C++ Priority Queue, logical error, can't figure out - c++

I'm implementing a simple priority queue in C++.
However when it runs, it prints out gibberish numbers.
Am I somehow trying to access invalid entries in the array in my code?
Below is the code.
Also, is my "remove" function somehow not doing its job? Conceptually, shall I be putting null into the first entry and return whatever was just erased?
Thanks.
[Priority.h]
#ifndef Priority_h
#define Priority_h
class Priority
{
public:
Priority(void);
Priority(int s);
~Priority(void);
void insert(long value);
long remove();
long peekMin();
bool isEmpty();
bool isFull();
int maxSize;
long queArray [5];
int nItems;
private:
};
#endif
[Priority.cpp]
#include <iostream>
#include <string>
#include <sstream>
#include <stack>
#include "Priority.h"
using namespace std;
Priority::Priority(void)
{
}
Priority::Priority(int s)
{
nItems = 0;
}
Priority::~Priority(void)
{
}
void Priority::insert(long item)
{
int j;
if(nItems==0) // if no items,
{
queArray[0] = item; nItems++;
}// insert at 0
else // if items,
{
for(j=nItems-1; j=0; j--) // start at end,
{
if( item > queArray[j] ) // if new item larger,
queArray[j+1] = queArray[j]; // shift upward
else // if smaller,
break; // done shifting
} // end for
queArray[j+1] = item; // insert it
nItems++;
} // end else (nItems > 0)
}
long Priority::remove()
{
return queArray[0];
}
long Priority::peekMin()
{
return queArray[nItems-1];
}
bool Priority::isEmpty()
{
return (nItems==0);
}
bool Priority::isFull()
{
return (nItems == maxSize);
}
int main ()
{
Priority thePQ;
thePQ.insert(30);
thePQ.insert(50);
thePQ.insert(10);
thePQ.insert(40);
thePQ.insert(20);
while( !thePQ.isEmpty() )
{
long item = thePQ.remove();
cout << item << " "; // 10, 20, 30, 40, 50
} // end while
cout << "" << endl;
system("pause");
}

Here is one error:
for(j=nItems-1; j=0; j--) // start at end,
^ this is assignment, not comparison.
I am also not convinced that there isn't an off-by-one error in
queArray[j+1] = item; // insert it
Finally, your default constructor fails to initialize nItems.
There could be further errors, but I'll stop at this.

I agree with the other answers here, but I would add this:
Your "Remove" method isn't actually removing anything - it is just returning the first element - but it doesn't do anything to the array itself.
Edited to say that your insert method needs some work - it may or may not write over the end of the array, but it is certainly confusing as to what it is doing.

Try initializing your queue array in the constructor.

Related

C++, Weird behavior of cout when trying to print integers

Im trying to write a class that stores an id and a value in an container class.
Im using an nested class as my data structure.
When im compiling the code sometimes it prints perfectly, sometimes it prints nothing and sometimes it prints half of the data then stops.
When i debug the code the same weird behavior occours, when it fails during debug it throws an error "Map.exe has triggered a breakpoint.", the Error occours in the print method when im using cout.
cmap.h
#pragma once
class CMap
{
public:
CMap();
~CMap();
CMap& Add(int id, int value);
void print() const;
private:
class container
{
public:
~container();
int container_id = 0;
int container_value = 0;
};
container* p_komp_;
int dim_ = -1;
void resize();
};
cmap.cpp
#include "cmap.h"
#include <iostream>
using namespace std;
CMap::CMap()
{
p_komp_ = new container[0];
}
CMap::~CMap()
{
p_komp_ = nullptr;
cout << "destroy cmap";
}
CMap& CMap::Add(int id, int value)
{
resize();
p_komp_[dim_].container_id = id;
p_komp_[dim_].container_value = value;
return *this;
}
void CMap::resize()
{
container* temp_array = new container[++dim_];
if (dim_ == 0)
{
temp_array[0].container_id = p_komp_[0].container_id;
temp_array[0].container_value = p_komp_[0].container_value;
}
for (unsigned i = 0; i < dim_; i++)
{
temp_array[i].container_id = p_komp_[i].container_id;
temp_array[i].container_value = p_komp_[i].container_value;
}
p_komp_ = temp_array;
}
void CMap::print() const
{
for (unsigned i = 0; i <= dim_; i++)
{
cout << p_komp_[i].container_id;
cout << p_komp_[i].container_value;
}
}
CMap::container::~container()
{
cout << "destruct container";
}
Map.cpp
#include "cmap.h"
#include <iostream>
using namespace std;
void main(void)
{
CMap m2;
m2.Add(1, 7);
m2.Add(3, 5);
m2.print();
}
These two things are a possible reason for your problem:
int dim_ = -1;
and
container* temp_array = new container[++dim_];
When you allocate, you increase dim_ from -1 to 0. That is you create a zero-sized "array", where every indexing into it will be out of bounds and lead to undefined behavior.
You also have memory leaks since you never delete[] what you new[]. I didn't look for more problems, but there probably a more.
And an "array" (created at compile-time or through new[]) will have indexes from 0 to size - 1 (inclusive). You seem to think that the "size" you provide is the top index. It's not, it's the number of elements.
It seems to me that you might need to take a few steps back, get a couple of good books to read, and almost start over.

