BLAS+Multiple Precision+MPI - c++

I am writing a scientific application for my Maths PhD in C++, it's based on some heavy linear algebra, mostly BLAS level 3 routines. The sizes of the matrices employed vary considerably, ideally I would like to be able to deal with very large matrices of order 10000 and higher. So far I have used Intel MKL, multi-threaded, scales nicely onto 8 cores. My algorithm produces the correct results, however is very unstable, in double precision arithmetic, due to the accumulating errors, resulting from high powers being taken. Additionally, as I have access to a large supercomputer cluster, and my algorithm can be easily scaled across multiple nodes, I would like to employ MPI to scale the application across hundreds of nodes.
My goal is to find a templated BLAS library that:
Supports Multiple Precision Arithmetic,
Supports Multi-threading,
Supports MPI
My findings so far:
MTL4 - Matrix Template library 4 seems to do all of the above, however the open source edition will only run on one core, and the supercomputing edition is quite costly.
Eigen - appears not to support multicore? Does it support multicore and MPI if linked with MKL?
Armadillo - does all the above?
I would greatly appreciate any insights and recommendations
Kind Regards,
Maria

Depending on your matrix problem, the Tpetra package of Trilinos might be worth a look. It's templated on the scalar type, so you might use multiple precision types. It targets large scale applications on supercomputers so one can expect good parallel performances.
Hope it helps!
Edit: and it's free!

Related

using SSE in C: how to load distributed values in register [duplicate]

I'm trying to implement SSE version of large matrix by matrix multiplication.
I'm looking for an efficient algorithm based on SIMD implementations.
My desired method looks like:
A(n x m) * B(m x k) = C(n x k)
And all matrices are considered to be 16-byte aligned float array.
I searched the net and found some articles describing 8x8 multiplication and even smaller. I really need it as efficient as possible and I don't want to use Eigen library or similar libraries. (Only SSE3 to be more specific).
So I'd appreciate if anyone can help me find some articles or resources on how to start implementing this.
The main challenge in implementation of arbitrary-size matrix-matrix multiplication is not the use of SIMD, but reuse of cached data. The paper Anatomy of High-Performance Matrix Multiplication by Goto and Van de Geijn is a must-read if you want to implement cache-friendly matrix-matrix multiplication, and it also discusses the choice of kernels to be SIMD-friendly. After reading this paper expect to achieve 50% of machine peak on matrix-matrix multiplication after two weeks of efforts.
However, if the purpose of this work is not pure learning, I strongly recommend to use a highly optimized library. On x86 your best options are OpenBLAS (BSD-licensed, supports dynamic CPU dispatching), BLIS (BSD-licensed, easily portable to new processors), and Intel MKL (commercial, supports dynamic CPU dispatching on Intel processors). For performance reasons it is better to avoid ATLAS unless you target a very exotic architecture which is not supported by other libraries.

GPGPU programming architecture for HSA in C++ for Matrix Math

GPU Compute Programmers,
I have a C++ program which currently relies on the ACML (LAPACK) to invert and multiple fairly large matrices of single precision fp values (E.g. 4,000 x 4,000). These matrices are very sparse although they do not always fit nicely into a diagonal matrix so I cannot presently reduce them. The other thing about this program is I have to do this invert and multiply several times (serially) as part of a Newton Rapson. However, I have several thousand permutations which can be done in parallel, each with a small change to the matrix before again calculating and inverting the Jacobian. This is all single precision fp, and seems perfectly suited for the GPU. My question is this...
I suspect I will need to use the AMD Accelerated Parallel Processing Math Libraries (APPML) for OpenGL as that is the only thing (non-CUDA, I want to be GPU agnostic) I know of which is available with BLAS functionality. My problem is I do not see the LAPACK dgetrf and dgetri functions included in APPML (yes, these are fp64 but I don't need that precision). Would C++ AMP be a better alternative? I am very interested in HSA features of passing pointers rather than copying data as there is a lot of data in flight here and some calculations still are done on the CPU. I believe that copy overhead would kill me otherwise. Ultimately, performance is the key and I want to make the right architectural decisions to set myself up for the most performance I can wring out of HSA GPUs coming out over the next 6 months.
I am using VS 2013 Ultimate preview and would be able to take advantage of C++ AMP for these HSA capabilities. I just want to make sure I am making the right long term architectural decision now while my program is in its infancy. Here is a link and snippet from some interesting data I found on Anandtech:
http://anandtech.com/show/7118/windows-81-and-vs2013-bring-gpu-computing-updates-to-direct3d-and-c-amp-
C++ AMP, Microsoft's C++ extension for GPU computing, has also been updated with the upcoming VS2013. I think the biggest feature update is that C++ AMP programs will also gain a shared memory feature on APUs/SoCs where the compiler and runtime will be able to eliminate extra data copies between CPU and GPU. This feature will also be available only on Windows 8.1 and it is likely built on top of the "map default buffer" as Microsoft's AMP implementation uses Direct3D under the hood. C++ AMP also brings some other nice additions including enhanced texture support and better debugging abilities.
Any thoughts, additional questions or discussion would be greatly appreciated!

