Boost asio async_write callback doesn't get called - c++

I'm trying to write a simple server to send messages asynchronously, but my callback for async_write doesn't get called. By the way, data is succesfully transmitted to the client.
Firs, my server initialisation code:
void Server::start()
{
ioService = new boost::asio::io_service();
acceptor = new tcp::acceptor(*ioService, tcp::endpoint(tcp::v4(), port));
serverRunning = true;
serverThread = new boost::thread(&Server::run, this);
startAccept();
}
My start accept and accept handler methods:
void Server::startAccept()
{
serverSocket = new tcp::socket(acceptor->get_io_service());
acceptor->async_accept(*serverSocket,
boost::bind(&Server::handleAccept, shared_from_this(),
boost::asio::placeholders::error));
}
void Server::handleAccept( const boost::system::error_code& error )
{
changeState(Connected);
}
The handleAccept method get called when i connect, the changeState method does nothing for now. After the client connected, i put some data to the toSend vector, and the server's thread sends them:
void Server::run(){
while( serverRunning ){
ioService->poll();
if (toSend.size()>0 ){
mtx.lock();
for (int i=0; i<toSend.size(); i++){
cout << "async write" << endl;
boost::asio::async_write(*serverSocket, boost::asio::buffer(toSend.at(i)),
boost::bind(&Server::handleSend, shared_from_this(),
toSend.at(i),
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
toSend.clear();
mtx.unlock();
}
usleep(1000);
}
}
I can see "async write" messages coming on std out, and the client recieves the data as well. My handleSend method is just some cout now, but it never get called. Why?

If you really want to poll the io_service manually, do this after it gets some work, and call reset between the iterations.
Besides, do not call asio::async_write in a loop - the data won't arrive in the correct order. Instead, either prepare a single sequence of buffers and send it at once, or chain async_write - completion handler - async_write, as shown in the examples.

Related

asio async operations aren't processed

I am following ASIO's async_tcp_echo_server.cpp example to write a server.
My server logic looks like this (.cpp part):
1.Server startup:
bool Server::Start()
{
mServerThread = std::thread(&Server::ServerThreadFunc, this, std::ref(ios));
//ios is asio::io_service
}
2.Init acceptor and listen for incoming connection:
void Server::ServerThreadFunc(io_service& service)
{
tcp::endpoint endp{ address::from_string(LOCAL_HOST),MY_PORT };
mAcceptor = acceptor_ptr(new tcp::acceptor{ service,endp });
// Add a job to start accepting connections.
StartAccept(*mAcceptor);
// Process event loop.Hang here till service terminated
service.run();
std::cout << "Server thread exiting." << std::endl;
}
3.Accept a connection and start reading from the client:
void Server::StartAccept(tcp::acceptor& acceptor)
{
acceptor.async_accept([&](std::error_code err, tcp::socket socket)
{
if (!err)
{
std::make_shared<Connection>(std::move(socket))->StartRead(mCounter);
StartAccept(acceptor);
}
else
{
std::cerr << "Error:" << "Failed to accept new connection" << err.message() << std::endl;
return;
}
});
}
void Connection::StartRead(uint32_t frameIndex)
{
asio::async_read(mSocket, asio::buffer(&mHeader, sizeof(XHeader)), std::bind(&Connection::ReadHandler, shared_from_this(), std::placeholders::_1, std::placeholders::_2, frameIndex));
}
So the Connection instance finally triggers ReadHandler callback where I perform actual read and write:
void Connection::ReadHandler(const asio::error_code& error, size_t bytes_transfered, uint32_t frameIndex)
{
if (bytes_transfered == sizeof(XHeader))
{
uint32_t reply;
if (mHeader.code == 12345)
{
reply = (uint32_t)12121;
size_t len = asio::write(mSocket, asio::buffer(&reply, sizeof(uint32_t)));
}
else
{
reply = (uint32_t)0;
size_t len = asio::write(mSocket, asio::buffer(&reply, sizeof(uint32_t)));
this->mSocket.shutdown(tcp::socket::shutdown_both);
return;
}
}
while (mSocket.is_open())
{
XPacket packet;
packet.dataSize = rt->buff.size();
packet.data = rt->buff.data();
std::vector<asio::const_buffer> buffers;
buffers.push_back(asio::buffer(&packet.dataSize,sizeof(uint64_t)));
buffers.push_back(asio::buffer(packet.data, packet.dataSize));
auto self(shared_from_this());
asio::async_write(mSocket, buffers,
[this, self](const asio::error_code error, size_t bytes_transfered)
{
if (error)
{
ERROR(200, "Error sending packet");
ERROR(200, error.message().c_str());
}
}
);
}
}
Now, here is the problem. The server receives data from the client and sends ,using sync asio::write, fine. But when it comes to to asio::async_read or asio::async_write inside the while loop, the method's lambda callback never gets triggered, unless I put io_context().run_one(); immediately after that. I don't understand why I see this behaviour. I do call io_service.run() right after acceptor init, so it blocks there till the server exit. The only difference of my code from the asio example, as far as I can tell, is that I run my logic from a custom thread.
Your callback isn't returning, preventing the event loop from executing other handlers.
In general, if you want an asynchronous flow, you would chain callbacks e.g. callback checks is_open(), and if true calls async_write() with itself as the callback.
In either case, the callback returns.
This allows the event loop to run, calling your callback, and so on.
In short, you should make sure your asynchronous callbacks always return in a reasonable time frame.