Member variable resetting back to 0

When running through the test the count variable from the class stack1 gets reset back to 0 when using its pop function. Strangely however, during the push loop, the count increases as intended but when pop occurs, the count gets reset back to 0 and subtracts into the negatives from there. Is there something I'm forgetting?
#include <iostream>
using namespace std;
class TheStack
{
public:
TheStack();
void push(int);
int pop();
bool isEmpty();
private:
const int MaxSize = 10;
int arr[10];
int count;
};
TheStack::TheStack()
{
count = 0;
}
void TheStack::push(int userInput)
{
if (count >= MaxSize)
{
cout << "Stack is full." << endl;
}
else
{
arr[count] = userInput;
count+=1;
}
}
int TheStack::pop()
{
if (isEmpty())
{
cout << "Stack is empty." << endl;
}
else
{
int temp = arr[count];
arr[count] = NULL;
count-=1;
return temp;
}
}
bool TheStack::isEmpty()
{
if (count == 0)
{
return true;
}
else
{
return false;
}
}
int main()
{
TheStack stack1;
if (stack1.isEmpty())
{
cout << "isEmpty() works" << endl;
}
stack1.pop();
for (int i = 0; i < 10; i++)
{
stack1.push(i);
}
stack1.push(0);
stack1.pop();
stack1.pop();
stack1.pop();
stack1.pop();
system("pause");
}
When you do push you first save the data into the array and then increment count. This means that in order to properly do pop you need to work in reverse: first decrement count and only then read data from the array.
But in the code you are doing it backwards. When the stack is full, count is at max value (10 in your case), and your arr[count] = NULL; writes beyond the array boundary. This causes undefined behavior and, in particular, destroys your count value. (This is why it suddenly becomes 0.)
Also:
arr[count] = NULL; makes no sense. NULL is supposed to be used in pointer contexts, not in integer contexts. This is not even guaranteed to compile.
What is the point of that anyway? Initially your array contains garbage above the current top of the stack. Why do you suddenly care to clean it up after doing pop?
Not all control paths of pop() return value. This is undefined behavior in itself.
const int MaxSize = 10; in the class definition is a C++11 feature. Since you are already using C++11, you can do the same for count. Just do int count = 0; right inside the class definition and you will not have to write the constructor explicitly.
Although in your implementation MaxSize would make more sense as a static const class member. In that case you'll also be able to declare your array as int arr[MaxSize];.
You must first decrease count and then access arr[count] in int TheStack::pop(). Now you get access above the last pushed element, event out of bound of array if the stack is full.

