Mixed-Mode Process vs. Managed-to-Unmanaged IPC - c++

I am trying to come up with design candidates for a current project that I am working on. Its client interface is based on WCF Services exposing public methods and call backs. Requests are routed all the way to C++ libraries (that use boost) that perform calculations, operations, etc.
The current scheme is based on a WCF Service talking to a separate native C++ process via IPC.
To make things a little simpler, there is a recommendation around here to go mixed-mode (i.e. to have a single .NET process which loads the native C++ layer inside it, most likely communicating to it via a very thin C++/CLI layer). The main concern is whether garbage collection or other .NET aspects would hinder the performance of the unmanaged C++ part of the process.
I started looking up concepts of safe points and and GC helper methods (e.g. KeepAlive(), etc.) but I couldn't find any direct discussion about this or benchmarks. From what I understand so far, one of the safe points is if a thread is executing unamanged code and in this case garbage collection does not suspend any threads (is this correct?) to perform the cleanup.
I guess the main question I have is there a performance concern on the native side when running these two types of code in the same process vs. having separate processes.

If you have a thread that has never executed any managed code, it will not be frozen during .NET garbage collection.
If a thread which uses managed code is currently running in native code, the garbage collector won't freeze it, but instead mark the thread to stop when it next reaches managed code. However, if you're thinking of a native dispatch loop that doesn't return for a long time, you may find that you're blocking the garbage collector (or leaving stuff pinned causing slow GC and fragmentation). So I recommend keeping your threads performing significant tasks in native code completely pure.
Making sure that the compiler isn't silently generating MSIL for some standard C++ code (thereby making it execute as managed code) is a bit tricky. But in the end you can accomplish this with careful use of #pragma managed(push, off).

It is very easy to get a mixed mode application up and running, however it can be very hard to get it working well.
I would advise thinking carefully before choosing that design - in particular about how you layer your application and the sort of lifetimes you expect for your unmanaged objects. A few thoughts from past experiences:
C++ object lifetime - by architecture.
Use C++ objects briefly in local scope then dispose of them immediately.
It sounds obvious but worth stating, C++ objects are unmanaged resources that are designed to be used as unmanaged resources. Typically they expect deterministic creation and destruction - often making extensive use of RAII. This can be very awkward to control from a a managed program. The IDispose pattern exists to try and solve this. This can work well for short lived objects but is rather tedious and difficult to get right for long lived objects. In particular if you start making unmanaged objects members of managed classes rather than things that live in function scope only, very quickly every class in your program has to be IDisposable and suddenly managed programming becomes harder than ummanaged programming.
The GC is too aggressive.
Always worth remembering that when we talk about managed objects going out of scope we mean in the eyes of the IL compiler/runtime not the language that you are reading the code in. If an ummanaged object is kept around as a member and a managed object is designed to delete it things can get complicated. If your dispose pattern is not complete from top to bottom of your program the GC can get rather aggressive. Say for example you try to write a managed class which deletes an unmanaged object in its finaliser. Say the last thing you do with the managed object is access the unmanaged pointer to call a method. Then the GC may decide that during that unmanaged call is a great time to collect the managed object. Suddenly your unmanaged pointer is deleted mid method call.
The GC is not aggressive enough.
If you are working within address constraints (e.g. you need a 32 bit version) then you need to remember that the GC holds on to memory unless it thinks it needs to let go. Its only input to these thoughts is the managed world. If the unmanaged allocator needs space there is no connection to the GC. An unmanaged allocation can fail simply because the GC hasn't collected objects that are long out of scope. There is a memory pressure API but again it is only really usable/useful for quite simple designs.
Buffer copying. You also need to think about where to allocate any large memory blocks. Managed blocks can be pinned to look like unmanaged blocks. Unmanaged blocks can only ever be copied if they need to look like managed blocks. However when will that large managed block actually get released?

Related

Memory leak when using Node.JS native modules

At my job we have a lot of C++ code that is callable from Node.JS through native extensions. Many of the created objects contain pointers to large amounts of memory (for example, pointcloud data from a 3D-camera points to a buffer that's over a megabyte in size). Things have been set up in such a way that when the JS-object is GC'ed, the underlying native object should be destroyed as well (by using our own reference counter under the hood). Yesterday it turned out that it didn't work as well as we thought because we ran out of memory by leaking about a megabyte every second.