Large Matrix Inversion

I am looking at taking the inverse of a large matrix, common size of 1000 x 1000, but sometimes exceeds 100000 x 100000 (which is currently failing due to time and memory). I know that the normal sentiment is 'don't take the inverse, find some other way to do it', but that is not possible at the moment. The reason for this is due to the usage of software that is already made that expects to get the matrix inverse. (Note: I am looking into ways of changing this, but that will take a long time)
At the moment we are using an LU decomposition method from numerical recopies, and I am currently in the process of testing the eigen library. The eigen library seems to be more stable and a bit faster, but I am still in testing phase for accuracy. I have taken a quick look at other libraries such as ATLAS and LAPACK but have not done any substantial testing with these yet.
It seems as though the eigen library does not use concurrent methods to compute the inverse (though does for LU factorization part of the inverse) and as far as I can tell ATLAS and LAPACK are similar in this limitation. (I am currently testing the speed difference for eigen with openMP and without.)
First question is can anyone explain how it would be possible to optimize matrix inversion by parallelization. I found an article here that talks about matrix inversion parallel algorithms, but I did not understand. It seems this article talks about another method? I am also not sure if scaLAPACK or PETSc are useful?
Second question, I read this article of using the GPUs to increase performance, but I have never coded for GPUs and so have no idea what is trying to convey, but the charts at the bottom looked rather alarming. How is this even possible, and how where do I start to go about implementing something like this if it is to be true.
I also found this article, have yet had the time to read through it to understand, but it seems promising, as memory is a current issue with our software.
Any information about these articles or the problems in general would be of great help. And again I apologize if this question seems vague, I will try to expand more if necessary.
First question is can anyone explain how it would be possible to optimize matrix inversion by parallelization.
I'd hazard a guess that this, and related topics in linear algebra, is one of the most studied topics in parallel computing. If you're stuck looking for somewhere to start reading, well good old Golub and Van Loan have a chapter on the topic. As to whether Scalapack and Petsc are likely to be useful, certainly the former, probably the latter. Of course, they both depend on MPI but that's kind of taken for granted in this field.
Second question ...
Use GPUs if you've got them and you can afford to translate your code into the programming model supported by your GPUs. If you've never coded for GPUs and have access to a cluster of commodity-type CPUs you'll get up to speed quicker by using the cluster than by wrestling with a novel technology.
As for the last article you refer to, it's now 10 years old in a field that changes very quickly (try finding a 10-year old research paper on using GPUs for matrix inversion). I can't comment on its excellence or other attributes, but the problem sizes you mention seem to me to be well within the capabilities of modern clusters for in-core (to use an old term) computation. If your matrices are very big, are they also sparse ?
Finally, I strongly support your apparent intention to use existing off-the-shelf codes rather than to try to develop your own.
100000 x 100000 is 80GB at double precision. You need a library that supports memory-mapped matrices on disk. I can't recommend a particular library and I didn't find anything with quick Google searches. But code from Numerical Recipes certainly isn't going to be adequate.
Regarding the first question (how to parallellize computing the inverse):
