What algorithm would blend multiple images that has same scene except one object on different positions in every image? - c++

I want to blend multiple photo shots of same scene but only one object is in different position on every shot. I want to know what kind of algorithm would give desired results. Here is an example

Well, what you are looking for is called Image Fusion. There are many methods that do this, but it is still a fairly active research idea. Based on the images you have, you should select the one that performs the best. Because your images will have imperfections and lighting, shadowing differences this is way beyond than a simple cut and paste.
Here is a little more information and some algorithm explanations: Image Fusion by Image Blending.

Related

Object detection using a single almost identical reference image

I would like to understand what solutions there are to perform object detection using a single almost identical reference image on a picture or in an augmented reality setting.
To be more specific: I want to detect flat (i.e. 2-dimensional) and mostly rectangular objects. I have a database with "perfect" reference images (high quality, full frontal, exact colors, no alterations, etc.) of the objects to be detected but I may have only one reference for each object.
I am talking about things such as logos, famous paintings and playing cards so the reference will have exactly the same content, shape and proportions as the object. From my understanding, the only difference between the object and the reference could then be perspective and a difference in lighting conditions. Let's assume none of these are very extreme (e.g. no sharp angle or colored light).
I know that image recognition and object detection usually requires many training images but given these simplified conditions, is there a way to make it work with one or few images (or create several by transforming one)?
I looked here and elsewhere and the only thing I found so far was this example of the Vuforia SDK: https://www.youtube.com/watch?v=MtiUx_szKbI&t=1m10s. One image of a card in a card game is apparently enough to create an overlay so I assume there are ways. This is not my field of expertise so I hope you guys can help me out :)
If there were no perspective distortion, you could use simple normalized cross-correlation. But since there is, you probably want to use SURF. The basic algorithm to use SURF to find your reference image within a world image is:
find keypoints, such as corners, in both images.
describe the local texture of each keypoint.
use those descriptors to match keypoints between images. If there are a lot of matches, with consistent geometry, you've probably found your object.
Check out this tutorial, that walks you through doing exactly that: http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.html#feature-homography

Im trying to use this method to detect moving object. Can someone advise me for this?

I want to ask about what kind of problems there be if i use this method to extract foreground.
The condition before using this method is that it runs on fixed camera so there're not going to be any movement on camera position.
And what im trying to do is below.
read one frame from camera and set this frame as background image. This is done periodically.
periodically subtract frames that are read afterward to background image above. Then there will be only moving things colored differently from other area
that are same to background image.
then isolate moving object by using grayscale, binarization, thresholding.
iterate above 4 processes.
If i do this, would probability of successfully detect moving object be high? If not... could you tell me why?
If you consider illumination change(gradually or suddenly) in scene, you will see that your method does not work.
There are more robust solutions for these problems. One of these(maybe the best) is Gaussian Mixture Model applied for background subtraction.
You can use BackgroundSubtractorMOG2 (implementation of GMM) in OpenCV library.
Your scheme is quite adequate to cases where the camera is fix and the background is stationary. Indoor and man-controlled scenes are more appropriate to this approach than outdoor and natural scenes .I've contributed to a detection system that worked basically on the same principals you suggested. But of course the details are crucial. A few remarks based on my experience
Your initialization step can cause very slow convergence to a normal state. You set the background to the first frames, and then pieces of background coming behind moving objects will be considered as objects. A better approach is to take the median of N first frames.
Simple subtraction may not be enough in cases of changing light condition etc. You may find a similarity criterion better for your application.
simple thresholding on the difference image may not be enough. A simple approach is to dilate the foreground for the sake of not updating the background on pixels that where accidentally identified as such.
Your step 4 is unclear, I assumed that you mean that you update the foreground only on those places that are identified as background on the last frame. Note that with such a simple approach, pixels that are actually background may be stuck forever with a "foreground" labeling, as you don't update the background under them. There are many possible solutions to this.
There are many ways to solve this problem, and it will really depend on the input images as to which method will be the most appropriate. It may be worth doing some reading on the topic
The method you are suggesting may work, but it's a slightly non-standard approach to this problem. My main concern would be that subtracting several images from the background could lead to saturation and then you may lose some detail of the motion. It may be better to take difference between consecutive images, and then apply the binarization / thresholding to these images.
Another (more complex) approach which has worked for me in the past is to take subregions of the image and then cross-correlate with the new image. The peak in this correlation can be used to identify the direction of movement - it's a useful approach if more then one thing is moving.
It may also be possible to use a combination of the two approaches above for example.
Subtract second image from the first background.
Threshold etc to find the ROI where movement is occurring
Use a pattern matching approach to track subsequent movement focussed on the ROI detected above.
The best approach will depend on you application but there are lots of papers on this topic