Unfortunately, I'm having trouble finding info about how to properly deal with these kinds of large objects in Node.JS. I've found a function called napi_adjust_external_memory which lets me tell how much data is in use and which "will trigger global garbage collections more often than it would otherwise", but I don't know if this can be used if no other parts of the N-API are used. It's not clear to me either if the OOM-error is caused by errors in our C++-codebase, or Node.JS falsely assuming it's using less memory than it actually is and not triggering the GC for those objects as a result.
So, in summary, my question is as follows:
Is it possible that these objects were never collected despite the memory pressure?
Can I use napi_adjust_external_memory to trigger the GC more regularly without using other parts of the N-API?
How should I deal with large native objects in Node.JS in order to ensure they don't leak?

Component Object Model (COM): Where does IMalloc::Alloc allocate memory?

Reading into COM for some legacy project. So far, my understanding is that COM is just a binary specification, and that all implementing components (client and server) must stick to this specification. As long as we are handling COM interfaces with methods receiving and returning only simple value types, everything makes perfect sense to me.
However, there is also the possibility to send pointers to entire objects/variants (containing e.g. a SAFEARRAY) from/to COM objects, and I wonder where the memory of these param objects is allocated. I read that it is memory owned by windows, and that we should not tamper with it except through COM methods.
Then I stumbled upon the IMalloc COM interface with its Alloc method, that seems to allocate a junk of memory in a COM-aware fashion, which perfectly completed the confusion.
In order to not interfere with the heap structure maintained by e.g. C++ (assuming we are writing the COM server in C++), where exactly does IMalloc allocate the memory?
Windows used to create a dedicated heap for COM allocations, CoTaskMemAlloc() allocated it from it directly. That however was dropped at Win8, it now allocates from the default process heap, GetProcessHeap() returns it. The Microsoft CRT at VS2012 was changed as well, used to have its own heap but now also uses the default process heap.
The exact reason these changes were made is murky to me, I never saw a good explanation for it. But is not unlikely to have something to do with WinRT (aka UWP, aka Windows Store, aka Modern UI). Heavily COM-powered under the hood but with a pretty tight language runtime integration provided by the language projection. Or just to bypass the constant trouble these different heaps used to cause. Especially the CRT heap was a DLL Hell nightmare with programs failing miserably when they were rebuilt on a new VS version but still used an old DLL.
My answer to this question is: I don't know and I don't care.
What you do have to do though is to abide by the rules. COM (and COM objects) are free to allocate memory in any way they choose and any assumption you might make about where or how they do it is dangerous and unnecessary. Probably, in the end, it's ultimately allocated via HeapAlloc(), but it needn't be and even if it is you certainly don't know which heap.
Memory allocation by the client (via CoTaskMemAlloc(), say) when calling into a COM object is relatively rare. It's more common for the COM object to allocate whatever memory it needs in order to parcel up the results of the call and then return you a pointer - often in the form of another COM object - that you can use for whatever you need to do next. The API documentation for the method in question will tell you what to do when you are done with that pointer and that's all you ever need to know. This exact mechanism varies by API, for example:
For a COM object call Release(); on that object (this is usually implied, rather than being called out explicitly in the docs).
For a 'raw' pointer, the documentation might tell you to call or CoTaskMemFree() or maybe IMalloc::Free().
For a SAFEARRAY call SafeArrayUnaccessData() / SafeArrayUnlock() / SafeArrayDestroy().
Sometimes you need to call something a bit off-the wall, such as SysFreeString().
Anyway - always - for any particular API, read the docs and you should be OK.

Cleaning up when process goes down - WHY

I'm writing c++ and have multiple objects I created during the life of the process, when the process goes down all its memory release to the OS so why should I clean up and release stuff ?
Because it forces you to write clean reusable software. Let's imagine the situation where, say, you finish your game and all is fine even though you don't have clean-up code.
Now, given the huge success, you make a sequel and plan to reuse the code. But this time round you have a coop mode, a matchmaking lobby and a story mode. You realize you could simply delete the main Game* object, and create a new one with different parameters, when switching modes.
Then you realize: oops, although this would work nicely, all the unallocated memory prevents your from using this approach.
This is the pattern that always happen. It comes in different flavors. You want to write unit tests but between tests you need to clean-up everything. No clean-up: no way to have a clean test after the first one.
