OpenCV Drawing a Line from a set of points - c++

I am trying to draw a line that will link up center points of a bounding box, The points are stored in a vector as the center moves from frame to frame.
Now I am trying to use a CvLine to linke these points together with a line. I am following This Opencv Documentation . But CvLine function isynt happy with the parameters I give it.
Here is the code:
vector<Point> Rightarm(20);
vector<Point> Leftarm(20);
vector<Point>::const_iterator RightIter;
vector<Point>::const_iterator LeftIter;
Point center = Point(oko[0].x + (oko[0].width/2), oko[0].y + (oko[0].height/2));
cout<<"Center Point of Box: 0 is: " <<center<<endl;
double area = (oko[0].width * oko[0].height);
cout<<"The Area of Box: 0 is: " <<area<<endl;
Point center1 = Point(oko[1].x + (oko[1].width/2), oko[1].y + (oko[1].height/2));
cout<<"Center Point of Box: 1 is: " <<center1<<endl;
double area1 = (oko[1].width * oko[1].height);
cout<<"The Area of Box: 1 is: " <<area1<<endl;
Rightarm.push_back(center);
Leftarm.push_back(center1);
if(oko[0].x > oko[1].x)
{
}
else
{
}
for(RightIter = Rightarm.begin(); RightIter != Rightarm.end(); ++RightIter)
{
circle(drawing, *RightIter, 3, Scalar(0,0,255), CV_FILLED);
}
if(Rightarm.size() == 20)
{
Rightarm.clear();
}
for(LeftIter = Leftarm.begin(); LeftIter != Leftarm.end(); ++LeftIter)
{
circle(drawing, *LeftIter, 3, Scalar(0,255,0), CV_FILLED);
}
if(Rightarm.size() == 20)
{
Leftarm.clear();
}
cvLine(drawing, center.x, center.y, Scalar(255,255,255),1 ,8 ,CV_AA);
imshow(window_Input, frame);
imshow(window_Output, drawing);
Can anyone see where I am going wrong with this...?

You are giving wrong arguments and one extra argument to line funciton. The documentation you pointed to is for Python interface, that too the older one using cv. Assuming that you have a recent version of OpenCV it is better if you use the new C++ interface or cv2 interface in Python.
you have to use line function like
cvLine(
img, // image to draw on
center, // starting end point of line segment of type cv::Point
center1, // other end of line segment
Scalar(0, 255, 0), //green colour
1 // thickness of line
CV_AA // anti aliased line type
);
documentation is here

Maybe like this:
struct centerpoint {
int x;
int y;
} center1,center2;
(...) //Define values for centers.
cvLine( drawing,
cvPoint(center1.x, center1.y),
cvPoint(center2.x, center2.y),
Scalar(255,255,255), 1, 8 , CV_AA);
Don't forget to vote all the answers you like and accept the one that works.

cvLine draws line between two points, you should give it two cv::Point but not center.x nad center.y