I assume you are computing the inverse by doing an LU decomposition of your matrix and then using the decomposition to solve A*B = I where A is your original matrix, B is the matrix you solve for, and I is the identity matrix. Then B is the inverse.
The last step is easy to parallellize. Divide your identity matrix along the columns. If you have p CPUs and your matrix is n-by-n, then every part has n/p columns and n rows. Lets call the parts I1, I2, etc. On every CPU, solve a system of the form A*B1 = I1, this gives you the parts B1, B2, etc., and you can combine them to form B which is the inverse.
An LU decomp on a GPU can be ~10x faster than on a CPU. Although this is now changing, GPU's have traditionally been designed around single precision arithmetic, and so on older hardware single precision arithmetic is generally much faster than double precision arithmetic. Also, storage requirements and performance will be greatly impacted by the structure of your matrices. A sparse 100,000 x 100,000 matrix LU decomp is a reasonable problem to solve and will not require much memory.
Unless you want to become a specialist and spend a lot of time tuning for hardware updates, I would strongly recommend using a commercial library. I would suggest CULA tools. They have both sparse and dense GPU libraries and in fact their free library offers SGETRF - a single precision (dense) LU decomp routine. You'll have to pay for their double precision libraries.
I know it's old post - but really - OpenCL (you download the relevant one based on your graphics card) + OpenMP + Vectorization (not in that order) is the way to go.
Anyhow - for me my experience with matrix anything is really to do with overheads from copying double double arrays in and out the system and also to pad up or initialize matrices with 0s before any commencement of computation - especially when I am working with creating .xll for Excel usage.
If I were to reprioritize the top -
try to vectorize the code (Visual Studio 2012 and Intel C++ has autovectorization - I'm not sure about MinGW or GCC, but I think there are flags for the compiler to analyse your for loops to generate the right assembly codes to use instead of the normal registers to hold your data, to populate your processor's vector registers. I think Excel is doing that because when I monitored Excel's threads while running their MINVERSE(), I notice only 1 thread is used.
I don't know much assembly language - so I don't know how to vectorize manually... (haven't had time to go learn this yet but sooooo wanna do it!)
Parallelize with OpenMP (omp pragma) or MPI or pthreads library (parallel_for) - very simple - but... here's the catch - I realise that if your matrix class is completely single threaded in the first place - then parallelizing the operation like mat multiply or inverse is scrappable - cuz parallelizing will deteriorate the speed due to initializing or copying to or just accessing the non-parallelized matrix class.
But... where parallelization helps is - if you're designing your own matrix class and you parallelize its constructor operation (padding with 0s etc), then your computation of LU(A^-1) = I will also be faster.
It's also mathematically straightforward to also optimize your LU decomposition, and also optimizing ur forward backward substitution for the special case of identity. (I.e. don't waste time creating any identity matrix - analyse where your for (row = col) and evaluate to be a function with 1 and the rest with 0.)
Once it's been parallelized (on the outer layers) - the matrix operations requiring element by element can be mapped to be computed by GPU(SSSSSS) - hundreds of processors to compute elements - beat that!. There is now sample Monte Carlo code available on ATI's website - using ATI's OpenCL - don't worry about porting code to something that uses GeForce - all u gotta do is recompile there.
For 2 and 3 though - remember that overheads are incurred so no point unless you're handling F*K*G HUGE matrices - but I see 100k^2? wow...
Gene