It looks like extra work, but it will pay off a lot in the future.
I can think of multiple reasons:
Modularity
An application is usually a collection of modules
Modules should have a well defined purpose, and should be reusable throughout your application, or even better, applications
When writing a module, one should not assume how or when someone else is going to use it, so s/he should exercise best-practices and write it correctly
Analysis
When intentionally leaking resources, analyzing actual memory leaks
becomes a nearly impossible task. You can't differentiate modules that should free resources and those that shouldn't.
Because what you think is wrong. In some cases indeed, you are right. If you instanciate objects like this: A a;, then A will be destroyed when getting outside its context. Now if you do A *a = new A[12]; then 12 memory spaces the size of an instance of A are reserved. If you do nothing, at the end of the context, then a will be destroyed. But a is a pointer, so only the address of the array will be destroyed, the 12 spaces will still be allocated in memory and not accessible. They are lost for everyone.
And there are many other examples. Try to use Valgrind and you will see.
Now if your program gets more and more complicated, adding all these memory leaks could become a problem in the context of your own program. Of course when your program is over, the memory is given back to the OS, but that is definitely not a reason to tolerate memory leaks.
There are many good reasons.
1) Some systems do not clean up after you. Especially true in embedded systems, or systems running without an OS.
2) Usually an application main() is merely instantiating modules and subsystems that are reusable and should manage their own resources. If main() is simply a minor function that instantiates some objects then runs the event loop, then your "application cleanup" code is not really application cleanup, but module cleanup. A big difference.
3) Imagine your library was to run in someone else's code and you do not know how long it will be used, relative to the lifetime of the whole application. If your code leaks, it will quickly be discarded as a low quality piece of code.
4) If it is difficult to clean up after yourself, it likely is an indicator of bugs in your design and memory / resource management. By properly managing resources, you force a clean design and do not leave such management as an afterthought. Therefore, I argue that your code is less buggy when you design it to clean up when it is finished.

Implementing a memory manager in multithreaded C/C++ with dynamically sized memory pool?

Background: I'm developing a multiplatform framework of sorts that will be used as base for both game and util/tool creation. The basic idea is to have a pool of workers, each executing in its own thread. (Furthermore, workers will also be able to spawn at runtime.) Each thread will have it's own memory manager.
I have long thought about creating my own memory management system, and I think this project will be perfect to finally give it a try. I find such a system fitting due to the types of usages of this framework will often require memory allocations in realtime (games and texture edition tools).
Problems:
No generally applicable solution(?) - The framework will be used for both games/visualization (not AAA, but indie/play) and tool/application creation. My understanding is that for game development it is usual (at least for console games) to allocate a big chunk of memory only once in the initialization, and then use this memory internally in the memory manager. But is this technique applicable in a more general application?
In a game you could theoretically know how much memory your scenes and resources will need, but for example, a photo editing application will load resources of all different sizes... So in the latter case a more dynamic memory "chunk size" would be needed? Which leads me to the next problem:
Moving already allocated data and keeping valid pointers - Normally when allocating on the heap, you will acquire a simple pointer to the memory chunk. In a custom memory manager, as far as I understand it, a similar approach is then to return a pointer to somewhere free in the pre-allocated chunk. But what happens if the pre-allocated chunk is too small and needs to be resized or even defragmentated? The data would be needed to be moved around in the memory and the old pointers would be invalid. Is there a way to transparently wrap these pointers in some way, but still use them as normally "outside" the memory management as if they were usual C++ pointers?
Third party libraries - If there is no way to transparently use a custom memory management system for all memory allocation in the application, every third party library I'm linking with, will still use the "old" OS memory allocations internally. I have learned that it is common for libraries to expose functions to set custom allocation functions that the library will use, but it is not guaranteed every library I will use will have this ability.
Questions: Is it possible and feasible to implement a memory manager that can use a dynamically sized memory chunk pool? If so, how would defragmentation and memory resize work, without breaking currently in-use pointers? And finally, how is such a system best implemented to work with third party libraries?
I'm also thankful for any related reading material, papers, articles and whatnot! :-)
As someone who has previously written many memory managers and heap implementations for AAA games for the last few generations of consoles let me tell you its simply not worth it anymore.
Your information is old - back in the gamecube era [circa 2003] we used to do what you said- allocate a large chunk and carve out that chunk manually using custom algorithms tweaked for each game.