Seg. fault resizing array C++

I have a priority queue array that is filled with "Jobs" (name + priority). I've been able to get everything queue related working aside from re sizing if it is full. Here is the bits that I think are causing a segmentation fault that I haven't been able to figure out.
EDIT:
Here is a bit more code that will compile, I left in the rest of the functions in case those might help in any way. Right now the initial capacity is set to 5, when you try to add a job to the full list it will double the capacity of the array and allow you to add a couple more jobs before a SEG. fault.
pq.h
#ifndef PQ_H
#define PQ_H
#include "interface.h"
#include <string>
using namespace std;
class Job {
public:
int getPriority();
string getTaskName();
void setPriority(int val);
void setTaskName(string tname);
Job();
private:
int priority;
string taskName;
};
class PriorityQueue {
public:
PriorityQueue();
~PriorityQueue();
int size();
bool isEmpty();
void clear();
void enqueue(string value, int priority);
string dequeue();
string peek();
int peekPriority();
PriorityQueue(const PriorityQueue & src);
PriorityQueue & operator=(const PriorityQueue & src);
private:
static const int INITIAL_CAPACITY = 5;
Job *array;
int count;
int capacity;
void expandCapacity() {
Job *oldArray = array;
capacity *= 2;
array = new Job[capacity];
for (int i = 0; i < count; i++) {
array[i] = oldArray[i];
}
delete[] oldArray;
}
};
#endif
pq.cpp
#include <iostream>
#include <cstring>
using namespace std;
//#include "job.h"
#include "pq.h"
Job::Job() // Constructor
{
priority= 0;
taskName = "There are no items in the list.";
}
int Job::getPriority(){ // returns the prority of the job
return priority;
}
string Job::getTaskName(){ // returns the name of the job
return taskName;
}
void Job::setPriority(int val){ // sets the priority of a newly created job
priority = val;
}
void Job::setTaskName(string tname){ // sets the name of a new job
taskName = tname;
}
PriorityQueue::PriorityQueue() // constructor
{
count = 0;
capacity = INITIAL_CAPACITY - 1;
array = new Job[INITIAL_CAPACITY];
}
PriorityQueue::~PriorityQueue() { // destructor
delete [] array;
}
int PriorityQueue::size() { // returns the number of jobs in the queue
return count;
}
bool PriorityQueue::isEmpty() { // returns true if queue is empty
if (count != 0){
return false;
}else{
return true;
}
}
void PriorityQueue::clear() { // clears queue of all jobs
count = 0;
// need to make it remove and delete the items
}
void PriorityQueue::enqueue(string value, int priority) {
// tests size to see if Queue is a max capacity
if(count == capacity){
expandCapacity();
cout << "\tList was full and has been expanded\n";
}
array[++count].setPriority(priority);
array[count].setTaskName(value);
// upheap operations
Job v = array[count];
int tempcount = count;
while (array[tempcount/2].getPriority() >= v.getPriority()){
array[tempcount] = array[tempcount/2];
tempcount = tempcount/2;
array[tempcount] = v;
}
}
string PriorityQueue::dequeue() {
// removes the job with the highest priority from the queue and returns the name
if(this->isEmpty()){ // make sure the queue isnt empty
string empty = "The queue is empty";
return empty;
}else{
Job remove = array[1];
array[1] = array[count--];
int j;
Job v;
int k = 1;
v = array[k];
while(k <= count/2){
cout << "dequeuewhile"; // test
j = k + k;
if(j < count && array[j].getPriority() > array[j+1].getPriority()){
j++;
cout << "dequeueloop if1"; // test
}
if(v.getPriority() <= array[j].getPriority()){
cout << "dequeueloop if2"; //test
break;
}
array[k] = array[j];
k = j;
}
array[k] = v;
return remove.getTaskName(); // returns the name of the removed job
}
}
string PriorityQueue::peek() { // returns the name of the highest priority job without removing it from the queue
if(count == 0){
return array[0].getTaskName();
}
return array[1].getTaskName();
}
int PriorityQueue::peekPriority() { // returns the priority from the highest priority job without removing it from the queue
if(count == 0){
cout << "\tThere are no items in the list.\n";
return array[0].getPriority();
}
return array[1].getPriority();
}
I think that when you do ++count, the next use of count will be out of bounds for the array.
array[++count].setPriority(priority);
// SEGMENTATION FAULT HERE
array[count].setTaskName(value);
If the capacity of the array is 5, and count was 4, then you just incremented count to 5, and tried to access element 5, which is out-of-bounds.
array = new Job[capacity];
for (int i = 0; i < count; i++) {
array[i] = oldArray[i];
}
Lets assume capacity is 10, so you've got an array of 10 elements, ranging from elements 0 to 9.
counttells us how many elements are being used.
If count happens to be 9, then when you increment count by one, it is now 10. Then, when line come you marked as producing segment fault comes, you're trying to access element 10, in our example. There is no element 10in an array of length 10, so you're out of bounds.
array[++count].setPriority(priority); // array[10], but last element is 9!
// SEGMENTATION FAULT HERE
array[count].setTaskName(value); // array[10], but last element is 9!
And, of course, everything after that part causes the same issue, as you keep using array[count].
Your original code did exactly as the previous answer given by #antiHUMAN.
The problem you're having is mixing or erroneously using 0-based and 1-based concepts.
Your first mistake is to make capacity a 0-based number. The capacity should denote the maximum number of items in an array, thus you should not be subtracting 1 from it. If the array can hold 5 items, then capacity should be 5, not 4.
PriorityQueue::PriorityQueue() // constructor
{
count = 0;
capacity = INITIAL_CAPACITY; // this remains 1-based.
array = new Job[INITIAL_CAPACITY];
}
or using the initializer-list:
PriorityQueue::PriorityQueue() : count(0),
capacity(INITIAL_CAPACITY),
array(new Job[INITIAL_CAPACITY]) {}
The 0-based number in your situation should be count, not capacity. Given that, since count is 0-based, and capacity is 1-based, your test in enqueue needs to be changed:
if(count + 1 == capacity){
expandCapacity();
cout << "\tList was full and has been expanded\n";
}
Note that 1 is added to count to account for the fact that count is 0-based and capacity is 1 based.

