How can I check if a value is NaN? I'd prefer a solution that can be used in Clojure too without much extra stuff (so I don't want to use an external library, such as underscore). Here is what I tried
(number? js/NaN) ;=> true, well I'd expect false
(= js/NaN (js/parseInt "xx")) ;=> false
(= js/NaN js/NaN) ;=> false, even worse
; This is the best I could come up with
(defn actual-number?
[n]
(or (> 0 n) (<= 0 n)))
You shouldn't compare NaN's - they're always unequal. You should be able to use javascript's built-in isNaN function like
(js/isNaN x)
You can use isNaN js function:
(js/isNaN ..)
Be aware that
(js/isNaN [1,2])
returns true. There are other many cases where js/isNaN does not correspond to what one expects.
If you're using underscore.js in the browser, you can delegate to (.isNaN js/_ ..) instead.
Otherwise, the following function should to the trick:
(defn isNaN [node]
(and (= (.call js/toString node) (str "[object Number]"))
(js/eval (str node " != +" node ))))
Related
Is it possible to remove the let statement / avoid the intermediate 'x' in the following code?:
(let [x (f a)]
(when (pred? x) x))
I bumped into this problem in the following use case:
(let [coll (get-collection-somewhere)]
(when (every? some? coll) ; if the collection doesn't contain nil values
(remove true? coll))) ; remove all true values
So if the collection is free of nil values, only not-true values remain, like numbers, strings, or whatever.
So, I'm looking for something like this:
(defn pass-if-true [x pred?]
(when (pred? x) x))
Assuming that you don't want to define that pass-if-true function, the best you can do is an anonymous function:
(#(when (every? some? %)
(remove true? %))
(get-collection-somewhere))
You could also extract the predicate and transformation into parameters:
(#(when (%1 %3) (%2 %3))
(partial every? some?)
(partial remove true?)
(get-collection-somewhere))
The let form is necessary to prevent your collection-building function from running twice:
(f a) or (get-collection-somewhere)
This is a typical idiom and you are doing it correctly.
Of course, you don't need the let if you already have the collection and are not building inside this expression.
However, you may wish to see when-let:
https://clojuredocs.org/clojure.core/when-let
It can save some keystrokes in some circumstances, but this isn't one of them.
Strange as it may sound, I am looking for function versions of the and and or macros in Clojure.
Why? For one I am curious.
Second, I want to use or in precondition and postcondition checks. This does not work:
(defn victor
[x]
{:post (or (nil? %) (vector %))}
;; ...
)
I want the postcondition to check to see if victor returns a vector or nil, but it fails:
#<CompilerException java.lang.RuntimeException: Can't take value of a macro: #'clojure.core/or, compiling:(test/test.clj:10:1)>
I don't think bit-and and bit-or are quite what I'm looking for.
Update: This syntax works without an error:
(defn victor
[x]
{:post [(or (nil? %) (vector %))]}
;; ...
)
I'm still curious if functions exist, though.
I think the standard method is simply to wrap and and or in functions, e.g. (fn [x y] (or x y)). In some contexts, another function will work. For example, a note in the clojure docs for and suggests using (every? identity [true false]). some, not-every?, and not-any? can be used in a similar way.
In general, and and or functions would be undesirable because they cannot use short-circuiting. Consider the following code:
(and false some-expensive-fn)
(or true some-expensive-fn)
With and and or as macros the above code won't execute some-expensive-fn, because it is unnecessary to determine the overall truth value of the expression. In function expressions the arguments are evaluated before being passed to the function, but in macros they are not.
#Triangle Man is right. Short-circuiting won't work, but nevertheless you can define your own function versions:
user=> (defn && [x y] (and x y))
#'user/&&
user=> (&& true false)
false
user=> (&& true true)
true
user=> (defn || [x y] (or x y))
#'user/||
user=> (|| true false)
true
user=> (|| true true)
true
user=> (|| false false)
false
user=>
I'm a total beginer in Clojure and I've ran into a problem that I'm not even sure if can be done in Closure.
So the issue is the following. I've implemented a function that computes the prime numbers from an interval (up to a limit).
(defn gather_primes_in_range [range_start range_end target_number prime_list]
(if (or (= 0 target_number) (> range_start range_end) (= FIND_MORE_PRIMES false))
prime_list
(do
(if (is_prime? range_start)
(gather_primes_in_range (+ range_start 1) range_end (- target_number 1) (conj, prime_list, range_start))
(gather_primes_in_range (+ range_start 1) range_end target_number prime_list)
)
)
)
)
(defn find_nr_of_primes_in_range [range_start range_end target_number]
(if (< range_start 2)
(gather_primes_in_range 2 range_end target_number [])
(gather_primes_in_range range_start range_end target_number [])
)
)
This works just fine. But what I want now is to have a global variable that should store on each method call the primes that are found in a variable to lookup later. In other languages like Python, Ruby or Scala I would just do this by having a Set to which I add entries before returing from the function. But in Clojure I have no ideea how to go around this.