Once virtual memory came along (xbox era), games got more complicated [and so made more allocations and became multimthreaded] address fragmentation made this untenable. So we switched to custom allocators to handle certain types of requests only - for instance physical memory, or lock free small block low fragmentation heaps or thread local cache of recently used blocks.
As built in memory managers become better it gets harder to do better than those - certainly in the general case and a close thing for a specific use cases. Doug Lea Allocator [or whatever the mainstream c++ linux compilers come with now] and the latest Windows low fragmentation heaps are really very good, and you'd do far better investing your time elsewhere.
I've got spreadsheets at work measuring all kinds of metrics for a whole load of allocators - all the big name ones and a fair few I've collected over the years. And basically whilst the specialist allocators can win on a few metrics [lowest overhead per alloc, spacial proximity, lowest fragmentation, etc] for overall metrics the mainstream ones are simply the best.
As a user of your library, my personal preferred option is you just allocate memory when you need it. Use operator new/the new operator and I can use the standard C++ mechanisms to replace those and use my custom heap (if I indeed have one), or alternatively I can use platform specific ways of replacing your allocations (e.g. XMemAlloc on Xbox). I don't need tagging [capturing callstacks is far superior which I can do if I want]. Lower down that list comes you giving me an interface that you'll call when you need to allocate memory - this is just a pain for you to implement and I'll probably just pass it onto operator new anyway. The worst thing you can do is 'know best' and create your own custom heaps. If memory allocation performance is a problem, I'd much rather you share the solution the whole game uses than roll your own.
If you're looking to write your own malloc()/free(), etc., you probably should start by checking out the source code for existing systems such as dlmalloc. This is a hard problem, though, for what it's worth. Writing your own malloc library is Hard. Beating existing general purpose malloc libraries will be Even Harder.
And now, here is the correct answer: DON'T IMPLEMENT YET ANOTHER MEMORY MANAGER.
It is incredibly hard to implement a memory manager that does not fail under different kinds of usage patterns and events. You may be able to build a specific manager that works well under YOUR usage patterns, but to write one which works well for MANY users is a full-time job that almost no one has really done well. Worse, it is fantastically easy to implement a memory manager that works great 99% of the time and then 1% of the time crash or suddenly consume most or all available memory on your system due to unexpected heap fragmentation.
I say this as someone who has written multiple memory managers, watched multiple people write their own memory managers, and watched even more people attempt to write memory managers and fail. This problem is deceptively difficult, not because it's hard to write templated allocators and generic types with inheritance and such, but because the other solutions given in this thread tend to fail under corner types of load behavior. Once you start supporting byte alignments (as all real-world allocators must) then heap fragmentation rears its ugly head. Cute heuristics that work great for small test programs, fail miserably when subjected to large, real-world programs.
And once you get it working, someone else will need: cookies to verify against memory stomps; heap usage reporting; memory pools; pools of pools; memory leak tracking and reporting; heap auditing; chunk splitting and coalescing; thread-local storage; lookasides; CPU and process-level page faulting and protection; setting and checking and clearing "free-memory" patterns aka 0xdeadbeef; and whatever else I can't think of off the top of my head.
Writing yet another memory manager falls squarely under the heading of Premature Optimization. Since there are multiple free, good, memory managers with thousands of hours of development and testing behind them, you have to justify spending the cost of your own time in such a way that the result would provide some sort of measurable improvement over what other people have done, and you can use, for free.
If you are SURE you want to implement your own memory manager (and hopefully you are NOT sure after reading this message), read through the dlmalloc sources in detail, then read through the tcmalloc sources in detail as well, THEN make sure you understand the performance trade-offs in implementing a thread-safe versus a thread-unsafe memory manager, and why the naive implementations tend to give poor performance results.
Prepare more than one solution and let the user of the framework adopt any particular one. Policy classes to the generic allocator you develop would do this nicely.
A nice way to get around this is to wrap up pointers in a class with overloaded * operator. Make the internal data of that class only an index to the memory pool. Now, you can just change the index quickly after a background thread copies the data over.
Most good C++ libraries support allocators and you should implement one. You can also overload the global new so your version gets used. And keep in mind that you generally won't need to think about a library allocating or deallocating a large amount of data, which is generally a responsibility of client code.

Garbage Collection in C++ -- why?

