Derived vector: Perform operations - c++

I have derived from std::vector<int> (I know I shouldn't, but I just wanted to test it). Now I can instantiate it and assign some values:
MyVector v(5);
v[0]=3;
I even can return the value:
cout << v[0];
But how can I access the value(s) if I want to do some operations within the class? Something like:
int func(int a){
return this->[0] + a; // EXAMPLE
}

As stated in the comments under the question:
return (*this)[0] + a; should work. – didierc 5 hours ago
Additionally, since vector lays out memory in a linear fashion (like an array) you can also access the memory which holds the values through a pointer, like so:
int *ptr = &(*this)[0];
// read an integer from the console into the 3rd element of the vector
scanf("%d", ptr + 2);
This can be useful if you have a vector of chars and you need to pass a char* to something like a string function, for example.
Be warned however, vector<bool> does not behave in the same way (the boolean values are stored internally in bitfields, not an array of bools, see http://isocpp.org/blog/2012/11/on-vectorbool).

Related

Is it possible to initialize a vector of strings from an array? If so, how?

So for example, on GeeksForGeeks.org, contributing user "Kartik" offers the following example for initializing a vector of integers:
// CPP program to initialize a vector from
// an array.
#include <bits/stdc++.h>
using namespace std;
int main()
{
int arr[] = { 10, 20, 30 };
int n = sizeof(arr) / sizeof(arr[0]);
vector<int> vect(arr, arr + n);
for (int x : vect)
cout << x << " ";
return 0;
}
If I understand what I'm reading correctly, sizeof(arr) is some number (which I assume is the length of the array arr; i.e. 3, please correct me if I'm wrong) divided by sizeof(arr[0]) (which I assume to be 1) -- basically just being a roundabout way of saying 3/1 = 3.
At this point, vector<int> vect(arr, arr + n) appears to be a vector of size 3, with all values initialized to arr + n (which I'm assuming is a way of saying "use the 3 items from arr to instantiate; again, please correct me if I'm wrong).
Through whatever sorcery, the output is 10 20 30.
Now, regardless of whether or not any of my above rambling is coherent or even remotely correct, my main question is this: can the same technique be used to instantiate some example vector<string> stringVector such that it would iterate through strings designated by some example string stringArray[] = { "wordA", "wordB", "wordC" }? Because, as I understand it, strings have no numeric values, so I imagine it would be difficult to just say vector<string> stringVector(stringArray, stringArray + n) without encountering some funky junk. So if it is possible, how would one go about doing it?
As a rider, why, or in what type of instance, would anyone want to do this for a vector? Does instantiating it from an array (which as I understand it has constant size) defeat the purpose of the vector?
Just as a disclaimer, I'm new to C++ and a lot of the object-oriented syntax involving stuff like std::vector<_Ty, _Alloc>::vector...etc. makes absolutely no sense to me, so I may need that explained in an answer.
To whoever reads this, thank you for taking the time. I hope you're having a good day!
Clarifications:
sizeof(arr): returns the size in bytes of the array, which is 12 because it has 3 ints, and each int in most implementations has a size of 4 bytes, so 3 bytes x 4 = 12 bytes.
sizeof(arr[0]): returns the size in bytes of the first element of the array, which is 4 because it is an int array.
vector<int> vect(arr, arr + n): the vector class has multiple constructors. Here we are not using the constructor you are thinking of. We are using a constructor that takes begin and end iterators for a range of elements, making a copy of those elements. Pointers can be used as iterators, where in this case arr is the begin iterator and arr + n is the end iterator.
Note: int* + int returns int*.
Note: We should also consider that the "end" of an array is a pointer to the next space after the last item in the array, and the constructor will copy all the items except the item past the end.
Answer:
Yes, remember that here, the constructor is taking iterators, not any item of the array, so we can do it easily like this with little changes:
#include <bits/stdc++.h>
using namespace std;
int main()
{
// changed int to string and the array values
string arr[] = { "one", "two", "three" };
int n = sizeof(arr) / sizeof(arr[0]);
// changed int to string
vector<string> vect(arr, arr + n);
// changed int to string
for (string x : vect)
cout << x << " ";
return 0;
}
sizeof(arr)
sizeof gets the size of an object in bytes. The size of an object is the total number of bytes required by the object. Note that I'm using "object" in the C++ context, not the OOP context (an instance of a class).
