have to change the value of the argument.
Here is a good source on the topic of Passing Arguments by Value.
Now, you will want to use the "Pass by Reference" behavior when you do need to change the value of an argument in the case of arrays, Classes, or structs. It is more efficient to change the value of a data structure by Passing a Reference to the location in memory where the data structure resides into the function. This has the benefit that you will not have to return the new value from the function but rather, the function can then change the value of the reference you have given it directly where it resides in memory.
Take a look here to read more about about Passing an Argument by Reference.
EDIT: In regards to the issue as to whether or not you are passing a non-const by reference or by value when using a pointer, it seems to me the answer is clear. When using a pointer to a non-const, it is neither. When passing a pointer as an argument to a function, you in fact are "Passing the Value" of the ADDRESS into the function and since it is a copy of the ADDRESS of the location in memory where the non-const resides, then you are able to change the Value of the data at that location and not the value of the pointer itself. If you do not want to change the value of the data located at the address pointed to by the pointer being passed by value as an argument into your function, it is good form to make the pointer to an argument a const since the function will not be changing the value of the data itself.
Hope that makes sense.
References are different from pointers. The main reason references were introduced is to support Operator Overloading. C++ is derived from C and during the process, Pointers were inherited from C. As Stroustrup says:
C++ inherited pointers from C, so I couldn't remove them without causing serious compatibility problems.
So, effectively there are three different ways of parameters passing:
Pass by value
Pass by reference &
Pass by pointers.
Now, pass by pointer has the same effect as pass by reference. So how to decide on what you want to use? Going back to what Stroustrup said:
That depends on what you are trying to achieve:
If you want to change the object passed, call by reference or use a pointer; e.g. void f(X&); or void f(X*);
If you don't want to change the object passed and it is big, call by const reference; e.g. void f(const X&);
Otherwise, call by value; e.g. void f(X);
Ref: http://www.stroustrup.com/bs_faq2.html#pointers-and-references
Those terms are about the variable that is passed, in this case the pointer. If you pass a pointer to a function then the variable that is passed is the pointer - holding the address of the object - to an object and not the object it points to.
If you pass a pointer by value then chaning the object it is pointing to in the function would not affect the pointer that was passed to the function.
If you pass the pointer by reference then you can change in the function where the pointer is pointing to and it would modifiy the pointer that was passed to this function.
Thats how it is defined. Otherwise you could argue that if you have a global std::map<int,SomeObject> and you pass an int as key to the object, would also be a pass by reference because you can modify the objects in that global map, and the caller would see those changes. Because this int is also just a pointer to an object.

best practice for parameters?

Is it generally considered better to pass parameters as pointers rather than as value when you can? Obviously it largely depends on the situation, but when there is a choice, is it better to use pointers?
Is this simply for reasons of memory?
And what is better to pass through if it is true, a pointer or a reference?
Some general rules of thumb:
If you need to modify it, pass a pointer or a reference. If the value might be null, pass a pointer, otherwise pass a reference.
If it's large, pass a const pointer or const reference, depending on whether null is a legal value.
If using pointers, prefer smart pointers to bare pointers.
Otherwise, pass by value.
In C++, when you pass by value, it calls the copy constructor for custom classes. This can be really expensive if you are passing vectors or large data structures.
You should use const and reference to not copy it and still protect the value. Otherwise, using value for smaller things like ints is typically reasonable.
It best practive to NEVER pass a pointer.
Pass by const reference to avoid the cost of copying.
Pass by reference if you want the function to modify the original.
Otherwise pass by value.
Pointers should never by passed in the RAW (no ownership semantics)
Pointers should never be held outside a smart pointer or a container class.
Only if the object can potentially be NULL and ownership is explicitly not passed (via lots of documentation) should you ever pass a pointer.
The only time I expect to see a pointer is when I can not use a reference (ie it could be NULL) and that is practically never (or wrapped deep inside a container method).
It depends on which kind of parameter you are passing. If the parameter size is reasonably (again, decided by you) low then you may want to pass by value.
For large size structs/arrays it is always a good practice to pass by pointer or reference. On top of this, if the parameter is not supposed to be modifiable then you may also add const.
I usually pass by reference (possible a const one) for input parameters, and by pointers for output parameters.
This way it is immediately visible which parameters are input ones and which parameters are the output ones (the callee modify their content).
Of course, form small types like int, long etc I don't bother with references.

Where should I prefer pass-by-reference or pass-by-value?