I keep hearing people complaining that C++ doesn't have garbage collection. I also hear that the C++ Standards Committee is looking at adding it to the language. I'm afraid I just don't see the point to it... using RAII with smart pointers eliminates the need for it, right?
My only experience with garbage collection was on a couple of cheap eighties home computers, where it meant that the system would freeze up for a few seconds every so often. I'm sure it has improved since then, but as you can guess, that didn't leave me with a high opinion of it.
What advantages could garbage collection offer an experienced C++ developer?
I keep hearing people complaining that C++ doesn't have garbage collection.
I am so sorry for them. Seriously.
C++ has RAII, and I always complain to find no RAII (or a castrated RAII) in Garbage Collected languages.
What advantages could garbage collection offer an experienced C++ developer?
Another tool.
Matt J wrote it quite right in his post (Garbage Collection in C++ -- why?): We don't need C++ features as most of them could be coded in C, and we don't need C features as most of them could coded in Assembly, etc.. C++ must evolve.
As a developer: I don't care about GC. I tried both RAII and GC, and I find RAII vastly superior. As said by Greg Rogers in his post (Garbage Collection in C++ -- why?), memory leaks are not so terrible (at least in C++, where they are rare if C++ is really used) as to justify GC instead of RAII. GC has non deterministic deallocation/finalization and is just a way to write a code that just don't care with specific memory choices.
This last sentence is important: It is important to write code that "juste don't care". In the same way in C++ RAII we don't care about ressource freeing because RAII do it for us, or for object initialization because constructor do it for us, it is sometimes important to just code without caring about who is owner of what memory, and what kind pointer (shared, weak, etc.) we need for this or this piece of code. There seems to be a need for GC in C++. (even if I personaly fail to see it)
An example of good GC use in C++
Sometimes, in an app, you have "floating data". Imagine a tree-like structure of data, but no one is really "owner" of the data (and no one really cares about when exactly it will be destroyed). Multiple objects can use it, and then, discard it. You want it to be freed when no one is using it anymore.
The C++ approach is using a smart pointer. The boost::shared_ptr comes to mind. So each piece of data is owned by its own shared pointer. Cool. The problem is that when each piece of data can refer to another piece of data. You cannot use shared pointers because they are using a reference counter, which won't support circular references (A points to B, and B points to A). So you must know think a lot about where to use weak pointers (boost::weak_ptr), and when to use shared pointers.
With a GC, you just use the tree structured data.
The downside being that you must not care when the "floating data" will really be destroyed. Only that it will be destroyed.
Conclusion
So in the end, if done properly, and compatible with the current idioms of C++, GC would be a Yet Another Good Tool for C++.
C++ is a multiparadigm language: Adding a GC will perhaps make some C++ fanboys cry because of treason, but in the end, it could be a good idea, and I guess the C++ Standards Comitee won't let this kind of major feature break the language, so we can trust them to make the necessary work to enable a correct C++ GC that won't interfere with C++: As always in C++, if you don't need a feature, don't use it and it will cost you nothing.
The short answer is that garbage collection is very similar in principle to RAII with smart pointers. If every piece of memory you ever allocate lies within an object, and that object is only referred to by smart pointers, you have something close to garbage collection (potentially better). The advantage comes from not having to be so judicious about scoping and smart-pointering every object, and letting the runtime do the work for you.
This question seems analogous to "what does C++ have to offer the experienced assembly developer? instructions and subroutines eliminate the need for it, right?"
With the advent of good memory checkers like valgrind, I don't see much use to garbage collection as a safety net "in case" we forgot to deallocate something - especially since it doesn't help much in managing the more generic case of resources other than memory (although these are much less common). Besides, explicitly allocating and deallocating memory (even with smart pointers) is fairly rare in the code I've seen, since containers are a much simpler and better way usually.
But garbage collection can offer performance benefits potentially, especially if alot of short lived objects are being heap allocated. GC also potentially offers better locality of reference for newly created objects (comparable to objects on the stack).
The motivating factor for GC support in C++ appears to be lambda programming, anonymous functions etc. It turns out that lambda libraries benefit from the ability to allocate memory without caring about cleanup. The benefit for ordinary developers would be simpler, more reliable and faster compiling lambda libraries.
GC also helps simulate infinite memory; the only reason you need to delete PODs is that you need to recycle memory. If you have either GC or infinite memory, there is no need to delete PODs anymore.
