I am not sure whether I should ask here or programmers but I have been trying to work out why this program wont work and although I have found some bugs, it still returns "x is not a prime number", even when it is.
#include <iostream>
using namespace std;
bool primetest(int a) {
int i;
//Halve the user input to find where to stop dividing to (it will remove decimal point as it is an integer)
int b = a / 2;
//Loop through, for each division to test if it has a factor (it starts at 2, as 1 will always divide)
for (i = 2; i < b; i++) {
//If the user input has no remainder then it cannot be a prime and the loop can stop (break)
if (a % i == 0) {
return(0);
break;
}
//Other wise if the user input does have a remainder and is the last of the loop, return true (it is a prime)
else if ((a % i != 0) && (i == a -1)) {
return (1);
break;
}
}
}
int main(void) {
int user;
cout << "Enter a number to test if it is a prime or not: ";
cin >> user;
if (primetest(user)) {
cout << user << " is a prime number.";
}
else {
cout << user<< " is not a prime number.";
}
cout << "\n\nPress enter to exit...";
getchar();
getchar();
return 0;
}
Sorry if this is too localised (in which case could you suggest where I should ask such specific questions?)
I should add that I am VERY new to C++ (and programming in general)
This was simply intended to be a test of functions and controls.
i can never be equal to a - 1 - you're only going up to b - 1. b being a/2, that's never going to cause a match.
That means your loop ending condition that would return 1 is never true.
In the case of a prime number, you run off the end of the loop. That causes undefined behaviour, since you don't have a return statement there. Clang gave a warning, without any special flags:
example.cpp:22:1: warning: control may reach end of non-void function
[-Wreturn-type]
}
^
1 warning generated.
If your compiler didn't warn you, you need to turn on some more warning flags. For example, adding -Wall gives a warning when using GCC:
example.cpp: In function ‘bool primetest(int)’:
example.cpp:22: warning: control reaches end of non-void function
Overall, your prime-checking loop is much more complicated than it needs to be. Assuming you only care about values of a greater than or equal to 2:
bool primetest(int a)
{
int b = sqrt(a); // only need to test up to the square root of the input
for (int i = 2; i <= b; i++)
{
if (a % i == 0)
return false;
}
// if the loop completed, a is prime
return true;
}
If you want to handle all int values, you can just add an if (a < 2) return false; at the beginning.
Your logic is incorrect. You are using this expression (i == a -1)) which can never be true as Carl said.
For example:-
If a = 11
b = a/2 = 5 (Fractional part truncated)
So you are running loop till i<5. So i can never be equal to a-1 as max value of i in this case will be 4 and value of a-1 will be 10
You can do this by just checking till square root. But below is some modification to your code to make it work.
#include <iostream>
using namespace std;
bool primetest(int a) {
int i;
//Halve the user input to find where to stop dividing to (it will remove decimal point as it is an integer)
int b = a / 2;
//Loop through, for each division to test if it has a factor (it starts at 2, as 1 will always divide)
for (i = 2; i <= b; i++) {
//If the user input has no remainder then it cannot be a prime and the loop can stop (break)
if (a % i == 0) {
return(0);
}
}
//this return invokes only when it doesn't has factor
return 1;
}
int main(void) {
int user;
cout << "Enter a number to test if it is a prime or not: ";
cin >> user;
if (primetest(user)) {
cout << user << " is a prime number.";
}
else {
cout << user<< " is not a prime number.";
}
return 0;
}
check this out:
//Prime Numbers generation in C++
//Using for loops and conditional structures
#include <iostream>
using namespace std;
int main()
{
int a = 2; //start from 2
long long int b = 1000; //ends at 1000
for (int i = a; i <= b; i++)
{
for (int j = 2; j <= i; j++)
{
if (!(i%j)&&(i!=j)) //Condition for not prime
{
break;
}
if (j==i) //condition for Prime Numbers
{
cout << i << endl;
}
}
}
}
main()
{
int i,j,x,box;
for (i=10;i<=99;i++)
{
box=0;
x=i/2;
for (j=2;j<=x;j++)
if (i%j==0) box++;
if (box==0) cout<<i<<" is a prime number";
else cout<<i<<" is a composite number";
cout<<"\n";
getch();
}
}
Here is the complete solution for the Finding Prime numbers till any user entered number.