C++, using stack.h read a string, then display it in reverse

For my current assignment, I have to use the following header file,
#ifndef STACK_H
#define STACK_H
template <class T, int n>
class STACK
{
private:
T a[n];
int counter;
public:
void MakeStack() {
counter = 0;
}
bool FullStack() {
return (counter == n) ? true : false ;
}
bool EmptyStack() {
return (counter == 0) ? true : false ;
}
void PushStack(T x) {
a[counter] = x;
counter++;
}
T PopStack() {
counter--;
return a[counter];
}
};
#endif
To write a program that will take a sentence, store it into the "stack", and then display it in reverse, and I have to allow the user to repeat this process as much as they want. The thing is, I am NOT allowed to use arrays (otherwise I wouldn't need help with this), and am finding myself stumped.
To give an idea of what I am attempting, here is my code as of posting, which obviously does not work fully but is simply meant to give an idea of the assignment.
#include <iostream>
#include <cstring>
#include <ctime>
#include "STACK.h"
using namespace std;
int main(void)
{
auto time_t a;
auto STACK<char, 256> s;
auto string curStr;
auto int i;
// Displays the current time and date
time(&a);
cout << "Today is " << ctime(&a) << endl;
s.MakeStack();
cin >> curStr;
i = 0;
do
{
s.PushStack(curStr[i]);
i++;
} while (s.FullStack() == false);
do
{
cout << s.PopStack();
} while (s.EmptyStack() == false);
return 0;
} // end of "main"
UPDATE
This is my code currently
#include <iostream>
#include <string>
#include <ctime>
#include "STACK.h"
using namespace std;
time_t a;
STACK<char, 256> s;
string curStr;
int i;
int n;
// Displays the current time and date
time(&a);
cout << "Today is " << ctime(&a) << endl;
s.MakeStack();
getline(cin, curStr);
i = 0;
n = curStr.size();
do
{
s.PushStack(curStr[i++]);
i++;
}while(i < n);
do
{
cout << s.PopStack();
}while( !(s.EmptyStack()) );
return 0;
You're on the right track, but you shouldn't be looping until the stack is full -- there are no guarantees curStr consists of at least 256 characters. Instead, loop like as follows...
int n = curStr.size();
do {
s.PushStack(curStr[i++]);
} while (i < n);
Now, you should really not write <bool-expr> == false or <bool-expr> == true... instead, merely write !<bool-expr> and <bool-expr>, respectively. You don't need all of your auto storage specifiers on the local variables, either. Your professor should also look into using the constructor rather than using MakeStack.
edit: It appears you had some trouble translating my code. You only need to i++ once per loop -- this increments our position in the string. As you are doing it now, you are actually incrementing the position twice and thus only pushing every other character.
Use a linked list instead of array in stack.
In the linked list, always store the tail pointer of your list's last node. Each node maintains a reference to your prev node.
A <--- B <---- C (tail)
push:
A <--- B <---- C <---- D (tail)
pop:
A <--- B <---- C (tail)
// D is popped out
when the tail == null, you know it is an empty stack

Wrong output C++ ArrayList

When i make ArrayList with size 5 it gives wrong result but when it becomes bigger than 5 it becomes correct!
#include <iostream>
#include <string>
using namespace std;
class list
{
typedef int ListElemtype;
private:
ListElemtype listArray[6];
public:
bool insert(ListElemtype e)
{
if (numberOfElements == 5) //It turns wrong result when ListArray equal 5??
{
cout << "Can't do the insertion" << endl;
return false;
} //Why it return false? I know why i but = instead of == :D
else
{
listArray[numberOfElements + 1] = e;
numberOfElements++;
cout << "Done perfectly!" << numberOfElements << endl;
return true;
}
};
bool first(ListElemtype &e);
bool next(ListElemtype &e);
int numberOfElements;
int CurrentPosition;
void LIST ()
{
CurrentPosition=-1;
numberOfElements=0;
return;
}
};
int main()
{
list A;
A.LIST();
A.insert(10);
A.insert(20);
A.insert(30);
A.insert(40);
A.insert(50);
A.insert(60);
system("pause");
return 0;
}
Arrays are indexed from zero, not from one. So listArray[numberOfElements+1]=e; should be listArray[numberOfElements]=e;. The first inserted element goes into listArray[0].
Your listArray size is 6 therefore array index would start from 0 till 5. When you have numberOfElements==5 with listArray[numberOfElements + 1] you are trying to store at index 6 which you don't have.
As you may know, C bases its arrays at 0 and not 1. Thus,
else { listArray[numberOfElements+1]=e;
writes to the end of the array contained within list A, when numberOfElements is equal to 5 or higher.