I don't understand how one can argue that RAII replaces GC, or is vastly superior. There are many cases handled by a gc that RAII simply cannot deal with at all. They are different beasts.
First, RAII is not bullet proof: it works against some common failures which are pervasive in C++, but there are many cases where RAII does not help at all; it is fragile to asynchronous events (like signals under UNIX). Fundamentally, RAII relies on scoping: when a variable is out of scope, it is automatically freed (assuming the destructor is correctly implemented of course).
Here is a simple example where neither auto_ptr or RAII can help you:
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <memory>
using namespace std;
volatile sig_atomic_t got_sigint = 0;
class A {
public:
A() { printf("ctor\n"); };
~A() { printf("dtor\n"); };
};
void catch_sigint (int sig)
{
got_sigint = 1;
}
/* Emulate expensive computation */
void do_something()
{
sleep(3);
}
void handle_sigint()
{
printf("Caught SIGINT\n");
exit(EXIT_FAILURE);
}
int main (void)
{
A a;
auto_ptr<A> aa(new A);
signal(SIGINT, catch_sigint);
while (1) {
if (got_sigint == 0) {
do_something();
} else {
handle_sigint();
return -1;
}
}
}
The destructor of A will never be called. Of course, it is an artificial and somewhat contrived example, but a similar situation can actually happen; for example when your code is called by another code which handles SIGINT and which you have no control over at all (concrete example: mex extensions in matlab). It is the same reason why finally in python does not guarantee execution of something. Gc can help you in this case.
Other idioms do not play well with this: in any non trivial program, you will need stateful objects (I am using the word object in a very broad sense here, it can be any construction allowed by the language); if you need to control the state outside one function, you can't easily do that with RAII (which is why RAII is not that helpful for asynchronous programming). OTOH, gc have a view of the whole memory of your process, that is it knows about all the objects it allocated, and can clean asynchronously.
It can also be much faster to use gc, for the same reasons: if you need to allocate/deallocate many objects (in particular small objects), gc will vastly outperform RAII, unless you write a custom allocator, since the gc can allocate/clean many objects in one pass. Some well known C++ projects use gc, even where performance matter (see for example Tim Sweenie about the use of gc in Unreal Tournament: http://lambda-the-ultimate.org/node/1277). GC basically increases throughput at the cost of latency.
Of course, there are cases where RAII is better than gc; in particular, the gc concept is mostly concerned with memory, and that's not the only ressource. Things like file, etc... can be well handled with RAII. Languages without memory handling like python or ruby do have something like RAII for those cases, BTW (with statement in python). RAII is very useful when you precisely need to control when the ressource is freed, and that's quite often the case for files or locks for example.
The committee isn't adding garbage-collection, they are adding a couple of features that allow garbage collection to be more safely implemented. Only time will tell whether they actually have any effect whatsoever on future compilers. The specific implementations could vary widely, but will most likely involve reachability-based collection, which could involve a slight hang, depending on how it's done.
One thing is, though, no standards-conformant garbage collector will be able to call destructors - only to silently reuse lost memory.
What advantages could garbage collection offer an experienced C++ developer?
Not having to chase down resource leaks in your less-experienced colleagues' code.
It's an all-to-common error to assume that because C++ does not have garbage collection baked into the language, you can't use garbage collection in C++ period. This is nonsense. I know of elite C++ programmers who use the Boehm collector as a matter of course in their work.
Garbage collection allows to postpone the decision about who owns an object.
C++ uses value semantics, so with RAII, indeed, objects are recollected when going out of scope. This is sometimes referred to as "immediate GC".
When your program starts using reference-semantics (through smart pointers etc...), the language does no longer support you, you're left to the wit of your smart pointer library.
The tricky thing about GC is deciding upon when an object is no longer needed.
Garbage collection makes RCU lockless synchronization much easier to implement correctly and efficiently.
Easier thread safety and scalability
There is one property of GC which may be very important in some scenarios. Assignment of pointer is naturally atomic on most platforms, while creating thread-safe reference counted ("smart") pointers is quite hard and introduces significant synchronization overhead. As a result, smart pointers are often told "not to scale well" on multi-core architecture.
Garbage collection is really the basis for automatic resource management. And having GC changes the way you tackle problems in a way that is hard to quantify. For example when you are doing manual resource management you need to:
Consider when an item can be freed (are all modules/classes finished with it?)