The size of an object of a given type is always the same. A std::string containing "a" is the same size as a string containing the unabridged text of War and Peace. Any object that appears to have a variable size really contains a reference to variable length data stored elsewhere. In the case of std::string at its most basic, it is a pointer to a dynamically allocated array and an integer keeping track of how much of the dynamically allocated array is actually in use by the string. std::vector is similar, typically it's a pointer to the start of its data, a pointer to the end of its data, and a pointer to the first empty position in the data. No matter how big the vector is, sizeof(vector) will return the size of the pointers, any other book-keeping variables in the vector implementation, and any padding needed to guarantee correct memory alignment.
This means every item in an array is always the same size and thus the same distance from one another.
Through whatever sorcery...
The above means that the total size of the array divided by the size of one element in the array, sizeof(arr) / sizeof(arr[0]), will always provide the number of elements in the array. It doesn't matter what the array contains, numerical or otherwise. There are of course prettier ways like
template <class T, size_t N>
size_t getsize (const T (&array)[N])
{
return N;
}
and later
size_t n = getsize(arr);
As a rider, why, or in what type of instance, would anyone want to do this for a vector?
In the old days one could not directly construct a vector pre-loaded with data. No one wants to write some arbitrary number of lines of push_back to pound all the values in manually, It's boring as hell, a programmer almost always has better things to do, and the odds of injecting an error are too high. But you could nicely and easily format an array and feed the array into the vector, if you needed a vector at all. A lot of the time you could live off the array by itself because the contents were unchanging or at worst would only be shuffled around.
But if the number of contents could change, it could be time for a vector. If you're going to add items and you don't know the upper limit, it's time for vector. If you're calling into an API that requires a vector, it's time for a vector.
I can't speak for everybody, but I'm going to assume that like me a lot of people would have loved to have that easy-peasy array-style initialization for vectors, lists, maps, and the rest of the usual gang.
We were forced to write programs that generated the appropriate code to fill up the vector or define an array and copy the array into the vector much like the above example.
In C++11 we got our wish with std::initialzer_list and a variety of new initialization options1 that allowed
vector<string> vect{"abc","def","ghi"};
eliminating most cases where you would find yourself copying an array into a library container. And the masses rejoiced.
This coincided with a number of tools like std::size, std::begin and std::end to make converting an array into a vector a cakewalk. Assuming you don't pass the array into a function first.
1 Unfortunately the list of initialization options can get a lil' bewildering
Yes, you can do so - you just need to define something that the constructor for String will take (which is a 'const char')
const char * arr[] = { "abc","def","ghi" };
int n = sizeof(arr) / sizeof(arr[0]);
vector<string> vect(arr, arr + n);
for (string &x : vect)
cout << x << " ";
What this is effectively doing is creating the vector from two iterators (a pointer is, loosely, an iterator):
https://en.cppreference.com/w/cpp/container/vector/vector
Constructs the container with the contents of the range [first, last).
This constructor has the same effect as vector(static_cast<size_type>(first), static_cast<value_type>(last), a) if InputIt is an integral type.
And as #MartinYork pointed out, it's much more readable to use the C++ syntax:
const char * arr[] = { "abc","def","ghi" };
vector<string> vect(std::begin(arr), std::end(arr));
So if it is possible, how would one go about doing it?
Simply use vector constructor number 5, which accepts iterators to start and end of range
Constructs the container with the contents of the range [first,
last).
#include <iostream>
#include <vector>
#include <string>
int main()
{
std::string arr[] = { "wordA", "wordB", "wordC" };
std::vector<std::string> v {std::begin(arr), std::end(arr)};
for (auto& str : v)
std::cout << str << "\n";
return 0;
}
Here's how you'd do it. Note that it's a tad awkward to get the length of the array, but that's just because arrays don't carry that information around with them (use a vector!).
#include<string>
#include<vector>
#include<iterator>
#include<iostream>
int main()
{
std::string arr[] = {"abc", "def", "ghi"};
std::vector<std::string> tmp;
std::copy(arr, arr + sizeof(arr)/sizeof(arr[0]), std::back_inserter(tmp));
for(auto str : tmp) {
std::cout<<str<<"\n";
}
}
Update: Yes good point about using std::begin and std::end for the array.