In what circumstances should I prefer pass-by-reference? Pass-by-value?
There are four main cases where you should use pass-by-reference over pass-by-value:
If you are calling a function that needs to modify its arguments, use pass-by-reference or pass-by-pointer. Otherwise, you’ll get a copy of the argument.
If you're calling a function that needs to take a large object as a parameter, pass it by const reference to avoid making an unnecessary copy of that object and taking a large efficiency hit.
If you're writing a copy or move constructor which by definition must take a reference, use pass by reference.
If you're writing a function that wants to operate on a polymorphic class, use pass by reference or pass by pointer to avoid slicing.
There are several considerations, including:
Performance
Passing by value copies the data, so passing large data structures by value can inhibit performance. Passing by reference passes only a reference (basically the address) to the data. For large data structures, this can greatly improve performance. For smaller data structures (like an int), passing by reference can inhibit performance.
Modifications
Passing by value copies the data so if the target code modifies that copy, it will not affect the original. Passing by reference passes only the address of the data, so modifications made against that reference will be "visible" to the calling code.
Yes.
Pass by value for things like native types that are small enough that passing them directly is efficient. Otherwise use pass by (const) reference.
The hard part is writing a template that could apply to either (in which case, you usually want to use pass by reference -- the potential penalty for passing a large object by value is much worse than the potential penalty for passing by reference when passing by value would have been preferred).
Edit: this, of course, is assuming a situation where the required semantics would allow either one -- obviously if you're working with something like polymorphic objects, there's no real "preference" involved, because you must use a pointer or reference to get correct behavior.
As others already have replied to your question sufficiently well, I would like to add an important point:
If the class does not have public copy-constructor, then you don't have choice to pass by value; you have to pass by reference (or you can pass pointer).
The following program would not compile:
class A
{
public:
A(){}
private:
A(const A&) {}
};
//source of error : pass by value
void f(A ) {}
int main() {
A a;
f(a);
return 0;
}
Error:
prog.cpp: In function ‘int main()’:
prog.cpp:10: error: ‘A::A(const A&)’ is private
prog.cpp:18: error: within this context
prog.cpp:18: error: initializing argument 1 of ‘void f(A)’
See yourself at ideone : http://www.ideone.com/b2WLi
But once you make function f pass by reference, then it compiles fine : http://www.ideone.com/i6XXB
here's the simple rule:
pass by reference when the value is large.
the other answers are amazing. Just trying to make this simplest.
You have tagged your question with both C and C++.
Therefore, I suggest that you consider using pass by reference in C++ which supports this feature and that you do not consider using it in C which does not support this feature.
pass by reference can be called only in below conditions:
Pass-by-references is more efficient than pass-by-value, because it does not copy the arguments. The formal parameter is an alias for the argument. When the called function read or write the formal parameter, it is actually read or write the argument itself.
The difference between pass-by-reference and pass-by-value is that modifications made to arguments passed in by reference in the called function have effect in the calling function, whereas modifications made to arguments passed in by value in the called function can not affect the calling function.
Use pass-by-reference if you want to modify the argument value in the calling function. Otherwise, use pass-by-value to pass arguments.
The difference between pass-by-reference and pass-by-pointer is
that pointers can be NULL or reassigned whereas references cannot.
Use pass-by-pointer if NULL is a valid parameter value or if you want to reassign the pointer.
Otherwise, use constant or non-constant references to pass arguments.
While pointers are references, "reference" in c++ usually refers to the practice of tagging a parameter of SomeType&.
Which you should never do. The only place it is appropriate is as a magic syntax required to implement the various pre-defined operators. Otherwise:
You should never pass out parameters by reference - pass by pointer, otherwise you make code reviews all but impossible. Pass by reference makes it impossible to tell by examining a call which parameters can be expected to be changed.
You should never pass in parameter by reference either. Again, this means you are performing a meta optimization. You should always just pass-by-value, otherwise you are guilty of peeking inside an object, examining its implementation and deciding that pass-by-reference is preferred for some reason.
Any c++ class should implement all the copy and assignment constructors and overloads necessary to be passed around by value. Otherwise it has not done its job, of abstracting the programmer from the implementation details of the class.

when to pass function arguments by reference and when by address?

Could anyone explain with some examples when it is better to call functions by reference and when it is better to call by address?
This has already been discussed. See Pointer vs. Reference.
Pass your arguments to function using reference whenever possible.
Passing arguments by reference eliminate the chance of them being NULL.
If you want it to be possible to pass NULL value to a function then use pointer.
One nice convention is to:
Pass objects by pointer whenever they may be manipulated (side-effect or as output) by the function.
Pass all other objects by const reference.
This makes it very clear to the caller, with minimal documentation and zero performance cost, which parameters are const or not.
You can apply this to primitive types as well, but it's debatable as to whether or not you need to use const references for non-output parameters, since they are clearly pass-by-value and cannot act as output of the function in any way (for direct types - not pointers/references - of course).