remove gradient of a image without a comparison image

currently i am having much difficulty thinking of a good method of removing the gradient from a image i received.
The image is a picture taken by a microscope camera that has a light glare in the middle. The image has a pattern that goes throughout the image. However i am supposed to remove the light glare on the image created by the camera light.
Unfortunately due to the nature of the camera it is not possible to take a picture on black background with the light to find the gradient distribution. Nor do i have a comparison image that is without the gradient. (note- the location of the light glare will always be consistant when the picture is taken)
In easier terms its like having a photo with a flash in it but i want to get rid of the flash. The only problem is i have no way to obtaining the image without flash to compare to or even obtaining a black image with just the flash on it.
My current thought is conduct edge detection and obtain samples in specific locations away from the edges (due to color difference) and use that to gauge the distribution of gradient since those areas are supposed to have relatively identical colors. However i was wondering if there was a easier and better way to do this.
If needed i will post a example of the image later.
At the moment i have a preferrence of solving this in c++ using opencv if that makes it easier.
thanks in advance for any possible ideas for this problem. If there is another link, tutorial, or post that may solve my problem i would greatly appreciate the post.
as you can tell there is a light thats being shinned on the img as you can tell from the white spot. and the top is lighter than the bottome due to the light the color inside the oval is actually different when the picture is taken in color. However the color between the box and the oval should be consistant. My original idea was to perhaps sample only those areas some how and build a profile that i can utilize to remove the light but i am unsure how effective that would be or if there is a better way
EDIT :
Well i tried out Roger's suggestion and the results were suprisngly good. Using 110 kernel gaussian blurr to find illumination and conducting CLAHE on top of that. (both done in opencv)
However my colleage told me that the image doesn't look perfectly uniform and pointed out that around the area where the light used to be is slightly brighter. He suggested trying a selective gaussian blur where the areas above certain threshold pixel values are not blurred while the rest of the image is blurred.
Does anyone have opinions regarding this and perhaps a link, tutorial, or an example of something like this being done? Most of the things i find tend to be selective blur for programs like photoshop and gimp
EDIT2 :
it is difficult to tell with just eyes but i believe i have achieved relatively close uniformization by using a simple plane fitting algorithm.((-A * x - B * y) / C) (x,y,z) where z is the pixel value. I think that this can be improved by utilizing perhaps a sine fitting function? i am unsure. But I am relatively happy with the results. Many thanks to Roger for the great ideas.
I believe using a bunch of pictures and getting the avg would've been another good method (suggested by roger) but Unofruntely i was not able to implement this since i was not supplied with various pictures and the machine is under modification so i was unable to use it.
I have done some work in this area previously and found that a large Gaussian blur kernel can produce a reasonable approximation to the background illumination. I will try to get something working on your example image but, in the meantime, here is an example of your image after Gaussian blur with radius 50 pixels, which may help you decide if it's worth progressing.
UPDATE
Just playing with this image, you can actually get a reasonable improvement using adaptive histogram equalisation (I used CLAHE) - see comparison below - any use?
I will update this answer with more details as I progress.
I would like to point you to this paper: http://www.cs.berkeley.edu/~ravir/dirtylens.pdf, but, in my opinion, without any sort of calibration/comparison image taken apriori, it is difficult to mine out the ground truth from the flared image.
However, if you are trying to just present the image minus the lens flare, disregarding the actual scientific data behind the flared part, then you switch into the domain of image inpainting. Criminsi's algorithm, as described in this paper: http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf and explained/simplified in these two links: http://cs.brown.edu/courses/csci1950-g/results/final/eboswort/ http://www.cc.gatech.edu/~sooraj/inpainting/, will do a very good job in restoring texture information to the flared up regions. (If you'd really like to pursue this approach, do mention that. More comprehensive help can be provided for this).
However, given the fact that we're dealing with microscopic data, I doubt if you'd like to lose the scientific data contained in a particular region of an image. In that case, I really think you need to find a workaround to determine the flare model of the flash/light source w.r.t the lens you're using.
I hope someone else can shed more light on this.