#include <iostream.h>
#include <conio.h>
using namespace std;
main()
{
int num, i, countFactors;
int a;
cout << "Enter number " << endl;
cin >> a;
for (num = 1; num <= a; num++)
{
countFactors = 0;
for (i = 2; i <= num; i++)
{
//if a factor exists from 2 up to the number, count Factors
if (num % i == 0)
{
countFactors++;
}
}
//a prime number has only itself as a factor
if (countFactors == 1)
{
cout << num << ", ";
}
}
getch();
}
One way is to use a Sieving algorithm, such as the sieve of Eratosthenes. This is a very fast method that works exceptionally well.
bool isPrime(int number){
if(number == 2 || number == 3 | number == 5 || number == 7) return true;
return ((number % 2) && (number % 3) && (number % 5) && (number % 7));
}
Related
I have to write a program to check if the entered number has these qualifications:
A number that is prime it self, the reverse of that number is also prime, and the number's digits are prime numbers too (Like this number: 7523).
If the needs meet, it has to show "yes" when you enter and run the program otherwise "no".
I know both codes for prime and reverse numbers but I don't know how to merge them.
This is the code:
#include <iostream>
#include <conio.h>
using namespace std;
void prime_check(int x) {
int a, i, flag = 1;
cin >> a;
for (i = 2; i <= a / 2 && flag == 1; i++) {
if (a % i == 0)
flag = 0;
}
if (flag == 1)
cout << "prime";
else
break;
}
int main() {
int a, r, sum = 0;
cin >> a;
while (a != 0) {
r = a % 10;
sum = (sum * 10) + r;
a = a / 10;
}
}
The program has to check each digit of the number entered to see if it is prime or not in every step, then show "yes", but it doesn't work.
Welcome to the site.
I don't know how to merge them.
void prime_check(int n) { /*code*/ }
I'd understand that you don't know how to use this.
It's very easy!
int main()
{
int i = 0;
prime_check(i);
}
If you are confused about how the program executes, you could use a debugger to see where it goes. But since using a debugger can be a bit hard at first, I would suggest to add debug prints to see how the program executes.
This line of code prints the file and line number automatically.
std::cout << __FILE__ << ":" << __LINE__ << "\n";
I'd suggest to add it at the start of every function you wish to understand.
One step further is to make it into a macro, just so that it's easy to use.
#define DEBUGPRINT std::cout << __FILE__ << ":" << __LINE__ << "\n";
Check a working example here:
http://www.cpp.sh/2hpam
Note that it says <stdin>::14 instead of the filename because it's running on a webpage.
I have done some changes to your code, and added comments everywhere I've made changes. Check it out:
#include <iostream>
#include <conio.h>
using namespace std;
bool prime_check(int x) { // I have changed the datatype of this function to bool, because I want to store if all the digits are prime or not
int i, flag = 1; // Removed the variable a, because the function is already taking x as input
for (i = 2; i <= x / 2 && flag == 1; i++) {
if (x % i == 0)
flag = 0;
}
return flag == 1;
}
int main() {
int a, r, sum = 0, original; // added original variable, to store the number added
bool eachDigit = true; // added to keep track of each digit
cin >> a;
original = a;
while (a != 0) {
r = a % 10;
eachDigit = prime_check(r); // Here Each digit of entered number is checked for prime
sum = (sum * 10) + r;
a = a / 10;
}
if (eachDigit && prime_check(original) && prime_check(sum)) // At the end checking if all the digits, entered number and the revered number are prime
cout << "yes";
else
cout<< "no";
}
For optimization, you can check if the entered number is prime or not before starting that loop, and also you can break the loop right away if one of the digits of the entered number is not prime, Like this:
#include <iostream>
#include <conio.h>
using namespace std;
bool prime_check(int x) { // I have changed the datatype of this function to bool, because I want to store if all the digits are prime or not
int i, flag = 1; // Removed the variable a, because the function is already taking x as input
for (i = 2; i <= x / 2 && flag == 1; i++) {
if (x % i == 0)
flag = 0;
}
return flag == 1;
}
int main() {
int a, r, sum = 0;
bool eachDigit = true, entered; // added to keep track of each digit
cin >> a;
entered = prime_check(a);
while (a != 0 && entered && eachDigit) {
r = a % 10;
eachDigit = prime_check(r); // Here Each digit of entered number is checked for prime
sum = (sum * 10) + r;
a = a / 10;
}
if (eachDigit && entered && prime_check(sum)) // At the end checking if all the digits, entered number and the revered number are prime
cout << "yes";
else
cout<< "no";
}
Suppose you have an int variable num which you want to check for your conditions, you can achieve your target by the following:
int rev_num = 0;
bool flag = true; // Assuming 'num' satisfies your conditions, until proven otherwise
if (prime_check(num) == false) {
flag = false;
}
else while (num != 0) {
int digit = num % 10;
rev_num = rev_num * 10 + digit;
// Assuming your prime_check function returns 'true' and 'false'
if (prime_check(digit) == false) {
flag = false;
break;
}
num /= 10;
}
if (prime_check(rev_num) == false) {
flag = false;
}
if (flag) {
cout << "Number satisfies all conditions\n";
}
else {
cout << "Number does not satisfy all conditions\n";
}
The problem is that each of your functions is doing three things, 1) inputting the number, 2) testing the number and 3) outputting the result. To combine these functions you need to have two functions that are only testing the number. Then you can use both functions on the same number, instead of inputting two different numbers and printing two different results. You will need to use function parameters, to pass the input number to the two functions, and function return values to return the result of the test. The inputting of the number and the outputting of the result go in main. Here's an outline
// returns true if the number is a prime, false otherwise
bool prime_check(int a)
{
...