What are the most widely used C++ vector/matrix math/linear algebra libraries, and their cost and benefit tradeoffs? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 5 years ago.
Improve this question
It seems that many projects slowly come upon a need to do matrix math, and fall into the trap of first building some vector classes and slowly adding in functionality until they get caught building a half-assed custom linear algebra library, and depending on it.
I'd like to avoid that while not building in a dependence on some tangentially related library (e.g. OpenCV, OpenSceneGraph).
What are the commonly used matrix math/linear algebra libraries out there, and why would decide to use one over another? Are there any that would be advised against using for some reason? I am specifically using this in a geometric/time context*(2,3,4 Dim)* but may be using higher dimensional data in the future.
I'm looking for differences with respect to any of: API, speed, memory use, breadth/completeness, narrowness/specificness, extensibility, and/or maturity/stability.
Update
I ended up using Eigen3 which I am extremely happy with.
There are quite a few projects that have settled on the Generic Graphics Toolkit for this. The GMTL in there is nice - it's quite small, very functional, and been used widely enough to be very reliable. OpenSG, VRJuggler, and other projects have all switched to using this instead of their own hand-rolled vertor/matrix math.
I've found it quite nice - it does everything via templates, so it's very flexible, and very fast.
Edit:
After the comments discussion, and edits, I thought I'd throw out some more information about the benefits and downsides to specific implementations, and why you might choose one over the other, given your situation.
GMTL -
Benefits: Simple API, specifically designed for graphics engines. Includes many primitive types geared towards rendering (such as planes, AABB, quatenrions with multiple interpolation, etc) that aren't in any other packages. Very low memory overhead, quite fast, easy to use.
Downsides: API is very focused specifically on rendering and graphics. Doesn't include general purpose (NxM) matrices, matrix decomposition and solving, etc, since these are outside the realm of traditional graphics/geometry applications.
Eigen -
Benefits: Clean API, fairly easy to use. Includes a Geometry module with quaternions and geometric transforms. Low memory overhead. Full, highly performant solving of large NxN matrices and other general purpose mathematical routines.
Downsides: May be a bit larger scope than you are wanting (?). Fewer geometric/rendering specific routines when compared to GMTL (ie: Euler angle definitions, etc).
IMSL -
Benefits: Very complete numeric library. Very, very fast (supposedly the fastest solver). By far the largest, most complete mathematical API. Commercially supported, mature, and stable.
Downsides: Cost - not inexpensive. Very few geometric/rendering specific methods, so you'll need to roll your own on top of their linear algebra classes.
NT2 -
Benefits: Provides syntax that is more familiar if you're used to MATLAB. Provides full decomposition and solving for large matrices, etc.
Downsides: Mathematical, not rendering focused. Probably not as performant as Eigen.
LAPACK -
Benefits: Very stable, proven algorithms. Been around for a long time. Complete matrix solving, etc. Many options for obscure mathematics.
Downsides: Not as highly performant in some cases. Ported from Fortran, with odd API for usage.
Personally, for me, it comes down to a single question - how are you planning to use this. If you're focus is just on rendering and graphics, I like Generic Graphics Toolkit, since it performs well, and supports many useful rendering operations out of the box without having to implement your own. If you need general purpose matrix solving (ie: SVD or LU decomposition of large matrices), I'd go with Eigen, since it handles that, provides some geometric operations, and is very performant with large matrix solutions. You may need to write more of your own graphics/geometric operations (on top of their matrices/vectors), but that's not horrible.
So I'm a pretty critical person, and figure if I'm going to invest in a library, I'd better know what I'm getting myself into. I figure it's better to go heavy on the criticism and light on the flattery when scrutinizing; what's wrong with it has many more implications for the future than what's right. So I'm going to go overboard here a little bit to provide the kind of answer that would have helped me and I hope will help others who may journey down this path. Keep in mind that this is based on what little reviewing/testing I've done with these libs. Oh and I stole some of the positive description from Reed.
I'll mention up top that I went with GMTL despite it's idiosyncrasies because the Eigen2 unsafeness was too big of a downside. But I've recently learned that the next release of Eigen2 will contain defines that will shut off the alignment code, and make it safe. So I may switch over.