Related

Opencv hough circle not detecting circles

I am trying to detect the circle inside traffic light, and I am able to detect only 1 out of the 2 circle, and the size of the circle which i am getting seems to be too big
Input Image: https://i.imgur.com/VkNDt2B.png
Output image: https://i.imgur.com/BBq5tE0.png
int main()
{
Mat src, gray;
src = imread("C:\/test_image2.png", 1);
resize(src, src, Size(640, 480));
cvtColor(src, gray, CV_BGR2GRAY);
// Reduce the noise so we avoid false circle detection
GaussianBlur(gray, gray, Size(9, 9), 2, 2);
vector<Vec3f> circles;
// Apply the Hough Transform to find the circles
HoughCircles(gray, circles, CV_HOUGH_GRADIENT, 1, 60, 200, 20, 0, 35);
// Draw the circles detected
for (size_t i = 0; i < circles.size(); i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
circle(src, center, 3, Scalar(0, 255, 0), -1, 8, 0);// circle center
circle(src, center, radius, Scalar(0, 0, 255), 3, 8, 0);// circle outline
cout << "center : " << center << "\nradius : " << radius << endl;
}
// Show your results
namedWindow("Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE);
imshow("Hough Circle Transform Demo", src);
waitKey(0);
return 0;
}
HoughCircles works best if you know in advance the approx size of the circles you're looking for. I suggest you give a better value for min_radius and max_radius parameters.
In any case, you need to play with param1 and param2 parameters. If circles are not perfect circles you can try to lower the image resolution using the dp parameter (f.ex. with dp = 2 the image is downscaled to half its resolution).
Basically: play with param1 and param2 until your circles are detected, no matter if other circles are detected. Use this result to find out what radius your circles are, then fix the min and max radius to remove most circles you don't want and finally play again with param1 and param2 until only your circles are left.
this is a pretty huge image
try cropping to the traffic light part first ( to get something to begin with ) and then by trying different combinations of min_distance and param_1,param_2 parameter try getting most circles ( even the wrong ones ) detected. find out what values get the most circles and what combination gets least ( or no ) circles and then fine tune the parameters to get lesser circles detected and finally find the perfect combination

triangle mask with opencv

i have this image
i want to create a tranigle mask to get only this zone
but with the following code i get this result
Moments mu = moments(red,true);
Point center;
center.x = mu.m10 / mu.m00;
center.y = mu.m01 / mu.m00;
circle(red, center, 2, Scalar(0, 0, 255));
cv::Size sz = red.size();
int imageWidth = sz.width;
int imageHeight = sz.height;
Mat mask3(red.size(), CV_8UC1, Scalar::all(0));
// Create Polygon from vertices
vector<Point> ptmask3(3);
ptmask3.push_back(Point(imageHeight-1, imageWidth-1));
ptmask3.push_back(Point(center.x, center.y));
ptmask3.push_back(Point(0, red.rows - 1));
vector<Point> pt;
approxPolyDP(ptmask3, pt, 1.0, true);
// Fill polygon white
fillConvexPoly(mask3, &pt[0], pt.size(), 255, 8, 0);
// Create new image for result storage
Mat hide3(red.size(), CV_8UC3);
// Cut out ROI and store it in imageDest
red.copyTo(hide3, mask3);
imshow("mask3", hide3);
Updated Version (with the Help of Dan MaĊĦek)
Your Triangle is wrong
This is because you're initializing the vector with size 3, then putting another three points into it, for a total of 6 points of which three have default values. Try this instead:
vector<Point> ptmask3;
Also, make sure that the coordinates of the points are correct. You'll want to have a point in the bottom left corner, but it doesn't seem like your current triangle has one like that.
Your image is gray
You need to initialize hide3 properly, like this:
cv::Mat hide3(img.size(), CV_8UC3, cv::Scalar(0));