Consider who's responsibility it is to free a resource when it is ready to be freed (which class/module should free this item?)
In the trivial case there is no complexity. E.g. you open a file at the start of a method and close it at the end. Or the caller must free this returned block of memory.
Things start to get complicated quickly when you have multiple modules that interact with a resource and it is not as clear who needs to clean up. The end result is that the whole approach to tackling a problem includes certain programming and design patterns which are a compromise.
In languages that have garbage collection you can use a disposable pattern where you can free resources you know you've finished with but if you fail to free them the GC is there to save the day.
Smart pointers which is actually a perfect example of the compromises I mentioned. Smart pointers can't save you from leaking cyclic data structures unless you have a backup mechanism. To avoid this problem you often compromise and avoid using a cyclic structure even though it may otherwise be the best fit.
I, too, have doubts that C++ commitee is adding a full-fledged garbage collection to the standard.
But I would say that the main reason for adding/having garbage collection in modern language is that there are too few good reasons against garbage collection. Since eighties there were several huge advances in the field of memory management and garbage collection and I believe there are even garbage collection strategies that could give you soft-real-time-like guarantees (like, "GC won't take more than .... in the worst case").
using RAII with smart pointers eliminates the need for it, right?
Smart pointers can be used to implement reference counting in C++ which is a form of garbage collection (automatic memory management) but production GCs no longer use reference counting because it has some important deficiencies:
Reference counting leaks cycles. Consider A↔B, both objects A and B refer to each other so they both have a reference count of 1 and neither is collected but they should both be reclaimed. Advanced algorithms like trial deletion solve this problem but add a lot of complexity. Using weak_ptr as a workaround is falling back to manual memory management.
Naive reference counting is slow for several reasons. Firstly, it requires out-of-cache reference counts to be bumped often (see Boost's shared_ptr up to 10× slower than OCaml's garbage collection). Secondly, destructors injected at the end of scope can incur unnecessary-and-expensive virtual function calls and inhibit optimizations such as tail call elimination.
Scope-based reference counting keeps floating garbage around as objects are not recycled until the end of scope whereas tracing GCs can reclaim them as soon as they become unreachable, e.g. can a local allocated before a loop be reclaimed during the loop?
What advantages could garbage collection offer an experienced C++ developer?
Productivity and reliability are the main benefits. For many applications, manual memory management requires significant programmer effort. By simulating an infinite-memory machine, garbage collection liberates the programmer from this burden which allows them to focus on problem solving and evades some important classes of bugs (dangling pointers, missing free, double free). Furthermore, garbage collection facilitates other forms of programming, e.g. by solving the upwards funarg problem (1970).
In a framework that supports GC, a reference to an immutable object such as a string may be passed around in the same way as a primitive. Consider the class (C# or Java):
public class MaximumItemFinder
{
String maxItemName = "";
int maxItemValue = -2147483647 - 1;
public void AddAnother(int itemValue, String itemName)
{
if (itemValue >= maxItemValue)
{
maxItemValue = itemValue;
maxItemName = itemName;
}
}
public String getMaxItemName() { return maxItemName; }
public int getMaxItemValue() { return maxItemValue; }
}
Note that this code never has to do anything with the contents of any of the strings, and can simply treat them as primitives. A statement like maxItemName = itemName; will likely generate two instructions: a register load followed by a register store. The MaximumItemFinder will have no way of knowing whether callers of AddAnother are going to retain any reference to the passed-in strings, and callers will have no way of knowing how long MaximumItemFinder will retain references to them. Callers of getMaxItemName will have no way of knowing if and when MaximumItemFinder and the original supplier of the returned string have abandoned all references to it. Because code can simply pass string references around like primitive values, however, none of those things matter.
Note also that while the class above would not be thread-safe in the presence of simultaneous calls to AddAnother, any call to GetMaxItemName would be guaranteed to return a valid reference to either an empty string or one of the strings that had been passed to AddAnother. Thread synchronization would be required if one wanted to ensure any relationship between the maximum-item name and its value, but memory safety is assured even in its absence.
I don't think there's any way to write a method like the above in C++ which would uphold memory safety in the presence of arbitrary multi-threaded usage without either using thread synchronization or else requiring that every string variable have its own copy of its contents, held in its own storage space, which may not be released or relocated during the lifetime of the variable in question. It would certainly not be possible to define a string-reference type which could be defined, assigned, and passed around as cheaply as an int.