Update: I've switched to Eigen3. Despite it's idiosyncrasies, its scope and elegance are too hard to ignore, and the optimizations which make it unsafe can be turned off with a define.
Eigen2/Eigen3
Benefits: LGPL MPL2, Clean, well designed API, fairly easy to use. Seems to be well maintained with a vibrant community. Low memory overhead. High performance. Made for general linear algebra, but good geometric functionality available as well. All header lib, no linking required.
Idiocyncracies/downsides: (Some/all of these can be avoided by some defines that are available in the current development branch Eigen3)
Unsafe performance optimizations result in needing careful following of rules. Failure to follow rules causes crashes.
you simply cannot safely pass-by-value
use of Eigen types as members requires special allocator customization (or you crash)
use with stl container types and possibly other templates required
special allocation customization (or you will crash)
certain compilers need special care to prevent crashes on function calls (GCC windows)
GMTL
Benefits: LGPL, Fairly Simple API, specifically designed for graphics engines.
Includes many primitive types geared towards rendering (such as
planes, AABB, quatenrions with multiple interpolation, etc) that
aren't in any other packages. Very low memory overhead, quite fast,
easy to use. All header based, no linking necessary.
Idiocyncracies/downsides:
API is quirky
what might be myVec.x() in another lib is only available via myVec[0] (Readability problem)
an array or stl::vector of points may cause you to do something like pointsList[0][0] to access the x component of the first point
in a naive attempt at optimization, removed cross(vec,vec) and
replaced with makeCross(vec,vec,vec) when compiler eliminates
unnecessary temps anyway
normal math operations don't return normal types unless you shut
off some optimization features e.g.: vec1 - vec2 does not return a
normal vector so length( vecA - vecB ) fails even though vecC = vecA -
vecB works. You must wrap like: length( Vec( vecA - vecB ) )
operations on vectors are provided by external functions rather than
members. This may require you to use the scope resolution everywhere
since common symbol names may collide
you have to do
length( makeCross( vecA, vecB ) )
or
gmtl::length( gmtl::makeCross( vecA, vecB ) )
where otherwise you might try
vecA.cross( vecB ).length()
not well maintained
still claimed as "beta"
documentation missing basic info like which headers are needed to
use normal functionalty
Vec.h does not contain operations for Vectors, VecOps.h contains
some, others are in Generate.h for example. cross(vec&,vec&,vec&) in
VecOps.h, [make]cross(vec&,vec&) in Generate.h
immature/unstable API; still changing.
For example "cross" has moved from "VecOps.h" to "Generate.h", and
then the name was changed to "makeCross". Documentation examples fail
because still refer to old versions of functions that no-longer exist.
NT2
Can't tell because they seem to be more interested in the fractal image header of their web page than the content. Looks more like an academic project than a serious software project.
Latest release over 2 years ago.
Apparently no documentation in English though supposedly there is something in French somewhere.
Cant find a trace of a community around the project.
LAPACK & BLAS
Benefits: Old and mature.
Downsides:
old as dinosaurs with really crappy APIs
For what it's worth, I've tried both Eigen and Armadillo. Below is a brief evaluation.
Eigen
Advantages:
1. Completely self-contained -- no dependence on external BLAS or LAPACK.
2. Documentation decent.
3. Purportedly fast, although I haven't put it to the test.
Disadvantage:
The QR algorithm returns just a single matrix, with the R matrix embedded in the upper triangle. No idea where the rest of the matrix comes from, and no Q matrix can be accessed.
Armadillo
Advantages:
1. Wide range of decompositions and other functions (including QR).
2. Reasonably fast (uses expression templates), but again, I haven't really pushed it to high dimensions.
Disadvantages:
1. Depends on external BLAS and/or LAPACK for matrix decompositions.
2. Documentation is lacking IMHO (including the specifics wrt LAPACK, other than changing a #define statement).
Would be nice if an open source library were available that is self-contained and straightforward to use. I have run into this same issue for 10 years, and it gets frustrating. At one point, I used GSL for C and wrote C++ wrappers around it, but with modern C++ -- especially using the advantages of expression templates -- we shouldn't have to mess with C in the 21st century. Just my tuppencehapenny.
If you are looking for high performance matrix/linear algebra/optimization on Intel processors, I'd look at Intel's MKL library.