C++ asio provide async execution of thread

I got a simple server app. When new client connecting, it handles request from client and send data back to it. My problem is to provide a async execution of handle thread. Now, when began a handle thread it stops acceptor loop and wait for return of corresponding function.
The question is how to organize the continuation of acceptor loop (to be able to simultaneously handle other connection) after starting a handle thread?
Server.h:
class Server
{
private:
//Storage
boost::asio::io_service service;
boost::asio::ip::tcp::acceptor* acceptor;
boost::mutex mtx;
//Methods
void acceptorLoop();
void HandleRequest(boost::asio::ip::tcp::socket* clientSock);
public:
Server();
};
Server.cpp
void Server::acceptorLoop()
{
std::cout << "Waiting for clients..." << std::endl;
while (TRUE)
{
boost::asio::ip::tcp::socket clientSock (service);
acceptor->accept(clientSock); //new socket accepted
std::cout << "New client joined! ";
boost::thread request_thread (&Server::HandleRequest, this, &clientSock); //create a thread
request_thread.join(); //here I start thread, but I want to continue acceptor loop and not wait until function return.
}
}
void Server::HandleRequest(boost::asio::ip::tcp::socket* clientSock)
{
if (clientSock->available())
{
//Works with socket
}
}
Server::Server()
{
acceptor = new boost::asio::ip::tcp::acceptor(service, boost::asio::ip::tcp::endpoint(boost::asio::ip::tcp::v4(), 8001));
acceptorLoop(); //loop started
}
You have two main problems here:
Thread joining - you are waiting for thread finish before accept new connection
Using pointer to a socket created on a stack
I recommend you this changes:
boost::asio::ip::tcp::socket clientSock (service);
acceptor->accept(clientSock); //new socket accepted
std::cout << "New client joined! ";
std::thread{std::bind(&Server::HandleRequest, this, std::placeholders::_1), std::move(clientSock)}.detach();
And HandleRequest will change to this:
void Server::HandleRequest(boost::asio::ip::tcp::socket&& clientSock)
{
if (clientSock.available())
{
//Works with socket
}
}
You can also store thread somewhere and join it later instead of detaching.
So why do you call join? Join is about waiting for a thread to finish, and you say you don't want to wait for the thread, so, well... just don't call join?

Boost.Asio: Why the timer is executed only once?