}
// returns true if the number is a reverse prime, false otherwise
bool reverse_prime_check(int a)
{
...
}
int main()
{
int a;
cin >> a;
if (prime_check(a) && reverse_prime_check(a))
cout << "prime\n";
else
cout << "not prime\n";
}
I'll leave you to write the functions themselves, and there's nothing here to do the digit checks either. I'll leave you do to that.
I wrote a C++ program that prints all prime numbers lower than n, but the program keeps crashing while executing.
#include <iostream>
using namespace std;
bool premier(int x) {
int i = 2;
while (i < x) {
if (x % i == 0)
return false;
i++;
}
return true;
}
int main() {
int n;
int i = 0;
cout << "entrer un entier n : ";
cin >> n;
while (i < n) {
if (n % i == 0 && premier(i))
cout << i;
i++;
}
;
}
As Igor pointed out, i is zero the first time when n%i is done. Since you want only prime numbers and the smallest prime number is 2, I suggest you initialise i to 2 instead of 0.
You want to print all prime numbers less than n and has a function to check primality already.
Just
while (i < n){
if ( premier(i) == true )
cout<<i;
i++;
}
And while printing, add a some character to separate the numbers inorder to be able to distinguish them like
cout<<i<<endl;
P.S: I think you call this a C++ program. Not a script.
Edit: This might interest you.
Question: How to find, for a given integer n, the first prime number that is larger than n?
My own work so far
I've managed to write a program that checks whether or not a given integer is a prime or not:
#include <iostream>
#include <cmath>
using namespace std;
bool is_prime (int n)
{
int i;
double square_root_n = sqrt(n) ;
for (i = 2; i <= square_root_n ; i++)
{
if (n % i == 0){
return false;
break;
}
}
return true;
}
int main(int argc, char** argv)
{
int i;
while (true)
{
cout << "Input the number and press ENTER: \n";
cout << "To exit input 0 and press ENTER: \n";
cin >> i;
if (i == 0)
{
break;
}
if (is_prime(i))
cout << i << " is prime" << endl;
else
cout << i << " isn't prime'" << endl;
}
return 0;
}
I'm struggling, however, on how to proceed on from this point.
You have a function is_prime(n), and a number n, and you want to return the smallest number q such that is_prime(q)==true and n <= q:
int q = n;
while (!is_prime(q)) {
q++;
}
// here you can be sure that
// 1. q is prime
// 2. q >= n -- unless there was an overflow
If you want to be a bit more efficient, you can check explicitly for the even case, and the increment by 2 each time.
It's a concrete example of a general theme: if you have a test function and a method for generating elements, you can generate the elements that pass the test:
x = initial_value
while (something) {
if (test(x)) {
// found!
// If you only want the first such x, you can break
break;
}
x = generate(x)
}
(note that this is not a valid C++ code, it's pseudocode)
int i;
**int k_koren_od_n = (int)(sqrt(n) + 0.5)**
for (i = 2; i <= k_koren_od_n ; i++){
To get around casting issues, you might want to add this fix.
I am working on some recursion practice and I need to write a program that reverse the input of an integer
Example of input : cin >> 12345; The output should be 54321
but if that integer is negative the negative sign needs to be appended to only the first number.
Example of input : cin >> -1234; output -4321
I am having a hard time getting my program to adapt to the negative numbers. The way I have it set up if I run
Example of test : 12345 I get the right output 54321
So my recursion and base are successful. But if I run a negative I get
Example of test : -12345 I get this for a reason I don't understand -5-4-3-2 1
#include<iostream>
using namespace std;
void reverse(int);
int main()
{
int num;
cout << "Input a number : ";
cin >> num;
reverse(num);
return 0;
}
void reverse(int in)
{
bool negative = false;
if (in < 0)
{
in = 0 - in;
negative = true;
}
if (in / 10 == 0)
cout << in % 10;
else{
if (negative == true)
in = 0 - in;
cout << in % 10;
reverse(in / 10);
}
}
To reverse a negative number, you output a - and then reverse the corresponding positive number. I'd suggest using recursion rather than state, like this:
void reverse(int in)
{
if (in < 0)
{
cout << '-';
reverse(-in);
}
else
{
// code to recursively reverse non-negative numbers here
}
}
Split the reverse function into two parts: the first part just prints - (if the input is negative) and then calls the second part, which is the recursive code you have. (You don't need any of the if (negative) ... handling any more, since the first part already handled it.)