Basically what I tried is, have somewhere global declared:
(def PRIMES_FOUND_SO_FAR #{})
And then somehow on return add the entries to this variable. Is this possible at all in Clojure and if so how? I've tried on other variables to change their values using either swap! and atom, or set! but could not make it to work here in any situation.
Firstly, I strongly advice you to read about clojure code conventions What are Clojure's Naming Conventions?
Let me show you some improvements of your code.
1) Applying clojure naming conventions.
Then switch from (+ variable 1) to (inc variable) (the same optimizations with dec).
Also (= FIND_MORE_PRIMES false) can be simply replaced by find-more-primes?
And finally the condition (= 0 smthng) could be written in more idiomatic style (zero? smthng)
Now your code looks a bit more readable:
(defn gather-primes-in-range [range-start range-end target-number prime-list]
(if (or (zero? target-number) (> range-start range-end) need-more-primes?)
prime-list
(do
(if (is-prime? range-start)
(gather-primes-in-range (inc range-start) range-end (dec target-number) (conj prime-list range-start))
(gather-primes-in-range (inc range-start) range-end target-number prime-list)))))
2) Now we should remove redundant do call cause it wraps the only one function call.
And the last trick is to apply tail recursion (http://clojure.org/special_forms#Special%20Forms--(recur%20exprs*)) via swapping entire gather-primes-in-range calls to recur
(defn gather-primes-in-range
[range-start range-end target-number prime-list]
(if (or (zero? target-number) (> range-start range-end) need-more-primes?)
prime-list
(if (is-prime? range-start)
(recur (inc range-start) range-end (dec target-number) (conj prime-list range-start))
(recur (inc range-start) range-end target-number prime-list))))
And here comes time for answering your question. You wouldn't benefit from this approach
(def PRIMES_FOUND_SO_FAR #{})
because you haven't opportunity to change this set. The only thing that you can deal with it is to create some new immutable data structure from that one.
As #georgek mention you could simply use atom in this particular case.
(def PRIMES_FOUND_SO_FAR (atom #{}))
Adding new prime number to atom:
(swap! PRIMES_FOUND_SO_FAR conj prime-number)
Deref atom for extracting the value:
#PRIMES_FOUND_SO_FAR ;; or (deref PRIMES_FOUND_SO_FAR)
-> #{2 3 5 7 11}
Anyway your code is a little bit imperative but you should always remember that clojure is functional language with immutable data structures, functions as arguments, etc. using global variables is not good idea at all. BTW thats how your function should look like in clojure style:
(defn gather-primes-in-range [start end target-number]
(take target-number (filter is-prime? (range start end))))
for those who have spent too much time searching how to modify a global (root) variable in clojure here is the solution:
(def user-remote-browser "anonymous")
you can modify it from anywhere i suppose but in the same namepace with:
(alter-var-root #'user-remote-browser (constantly name))
alter-var-root use a function to modify a variable,
constantly create a constant function returning here the string name
In Common Lisp you use the (null x) function to check for empty lists and nil values.
Most logically this maps to
(or (nil? x) (= '() x))
In clojure. Can someone suggest a more idiomatic way to do it in Clojure?
To get the same result for an empty list in Clojure as you do in Common Lisp, use the empty? function. This function is in the core library: no imports are necessary.
It is also a predicate, and suffixed with a ?, making it a little clearer what exactly you're doing in the code.
=> (empty? '())
true
=> (empty? '(1 2))
false
=> (empty? nil)
true
As j-g faustus already noted, seq can be used for a similar effect.
seq also serves as test for end,
already idiomatic
(when (seq coll)
...)
From clojure.org lazy
It works because (seq nil) and (seq ()) both return nil.
And since nil means false, you don't need an explicit nil test.
Can Clojure implement (g ∘ f) constructions like Haskell's g . f? I'm currently using workarounds like (fn [n] (not (zero? n))), which isn't nearly as nice :)
There is a function to do this in clojure.core called comp. E.g.
((comp not zero?) 5)
; => true
You might also want to consider using -> / ->>, e.g.
(-> 5 zero? not)
; => true
You can use Clojure's reader-macro shortcut for anonymous functions to rewrite your version in fewer keystrokes.
user=> (#(not (zero? %)) 1)
true
For the specific case of composing not and another function, you can use complement.
user=> ((complement zero?) 1)
true
Using not in combination with when and if is common enough that if-not and when-not are core functions.
user=> (if-not (zero? 1) :nonzero :zero)
:nonzero
Another way is (reduce #(%2 %1) n [zero? not]) but I like (comp not zero?), already mentioned by Michal, better.