C++ OpenCV sky image stitching

Some background:
Hi all! I have a project which involves cloud imaging. I take pictures of the sky using a camera mounted on a rotating platform. I then need to compute the amount of cloud present based on some color threshold. I am able to this individually for each picture. To completely achieve my goal, I need to do the computation on the whole image of the sky. So my problem lies with stitching several images (about 44-56 images). I've tried using the stitch function on all and some subsets of image set but it returns an incomplete image (some images were not stitched). This could be because of a lack of overlap of something, I dunno. Also the output image has been distorted weirdly (I am actually expecting the output to be something similar to a picture taken by a fish-eye lense).
The actual problem:
So now I'm trying to figure out the opencv stitching pipeline. Here is a link:
http://docs.opencv.org/modules/stitching/doc/introduction.html
Based on what I have researched I think this is what I want to do. I want to map all the images to a circular shape, mainly because of the way how my camera rotates, or something else that has uses a fairly simple coordinate transformation. So I think I need get some sort of fixed coordinate transform thing for the images. Is this what they call the homography? If so, does anyone have any idea how I can go about my problem? After this, I believe I need to get a mask for blending the images. Will I need to get a fixed mask like the one I want for my homography?
Am I going through a possible path? I have some background in programming but almost none in image processing. I'm basically lost. T.T
"So I think I need get some sort of fixed coordinate transform thing for the images. Is this what they call the homography?"
Yes, the homography matrix is the transformation matrix between an original image and the ideal result. It warps an image in perspective so it can fit in stitching to the other image.
"If so, does anyone have any idea how I can go about my problem?"
Not with the limited information you provided. It would ease the problem a lot if you know the order of pictures (which borders which.. row, column position)
If you have no experience in image processing, I would recommend you use a tutorial covering stitching using more basic functions in detail. There is some important work behind the scenes, and it's not THAT harder to actually do it yourself.
Start with this example. It stitches two pictures.
http://ramsrigoutham.com/2012/11/22/panorama-image-stitching-in-opencv/

'creating' images effectively

I'll first tell you the problem and then I'll tell you my solution.
Problem: I have a blank white PNG image approximately 900x900 pixels. I want to copy circles 30x30 pixels in size, which are essentially circles with a different colour. There are 8 different circles, and placed on the image depending on data values which I've created elsewhere.
Solution: I've used ImageMagicK, it's suppose to be good for general purpose image editing etc. I created a blank image
Image.outimage("900x900","white");
I upload all other small 30x30 pixel images with 'read' function.
I upload the data and extract vales.
I place the small 'circle' images on the blank one using the composite command.
outimage.composite("some file.png",pixelx,pixely,InCompositeOp);
This all works fine and the images come up the way I want them too.
However its painfully SLOW. It takes 20 seconds to do one image, and I have 1000 of them. Surely there must be a better way to do this. I've seen other researchers simulate images way more complex and way faster. It's quite possible I took the wrong approach. Maybe I sould be 'drawing' circles instead of 'pasting' them or something. I'm quite baffled. Any input is appreciated.
I suspect that you just need some library that is capable of drawing circles on bitmap and saving that bitmap as png.
For example my Graphin library: http://code.google.com/p/graphin/
Or some such. With Graphin you can also draw one PNG on surface of another as in your case.
You did not give any information about the platform you are using (only "C++"), so if you are looking for a platform independent solution, the CImg library might be worth a try.
http://cimg.sourceforge.net/
By the way, did you try drawing the circles using the ImageMagick C++ API Magick++ instead of "composing" them? I cannot believe that it is that slow.