circle-detection issue

1.Some Information: I would like to develop a kind of circle recognition with the help of openCV. I successfully set up a connection between Swift, objc-c++, but strangely I have some problems with the circle recognition algorithm: Not all of the circles in my image gets detected!
2.Have a look at my code:
+(UIImage *)ConvertImage:(UIImage *)image {
cv::Mat matImage;
UIImageToMat(image, matImage);
cv::Mat modImage;
cv::medianBlur(matImage, matImage, 5);
cv::cvtColor(matImage, modImage, CV_RGB2GRAY);
cv::GaussianBlur(modImage, modImage, cv::Size(9, 9), 2, 2);
vector<Vec3f> circles;
cv::HoughCircles(modImage, circles, CV_HOUGH_GRADIENT, 1, 1, 100, 50, 0, 0);
for (auto i = circles.begin(); i != circles.end(); ++i)
std::cout << *i << ' ';
for( size_t i = 0; i < circles.size(); i++ )
{
cv::Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
circle( matImage, center, 3, Scalar(0,255,0), -1, 8, 0 );
circle( matImage, center, radius, Scalar(0,0,255), 3, 8, 0 );
}
UIImage *binImg = MatToUIImage(matImage);
return binImg;
}
As you can see in the image [click] there appears this issue :
Only 3 of 7 circles gets detected!
So in the docs I found the parameters explanation for this line:
cv::HoughCircles(modImage, circles, CV_HOUGH_GRADIENT, 1, 1, 100, 50, 0, 0);
dp = 1: The inverse ratio of resolution.
min_dist = modImage.rows/8: Minimum distance between detected centers.
param_1 = 200: Upper threshold for the internal Canny edge detector.
param_2 = 100*: Threshold for center detection.
min_radius = 0: Minimum radio to be detected. If unknown, put zero as default.
max_radius = 0: Maximum radius to be detected. If unknown, put zero as default.
3.My question
How to get rid of the issue mentioned above?
Any help would be very appreciated :)
For issue number 2 : The outline should be colored, not white!
What color should it be? At any rate you draw that circle in your code with this line.
circle( matImage, center, radius, Scalar(0,0,255), 3, 8, 0 );
If you want to change the color you can change the values you have declared in Scalar(0,0,255).
If you dont want the circle there at all you can remove that line of code.
Your images seems to be noise free. If the image is to contain circle always, You can extract the contours and fit circles using Least Squares
You can get the circle fit equations here. It is a straightforward implementation. Create a structure for the circle parameters (center and radius), fit circle and store the parameters in the structure and use it to draw circle using OpenCV.
You can also generate points on the circle using "ellipse2poly" function.

track some certain points in frame sequences using opencv and c++

I am new in image processing and c++ programming. this is what i have done until now to be able to keep the coordinate of some certain points in a sequence of frame:
I could find the center of a circle in the frame1.
cv::HoughCircles( tmp2, circles, CV_HOUGH_GRADIENT, 1, 300, 300, 100);
for( size_t i = 0; i < circles.size(); i++ ){
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
cout << "center" << center.x << ", " << center.y << endl;
Vector.push_back(std::make_pair(center.x,center.y)); //coordinates of center points
int radius = cvRound(circles[i][2]);
// circle center
circle( tmp2, center, 3, 1 , -1, 8, 0 );
// circle outline
circle( tmp2, center, radius, 1 , 3, 8, 0 );
}
}
what is this center point contains? does it contain pixel value in
that point?
if I have for example, 3 circle in frame1...is that a good way to copy(make_pair) them in a vector?
how to track these center points in the frame2 to find their new coordinates?
thanks in advance..
Yes, center contains coordinates, it is structure with fields x and y.
It depends on what do you need after this. How do you want to process them further?
Multiple object tracking depends on which kind of images do you have. You cannot "track" just centers of the circles without any prior information. Is it synthetic circles, or just some real objects or something else? Check the first answer here, it is relevant.

How to detect the Sun from the space sky in OpenCv?