Sorting a C 2D array via std::sort

I have a 2D array a[][40]. I'm trying to sort it by calling std::sort, and I have written the Compare function. However, C++ wants me to have a std::vector to be sorted, not a simple array and I want the sorted array to be a itself, I don't want to create another array and save the sorting result there. It seems there are a lot of ways to achieve that. I could think of five ways, but none of them seems to be efficient and working.
1)
Directly use std::sort(std::begin(a), std::begin(a) + something, cmp);
It doesn't work, because std::begin doesn't know how to point to the beginning of a 2D array. Furthermore, it'd sort incorrectly even if it compiled, since a 2D array is not an array of references to arrays, but consecutive arrays (unlike Java)
Playground: https://godbolt.org/g/1tu3TF
2)
std::vector<unsigned char[40]> k(a, a + x);
std::sort(k.begin(), k.end(), cmp);
Then copy everything back to a
It doesn't work, because it's a 2D array, and it can't be sorted this way, using std::sort. In contrast to the first trial, this one uses twice as much as memory, and copies everything twice (if it worked)!
Playground: https://godbolt.org/g/TgCT6Z
3)
std::vector<int> k(x);
for (int i = 0; i < x; k[i] = i, i++);
std::sort(k.begin(), k.end(), cmp2);
Then change the order of a to be the same of k;
The idea is simple, create a vector of representative "pointers", sort them (as the cmp2 function secretly accesses a and compares the values), then make a have the same order with k.
In the end, the re-ordering loop will be very complex, will require a large, temporary variable. Besides, for cmp2 to access the values of a, a global variable-pointer that points to a must be created, which is "bad" code.
Playground: https://godbolt.org/g/EjdMo7
4)
For all unsigned char[40], a struct can be created and their values can be copied to structs. Comparison and = operators will need to be declared. After sorted, they can be copied back to a.
It'd be a great solution if the arrays didn't have to be copied to structs to use struct's operators, but they need to be copied, so all values will be copied twice, and twice-as-needed memory will be used.
5)
For all unsigned char[40], a struct that has a pointer to them can be created. They can be sorted by the pointed values, and the result can be saved to a pointer array.
It's probably the best option, although the result is a pointer array instead a. Another reason on why it's good is it doesn't move the arrays, but the pointers.
To sum up, I need to sort the 2D array a[][40] via std::sort, but I haven't decided on the best way. It seems there's a "best way to do that" which I can't think of. Could you please help me?
EDIT: To clarify, I want {{3,2}{1,4}} to become {{1,4}{3,2}}
The problem is not in iterating a 2D array. Provided the columns size is a constexpr value, pointers to arrays are nice iterators.
But all C++ sort (or mutating) algorithms require the underlying type to be move constructible and move assignable and an array is not assignable. But wrapping the underlying arrays can be enough:
template <class T, int sz>
class wrapper {
T* base;
bool own; // a trick to allow temporaries: only them have own == true
public:
// constructor using a existing array
wrapper(T* arr): base(arr), own(false) {}
~wrapper() { // destructor
if (own) {
delete[] base; // destruct array for a temporary wrapper
}
}
// move constructor - in fact copy to a temporary array
wrapper(wrapper<T, sz>&& src): base(new T[sz]), own(true) {
for(int i=0; i<sz; i++) {
base[i] = src.base[i];
}
}
// move assignment operator - in fact also copy
wrapper<T, sz>& operator = (wrapper<T, sz>&& src) {
for(int i=0; i<sz; i++) {
base[i] = src.base[i];
}
return *this;
}
// native ordering based on lexicographic string order
bool operator < (const wrapper<T, sz>& other) const {
return std::char_traits<char>::compare(base, other.base, sz) < 0;
}
const T* value() const { // access to the underlying string for tests
return base;
}
};
Then, you can sort a C compatible 2D array with any C++ sort algo:
std::vector<wrapper<char, 40> > v { &arr[0], &arr[sz] }; // pointer are iterators...
std::sort(v.begin(), v.end()); // and that's all!
for (int i=0; i<sz; i++) { // control
std::cout << arr[i] << std::endl;
}
The overhead is a vector of structures containing a pointer and a bool, but what is sorted is actually the original 2D array.
Of course, as the C library is accessible from C++, qsort would certainly be easier for sorting a C compatible 2D array. But this way allows the use of stable_sort or partial_sort if they are relevant.