Incidentally, if (bool_variable == true) ... is overly verbose. It's easier to read code if you say something like if (value_is_negative) ....
Your recursive function doesn't hold state. When you recurse the first time, it prints the '-' symbol but every time you send back a negative number to the recursion, it runs as if it is the first time and prints '-' again.
It's better to print '-' first time you see a negative number and send the rest of the number as a positive value to the recursion.
#include<iostream>
using namespace std;
void reverse(int);
int main()
{
int num;
cout << "Input a number : ";
cin >> num;
reverse(num);
return 0;
}
void reverse(int in)
{
bool negative = false;
if (in < 0)
{
in = 0 - in;
negative = true;
}
if (in / 10 == 0)
cout << in % 10;
else{
if (negative == true) {
cout << '-';
negative = false;
}
cout << in % 10;
reverse(in / 10);
}
}
int reverse(long int x) {
long int reversedNumber = 0, remainder;
bool isNegative = false;
if (x <0){
isNegative = true;
x *= -1;
}
while(x > 0) {
remainder = x%10;
reversedNumber = reversedNumber*10 + remainder;
x= x/10;
}
if (isNegative) {
if (reversedNumber > INT_MAX){
return 0;
}
else
return reversedNumber*(-1);
}
else
{
if (reversedNumber > INT_MAX){
return 0;
}
else
return reversedNumber;
}
}
I am trying to write a program that will tell you if the numbered entered is prime or not and will write all the prime numbers from 1 to 100 to a file and displays the numbers. This is what I have so far, but I'm lost.
bool isPrime(int);
int _tmain(int argc, _TCHAR* argv[])
{
int num, answer, choice, i, numb=1;
do
{
cout<< "Enter a number and I will tell you if it is prime or not."<<endl;
cin>> num;
if (isPrime(num))
cout<<num<<" is a prime number."<<endl;
else
cout<<num<< " is not a prime number."<<endl;
cout<<"Would you like the first 100 prime numbers displayed? (1 for yes and 2 for no)"<<endl;
cin>>choice;
if (choice == 1)
{
while(numb<=100)
{
i=2;
while(i<=numb)
{
if(num%i==0)
break;
i++;
}
if(i==num)
cout<<numb<<" is Prime"<<endl;
numb++;
}
}
else
{
cout<<"Would you like to run the program again? (1 for yes and 2 for no)"<<endl;
cin>>answer;
if (answer == 2)
{
exit(0);
}
}
while (answer == 1);
}
system("pause");
return 0;
}
bool isPrime (int number)
{
int i;
for (i=2; i<number; i++)
{
if (number % i == 0)
{
return false;
}
}
return true;
}
Really feel you are over-thinking this. You've done the hard part which was writing the isprime function.
Displaying the numbers is trivial, just write a for loop to go through the numbers and check which are prime, if a specific number is prime then print it to screen.
Then just add the write to file inside the loop for those numbers you print to screen.
Why not just reuse your isPrime()?
cout<<"Would you like the first 100 prime numbers displayed? (1 for yes and 2 for no) <<endl;
cin>>choice;
for (i=2; i < 100; i++)
{
if (isPrime(i)) cout << i << endl;
}
You're way over complicating things for yourself when printing all the primes from 1 to 100. Take a step back and think about what you want to do; cycle from 1 to 100, print the number if its prime.
for (int i = 1; i <= 100; ++i) {
if (isPrime(i))
cout << i << endl;
}
The while keyword of your do-while loop is on the wrong line. It should follow the closing brace. Compiler said around line 56 of the example code you posted.
After making changes to conform to standard C++, I compiled and ran the program. I chose the option to list all the primes up to 100. It is generous and displaying all the numbers, prime or not (hint: even numbers after 2 are not prime).
I inserted the following lines at the beginning:
#include <iostream>
using namespace std;
I changed the main function from _tmain to main since I'm not using Visual Studio compiler. Likewise the arguments too:
int main(int argc, char * argv[])
By the way, if you are not passing parameters to your program, you can simplify the declaration of main to:
int main(void)
Here is a modification to speed up your prime detector:
bool isPrime (int number)
{
int i;
if (number == 2)
{
return true;
}
if ((number % 2) == 0)
{
return false;
}
for (i = 3; i < number; i += 2)
{
if (number % i == 0)
{
return false;
}
}
return true;
}
This cuts down the number of checks by half because every even number after 2 is not prime, only odd numbers.