I need to detect the Sun from the space sky.
These are examples of the input images:
I've got such results after Morphologic filtering ( open operation for twice )
Here's the algorithm code of this processing:
// Color to Gray
cvCvtColor(image, gray, CV_RGB2GRAY);
// color threshold
cvThreshold(gray,gray,150,255,CV_THRESH_BINARY);
// Morphologic open for 2 times
cvMorphologyEx( gray, dst, NULL, CV_SHAPE_RECT, CV_MOP_OPEN, 2);
Isn't it too heavy processing for such a simple task? And how to find the center of the Sun? If I find white points, than I'll find white points of big Earth ( left top corner on first example image )
Please advise me please my further action to detect the Sun.
UPDATE 1:
Trying algorithm of getting centroid by formula : {x,y} = {M10/M00, M01/M00}
CvMoments moments;
cvMoments(dst, &moments, 1);
double m00, m10, m01;
m00 = cvGetSpatialMoment(&moments, 0,0);
m10 = cvGetSpatialMoment(&moments, 1,0);
m01 = cvGetSpatialMoment(&moments, 0,1);
// calculating centroid
float centroid_x = m10/m00;
float centroid_y = m01/m00;
cvCircle( image,
cvPoint(cvRound(centroid_x), cvRound(centroid_y)),
50, CV_RGB(125,125,0), 4, 8,0);
And where Earth is in the photo, I got such a result:
So, centroid is on the Earth. :(
UPDATE 2:
Trying cvHoughCircles:
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* circles = cvHoughCircles(dst, storage, CV_HOUGH_GRADIENT, 12,
dst->width/2, 255, 100, 0, 35);
if ( circles->total > 0 ) {
// getting first found circle
float* circle = (float*)cvGetSeqElem( circles, 0 );
// Drawing:
// green center dot
cvCircle( image, cvPoint(cvRound(circle[0]),cvRound(circle[1])),
3, CV_RGB(0,255,0), -1, 8, 0 );
// wrapping red circle
cvCircle( image, cvPoint(cvRound(circle[0]),cvRound(circle[1])),
cvRound(circle[2]), CV_RGB(255,0,0), 3, 8, 0 );
}
First example: bingo, but the second - no ;(
I've tried different configuration of cvHoughCircles() - couldn't find configuration to fit every my example photo.
UPDATE3:
matchTemplate approach worked for me ( response of mevatron ). It worked with big number of tests.
How about trying a simple matchTemplate approach. I used this template image:
And, it detected the 3 out of 3 of the sun images I tried:
This should work due to the fact that circles (in your case the sun) are rotationally invariant, and since you are so far away from the sun it should be roughly scale invariant as well. So, template matching will work quite nicely here.
Finally, here is the code that I used to do this:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char* argv[])
{
/// Load image and template
string inputName = "sun2.png";
string outputName = "sun2_detect.png";
Mat img = imread( inputName, 1 );
Mat templ = imread( "sun_templ.png", 1 );
/// Create the result matrix
int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;
Mat result( result_cols, result_rows, CV_32FC1 );
/// Do the Matching and Normalize
matchTemplate(img, templ, result, CV_TM_CCOEFF);
normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());
Point maxLoc;
minMaxLoc(result, NULL, NULL, NULL, &maxLoc);
rectangle(img, maxLoc, Point( maxLoc.x + templ.cols , maxLoc.y + templ.rows ), Scalar(0, 255, 0), 2);
rectangle(result, maxLoc, Point( maxLoc.x + templ.cols , maxLoc.y + templ.rows ), Scalar(0, 255, 0), 2);
imshow("img", img);
imshow("result", result);
imwrite(outputName, img);
waitKey(0);
return 0;
}
Hope you find that helpful!
Color Segmentation Approach
Do a color segmentation on the images to identify objects on the black background. You may identify the sun according to its area (given this uniquely identifies it, resp. don't varies largely accross images).
A more sophisticated approach could compute image moments, e.g. hu moments of the objects. See this page for these features.
Use a classification algorithm of your choice to do the actual classification of the objects found. The most simple approach is to manually specify thresholds, resp. value ranges that turn out to work for all(most) of your object/image combinations.
You may compute the actual position from the raw moments, as for the circular sun the position is equal to the center of mass
Centroid: {x, y } = { M10/M00, M01/M00 }
Edge Map Approach
Another option would be a circle hough transformation of the edge map, this will hopefully return some candidate circles (by position and radius). You may select the sun-circle according to the radius you expect (if you are lucky there is at most one).
A simple addition to your code is to filter out objects based on their size. If you always expect the earth to be much bigger than the sun, or the sun to have almost the same area in each picture, you can filter it by area.
Try Blob detector for this task.
And note that it may be good to apply a morphological opening/closing instead of simple erode or dilate, so your sun will have almost the same area before and after processing.