getting certain component of all elements in vector

I have stored some elements of a struct, let's call it myStruct, in a vector.
Now I want to get a certain component of this struct of all the elements in my vector.
Is there a possibility to do this fast, without using a for-loop? Is there an equivalent solution for deque?
struct myStruct{
int a;
int b;
};
vector<myStruct> vec;
//creating some data and push back to vector
myStruct ms0,ms1;
ms0.a = 5;
ms1.a = 10;
vec.push_back(ms0);
vec.push_back(ms1);
//now I want to get the component a of ms0 and ms1
You could use two vectors, one storing component a, one storing component b, instead of one vector storing pairs (a, b).
If this doesn't work for you, you can do something like (this is C++11 or higher):
std::for_each(vec.begin(), vec.end(),
[] (myStruct &v) {std::cout << v.a << '\n';} );
But this is not (in terms of complexity) better than a for loop.
Vectors are sequence containers, more specifically arrays that can change their size dynamically, thus to access all of their elements it will take time proportional to their size, n. Thus the answer to your first question:
Is there a possibility to do this fast, without using a for-loop?
is: No
As for the second question:
Is there an equivalent solution for deque?
Yes, there is and it will look the same as the one posted, with the small difference in the container which instead of vector<myStruct> vec; will be std::deque<int> mydeque;
Internally vector uses arrays so you can directly access its elements using [] operator,
eg:
cout<< vec[0].a << vec[1].a;

Adding element to Array of Objects in C++

How do I add an element to the end of an array dynamically in C++?
I'm accustomed to using vectors to dynamically add an element. However, vectors does not seem to want to handle an array of objects.
So, my main goal is having an array of objects and then being able to add an element to the end of the array to take another object.
EDIT**
Sorry, its the pushback() that causes me the problems.
class classex
{
private:
int i;
public:
classex() { }
void exmethod()
{
cin >> i;
}
};
void main()
{
vector <classex> vectorarray;
cout << vectorarray.size();
cout << vectorarray.push_back();
}
Now I know push_back must have an argument, but What argument?
Now I know push_back must have an argument, but What argument?
The argument is the thing that you want to append to the vector. What could be simpler or more expected?
BTW, you really, really, really do not want exmethod as an actual method of classex in 99% of cases. That's not how classes work. Gathering the information to create an instance is not part of the class's job. The class just creates the instance from that information.
Arrays are fixed sized containers. So enlarging them is not possible. You work around this and copy one array in a bigger and gain space behind the old end, but that's it.
You can create a array larger than you currently need it and remember which elements are empty. Of course they are never empty (they at least contain 0's), but that's a different story.
Like arrays, there are many containers, some are able to grow, like the stl containers: lists, vectors, deques, sets and so on.
add a Constructor to set i (just to give your example a real world touch) to your example classex, like this:
class classex {
public:
classex(int& v) : i(v) {}
private:
int i;
};
An example for a growing container looks like this:
vector <classex> c; // c for container
// c is empty now. c.size() == 0
c.push_back(classex(1));
c.push_back(classex(2));
c.push_back(classex(3));
// c.size() == 3
EDIT: The question was how to add an element to an array dynamically allocated, but the OP actually mean std::vector. Below the separator is my original answer.
std::vector<int> v;
v.push_back( 5 ); // 5 is added to the back of v.
You could always use C's realloc and free. EDIT: (Assuming your objects are PODs.)
When compared to the requirement of manually allocating, copying, and reallocating using new and delete, it's a wonder Stroustrup didn't add a keyword like renew.