Garbage Collection Can Make Leaks Your Worst Nightmare
Full-fledged GC that handles things like cyclic references would be somewhat of an upgrade over a ref-counted shared_ptr. I would somewhat welcome it in C++, but not at the language level.
One of the beauties about C++ is that it doesn't force garbage collection on you.
I want to correct a common misconception: a garbage collection myth that it somehow eliminates leaks. From my experience, the worst nightmares of debugging code written by others and trying to spot the most expensive logical leaks involved garbage collection with languages like embedded Python through a resource-intensive host application.
When talking about subjects like GC, there's theory and then there's practice. In theory it's wonderful and prevents leaks. Yet at the theoretical level, so is every language wonderful and leak-free since in theory, everyone would write perfectly correct code and test every single possible case where a single piece of code could go wrong.
Garbage collection combined with less-than-ideal team collaboration caused the worst, hardest-to-debug leaks in our case.
The problem still has to do with ownership of resources. You have to make clear design decisions here when persistent objects are involved, and garbage collection makes it all too easy to think that you don't.
Given some resource, R, in a team environment where the developers aren't constantly communicating and reviewing each other's code carefully at alll times (something a little too common in my experience), it becomes quite easy for developer A to store a handle to that resource. Developer B does as well, perhaps in an obscure way that indirectly adds R to some data structure. So does C. In a garbage-collected system, this has created 3 owners of R.
Because developer A was the one that created the resource originally and thinks he's the owner of it, he remembers to release the reference to R when the user indicates that he no longer wants to use it. After all, if he fails to do so, nothing would happen and it would be obvious from testing that the user-end removal logic did nothing. So he remembers to release it, as any reasonably competent developer would do. This triggers an event for which B handles it and also remembers to release the reference to R.
However, C forgets. He's not one of the stronger developers on the team: a somewhat fresh recruit who has only worked in the system for a year. Or maybe he's not even on the team, just a popular third party developer writing plugins for our product that many users add to the software. With garbage collection, this is when we get those silent logical resource leaks. They're the worst kind: they do not necessarily manifest in the user-visible side of the software as an obvious bug besides the fact that over durations of running the program, the memory usage just continues to rise and rise for some mysterious purpose. Trying to narrow down these issues with a debugger can be about as fun as debugging a time-sensitive race condition.
Without garbage collection, developer C would have created a dangling pointer. He may try to access it at some point and cause the software to crash. Now that's a testing/user-visible bug. C gets embarrassed a bit and corrects his bug. In the GC scenario, just trying to figure out where the system is leaking may be so difficult that some of the leaks are never corrected. These are not valgrind-type physical leaks that can be detected easily and pinpointed to a specific line of code.
With garbage collection, developer C has created a very mysterious leak. His code may continue to access R which is now just some invisible entity in the software, irrelevant to the user at this point, but still in a valid state. And as C's code creates more leaks, he's creating more hidden processing on irrelevant resources, and the software is not only leaking memory but also getting slower and slower each time.
So garbage collection does not necessarily mitigate logical resource leaks. It can, in less than ideal scenarios, make leaks far easier to silently go unnoticed and remain in the software. The developers might get so frustrated trying to trace down their GC logical leaks that they simply tell their users to restart the software periodically as a workaround. It does eliminate dangling pointers, and in a safety-obsessed software where crashing is completely unacceptable under any scenario, then I would prefer GC. But I'm often working in less safety-critical but resource-intensive, performance-critical products where a crash that can be fixed promptly is preferable to a really obscure and mysterious silent bug, and resource leaks are not trivial bugs there.
In both of these cases, we're talking about persistent objects not residing on the stack, like a scene graph in a 3D software or the video clips available in a compositor or the enemies in a game world. When resources tie their lifetimes to the stack, both C++ and any other GC language tend to make it trivial to manage resources properly. The real difficulty lies in persistent resources referencing other resources.
In C or C++, you can have dangling pointers and crashes resulting from segfaults if you fail to clearly designate who owns a resource and when handles to them should be released (ex: set to null in response to an event). Yet in GC, that loud and obnoxious but often easy-to-spot crash is exchanged for a silent resource leak that may never be detected.