I have a function called read_packet. This function remains blocked while there is no connection request or the timer is signaled.
The code is the following:
std::size_t read_packet(const std::chrono::milliseconds& timeout,
boost::system::error_code& error)
{
// m_timer_ --> boost::asio::high_resolution_timer
if(!m_is_first_time_) {
m_is_first_time = true;
// Set an expiry time relative to now.
m_timer_.expires_from_now( timeout );
} else {
m_timer_.expires_at( m_timer_.expires_at() + timeout );
}
// Start an asynchronous wait.
m_timer_.async_wait(
[ this ](const boost::system::error_code& error){
if(!error) m_is_timeout_signaled_ = true;
}
);
auto result = m_io_service_.run_one();
if( !m_is_timeout_signaled_ ) {
m_timer_.cancel();
}
m_io_service_.reset();
return result;
}
The function works correctly while not receiving a connection request. All acceptances of requests are asynchronous.
After accepting a connection, the run_one() function does not remains blocked the time set by the timer. The function always returns 1 (one handle has been processed). This handle corresponds to the timer.
I do not understand why this situation occurs.
Why the function is not blocked the time required for the timer?
Cheers.
NOTE: This function is used in a loop.
UPDATE:
I have my own io_service::run() function. This function performs other actions and tasks. I want to listen and process the network level for a period of time:
If something comes on the network level, io_service::run_one() returns and read_packet() returns the control to my run() function.
Otherwise, the timer is fired and read_packet() returns the control to my run() function.
Everything that comes from the network level is stored in a data structure. Then my run() function operates on that data structure.
It also runs other options.
void run(duration timeout, boost::system::error_code& error)
{
time_point start = clock_type::now();
time_point deadline = start + timeout;
while( !stop() ) {
read_packet(timeout, error);
if(error) return;
if(is_timeout_expired( start, deadline, timeout )) return;
// processing network level
// other actions
}
}
In my case, the sockets are always active until a client requests the closing of the connection.
During a time slot, you manage the network level and for another slot you do other things.
After reading the question more closely I got the idea that you are actually trying to use Asio to get synchronous IO, but with a timeout on each read operation.
That's not what Asio was intended for (hence, the name "Asynchronous IO Library").
But sure, you can do it if you insist. Like I said, I feel you're overcomplicating things.
In the completion handler of your timer, just cancel the socket operation if the timer had expired. (Note that if it didn't, you'll get operation_aborted, so check the error code).
Small selfcontained example (which is what you should always do when trying to get help, by the way):
Live On Coliru
#include <boost/asio.hpp>
#include <boost/asio/high_resolution_timer.hpp>
#include <iostream>
struct Program {
Program() { sock_.connect({ boost::asio::ip::address_v4{}, 6771 }); }
std::size_t read_packet(const std::chrono::milliseconds &timeout, boost::system::error_code &error) {
m_io_service_.reset();
boost::asio::high_resolution_timer timer { m_io_service_, timeout };
timer.async_wait([&](boost::system::error_code) {
sock_.cancel();
});
size_t transferred = 0;
boost::asio::async_read(sock_, boost::asio::buffer(buffer_), [&](boost::system::error_code ec, size_t tx) {
error = ec;
transferred = tx;
});
m_io_service_.run();
return transferred;
}
private:
boost::asio::io_service m_io_service_;
using tcp = boost::asio::ip::tcp;
tcp::socket sock_{ m_io_service_ };
std::array<char, 512> buffer_;
};
int main() {
Program client;
boost::system::error_code ec;
while (!ec) {
client.read_packet(std::chrono::milliseconds(100), ec);
}
std::cout << "Exited with '" << ec.message() << "'\n"; // operation canceled in case of timeout
}
If the socket operation succeeds you can see e.g.:
Exited with 'End of file'
Otherwise, if the operation didn't complete within 100 milliseconds, it will print:
Exited with 'Operation canceled'
See also await_operation in this previous answer, which generalizes this pattern a bit more:
boost::asio + std::future - Access violation after closing socket
Ok, The code is incorrect. When the timer is canceled, the timer handler is always executed. For this reason io_service::run_one() function is never blocked.
More information: basic_waitable_timer::cancel
Thanks for the help.

Consume only part of data in boost::asio basic_stream_socket::async_read_some handler