Returning multiple data items from a function in C or C++

I am confused on a couple homework questions I have...
Can you return multiple data items from a function by using return()? Can a function only return one value, unless it is a pointer to an array?
I believe that the answer is that a function can return multiple data items by returning a structure. Then, returning a pointer to an array is not the only way - if that is a way?
But there seems to be a lot of discussion on this topic and so I want to make sure I have at least the basic idea correct: You can return multiple data items using a structure but using pointer (I don't understand this) will use memory more efficiently. Is this correct?
With C++0x/C++11 you can use this:
#include <string>
#include <iostream>
#include <tuple>
using namespace std;
tuple<int, unsigned, string, int> getValues()
{
return tuple<int, unsigned, string, int>(1, 2, "3", 4);
}
int main()
{
int a;
unsigned b;
string c;
int d;
tie(a, b, c, d) = getValues();
cout << a << ", " << b << ", " << c << ", " << d << endl;
return 0;
}
Compile it with
g++ tuple_test.cpp -std=c++0x -o tuple_test
And and if you run the programm it will output this:
1, 2, 3, 4
But it's better to use references like this (i would say):
void getValues(int& a, unsigned& b, string& c, int& d)
{
a = 1;
b = 2;
c = "3";
d = 4;
}
int main()
{
...
getValues(a, b, c, d)
...
}
Uch thats what I get for not reading the question carefully...
Can a function only return one value, unless it is a pointer to an array?
Yeah you only can return 1 single value, but this single value can include multiply values (struct, class, array).
You can return multiple data items using a structure but using pointer (I don't understand this) will use memory more efficiently. Is this correct?
True. But when you use pointers it depends on how you use it.
When you dynamic allocate it each function call it wont be very efficient and you would need to deallocate the memory manually after usage. When you use a global-array/struct it will be efficient. But can give you problems when you call the function multiply times.
In addition to what is already said in this thread, in C++11 you can return structures initialized using uniform initialization:
struct XYZ {
int x;
int y;
int z;
};
XYZ foo() {
return {1, 2, 3};
}
Personally I prefer returning structures with named members rather than tuples because the latter doesn't provide names for its members.
That is correct.
You can however "return" multiple items, by adding parameters that are passed by reference, then writing the multiple results to them.
A function can indeed only return one 'thing' with its return statement. That thing can, however, be a pointer (C & C++ arrays are simply pointers in disguise), a reference (a pointer which can't be reseated or array-indexed) or an object, which may encapsulate multiple things.
If you return a structure, you're passing back the entire structure. If you return a pointer or reference, you are returning only the address of the structure - so you had better not return a reference or pointer to a structure that goes out of scope when the function returns! Doing so invokes undefined behavior, which most likely (but not always) is a segmentation fault.
If you want a bigger picture about this read about passing parameters by value and passing by reference it also applies for returning parameters.
As you mentioned:
You can return multiple data items using a structure but using pointer (I don't understand this) will use memory more efficiently. Is this correct?
Lets say you have some structure:
struct BigStructure{
int array[1000];
double otherData[1000];
//... etc
};
and some method:
BigStructure workWhenCopying(BigStructure bigStruct){
// some work with a structure
return bigStruct;
}
This method illustrates the case when you pass parameters to the method and return it by value, which means that each time you call this method you are copying the method's argument into another place in memory. This copying takes time and when you have bigger structures it slows down your program run time thus it is more efficient to pass big structures by reference.
void workWithReference(BigStructure & bigStruct){
// do some work
}
In this case you are not copying whole data structure, just passing the address of the memory where this structure resides. You also don't need a return statement since changes to that structure object will be visible outside this method. But if you will reassign bigStruct to a new memory location it will be visible only within local method: workWithReference
I hope it's more clearer now;)