I am new into boost::asio so my question maight be dumb - sorry if it is such.
I am writing asynchronous server application with keepalive (multiple requests may be sent on single connection).
Connection handling routine is simple:
In a loop:
schedule read request with socket->async_read_some(buffer, handler)
from handler schedule write response with async_write.
The problem I am facing is that when
handler passed to async_read_some is called by on of io_service threads, buffers may actually contain more data than single request (e.g. part of next request sent by client).
I do not want to (and cannot if it is only part of request) handle this remaining bytes at the moment.
I would like to do it after handling previous request is finished.
It would be easy to address this if I had the possiblity to reinject unnecessary remainging data back to the socket. So it is handled on next async_read_some call.
Is there such possiblity in boost::asio or do I have to store the remaining data somewhere aside, and handle it myself with extra code.
I think what you are looking for is asio::streambuf.
Basically, you can inspect your seeded streambuf as a char*, read as much as you see fit, and then inform how much was actually processed by consume(amount).
Working code-example to parse HTTP-header as a client:
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <iostream>
#include <string>
namespace asio = boost::asio;
std::string LINE_TERMINATION = "\r\n";
class Connection {
asio::streambuf _buf;
asio::ip::tcp::socket _socket;
public:
Connection(asio::io_service& ioSvc, asio::ip::tcp::endpoint server)
: _socket(ioSvc)
{
_socket.connect(server);
_socket.send(boost::asio::buffer("GET / HTTP/1.1\r\nHost: localhost\r\nConnection: close\r\n\r\n"));
readMore();
}
void readMore() {
// Allocate 13 bytes space on the end of the buffer. Evil prime number to prove algorithm works.
asio::streambuf::mutable_buffers_type buf = _buf.prepare(13);
// Perform read
_socket.async_read_some(buf, boost::bind(
&Connection::onRead, this,
asio::placeholders::bytes_transferred, asio::placeholders::error
));
}
void onRead(size_t read, const boost::system::error_code& ec) {
if ((!ec) && (read > 0)) {
// Mark to buffer how much was actually read
_buf.commit(read);
// Use some ugly parsing to extract whole lines.
const char* data_ = boost::asio::buffer_cast<const char*>(_buf.data());
std::string data(data_, _buf.size());
size_t start = 0;
size_t end = data.find(LINE_TERMINATION, start);
while (end < data.size()) {
std::cout << "LINE:" << data.substr(start, end-start) << std::endl;
start = end + LINE_TERMINATION.size();
end = data.find(LINE_TERMINATION, start);
}
_buf.consume(start);
// Wait for next data
readMore();
}
}
};
int main(int, char**) {
asio::io_service ioSvc;
// Setup a connection and run
asio::ip::address localhost = asio::ip::address::from_string("127.0.0.1");
Connection c(ioSvc, asio::ip::tcp::endpoint(localhost, 80));
ioSvc.run();
}
One way of tackling this when using a reliable and ordered transport like TCP is to:
Write a header of known size, containing the size of the rest of the message
Write the rest of the message
And on the receiving end:
Read just enough bytes to get the header
Read the rest of the message and no more
If you know the messages are going to be of a fixed length, you can do something like the following:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
void
Connection::readMore()
{
if (m_connected)
{
// Asynchronously read some data from the connection into the buffer.
// Using shared_from_this() will prevent this Connection object from
// being destroyed while data is being read.
boost::asio::async_read(
m_socket,
boost::asio::buffer(
m_readMessage.getData(),
MessageBuffer::MESSAGE_LENGTH
),
boost::bind(
&Connection::messageBytesRead,
shared_from_this(),
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred
),
boost::bind(
&Connection::handleRead,
shared_from_this(),
boost::asio::placeholders::error
)
);
}
}
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
std::size_t
Connection::messageBytesRead(const boost::system::error_code& _errorCode,
std::size_t _bytesRead)
{
return MessageBuffer::MESSAGE_LENGTH - _bytesRead;
}
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
void
Connection::handleRead(const boost::system::error_code& _errorCode)
{
if (!_errorCode)
{
/// Do something with the populated m_readMessage here.
readMore();
}
else
{
disconnect();
}
}
The messageBytesRead callback will indicate to boost::asio::async_read when a complete message has been read. This snippet was pulled from an existing Connection object from running code, so I know it works...

Boost.Asio deadline_timer not working as expected

I'm trying to implement a timeout for a Boost.Asio read on a TCP socket.
I am trying to use a async_read_some with a deadline_timer. My function below is a member of a class that holds a smart pointer to the TCP socket and io_service. What I would expect to happen when called on an active socket that doesn't return any data is wait 2 seconds and return false.
What happens is: If the socket never returns any data it works as expected. How ever if the server returns the data the proceeding calls to the method below return immediately because to timers callback is called without waiting the two seconds.
I tried commenting out the async_read_some call and the function always works as expected. Why would async_read_some change how the timer works?
client::client() {
// Init socket and timer
pSock = boost::shared_ptr<tcp::socket > (new tcp::socket(io_service));
}
bool client::getData() {
// Reset io_service
io_service.reset();
// Init read timer
boost::asio::deadline_timer timer(pSock->io_service());
timer.expires_from_now(boost::posix_time::seconds(2));
timer.async_wait(boost::bind(&client::read_timeout, this, boost::system::error_code(), true));
// // Async read the data
pSock->async_read_some(boost::asio::buffer(buffer_),
boost::bind(&client::read_complete,
this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred
));
// While io_service runs check read result
while (pSock->io_service().run_one()) {
if (m_read_result > 0) {
// Read success
return m_read_result;
}else if(m_read_result < 0){
return false;
}
}
}
}
void client::read_complete(const boost::system::error_code& error, size_t bytes_transferred) {
if (!error) {
m_read_result = bytes_transferred;
}else{
m_read_result = -1;
}
}
void client::read_timeout(const boost::system::error_code& error, bool timeout) {
if(!error){
m_read_result = -1;
}
}
Simple problem when setting up the timer boost::system::error_code() should be changed to _1 or a error::placeholder
timer.async_wait(boost::bind(&client::read_timeout, this, _1, true));
You have negated condition when you check for connection errors.
It should be:
if(error){
std::cout << "read_timeout Error - " << error.message() << std::endl;
}
Now you will see, that the callback is invoked with error code boost::asio::error::operation_aborted.
This is because, when you receive any data, you return from function getData and deadline_timer's destructor calls the callback with the error code set.