MKL is carefully optimized for fast run-time performance - much of it based on the very mature BLAS/LAPACK fortran standards. And its performance scales with the number of cores available. Hands-free scalability with available cores is the future of computing and I wouldn't use any math library for a new project doesn't support multi-core processors.
Very briefly, it includes:
Basic vector-vector, vector-matrix,
and matrix-matrix operations
Matrix factorization (LU decomp, hermitian,sparse)
Least squares fitting and eigenvalue problems
Sparse linear system solvers
Non-linear least squares solver (trust regions)
Plus signal processing routines such as FFT and convolution
Very fast random number generators (mersenne twist)
Much more.... see: link text
A downside is that the MKL API can be quite complex depending on the routines that you need. You could also take a look at their IPP (Integrated Performance Primitives) library which is geared toward high performance image processing operations, but is nevertheless quite broad.
Paul
CenterSpace Software ,.NET Math libraries, centerspace.net
What about GLM?
It's based on the OpenGL Shading Language (GLSL) specification and released under the MIT license.
Clearly aimed at graphics programmers
I've heard good things about Eigen and NT2, but haven't personally used either. There's also Boost.UBLAS, which I believe is getting a bit long in the tooth. The developers of NT2 are building the next version with the intention of getting it into Boost, so that might count for somthing.
My lin. alg. needs don't exteed beyond the 4x4 matrix case, so I can't comment on advanced functionality; I'm just pointing out some options.
I'm new to this topic, so I can't say a whole lot, but BLAS is pretty much the standard in scientific computing. BLAS is actually an API standard, which has many implementations. I'm honestly not sure which implementations are most popular or why.
If you want to also be able to do common linear algebra operations (solving systems, least squares regression, decomposition, etc.) look into LAPACK.
I'll add vote for Eigen: I ported a lot of code (3D geometry, linear algebra and differential equations) from different libraries to this one - improving both performance and code readability in almost all cases.
One advantage that wasn't mentioned: it's very easy to use SSE with Eigen, which significantly improves performance of 2D-3D operations (where everything can be padded to 128 bits).
Okay, I think I know what you're looking for. It appears that GGT is a pretty good solution, as Reed Copsey suggested.
Personally, we rolled our own little library, because we deal with rational points a lot - lots of rational NURBS and Beziers.
It turns out that most 3D graphics libraries do computations with projective points that have no basis in projective math, because that's what gets you the answer you want. We ended up using Grassmann points, which have a solid theoretical underpinning and decreased the number of point types. Grassmann points are basically the same computations people are using now, with the benefit of a robust theory. Most importantly, it makes things clearer in our minds, so we have fewer bugs. Ron Goldman wrote a paper on Grassmann points in computer graphics called "On the Algebraic and Geometric Foundations of Computer Graphics".
Not directly related to your question, but an interesting read.
FLENS
http://flens.sf.net
It also implements a lot of LAPACK functions.
I found this library quite simple and functional (http://kirillsprograms.com/top_Vectors.php). These are bare bone vectors implemented via C++ templates. No fancy stuff - just what you need to do with vectors (add, subtract multiply, dot, etc).

ublas vs. matrix template library (MTL4)

I'm writing a software for hyperbolic partial differential equations in c++. Almost all notations are vector and matrix ones. On top of that, I need the linear algebra solver. And yes, the vector's and matrix's sizes can vary considerably (from say 1000 to sizes that can be solved only by distributed memory computing, eg. clusters or similar architecture). If I had lived in utopia, I'd had had linear solver which scales great for clusters, GPUs and multicores.
When thinking about the data structure that should represent the variables, I came accros the boost.ublas and MTL4.
Both libraries are blas level 3 compatible, MTL4 implements sparse solver and is much faster than ublas. They both don't have implemented support for multicore processors, not to mention parallelization for distributed memory computations. On the other hand, the development of MTL4 depends on sole effort of 2 developers (at least as I understood), and I'm sure there is a reason that the ublas is in the boost library. Furthermore, intel's mkl library includes the example for binding their structure with ublas.
I'd like to bind my data and software to the data structure that will be rock solid, developed and maintained for long period of time.
Finally, the question. What is your experience with the use of ublas and/or mtl4, and what would you recommend?
thanx,
mightydodol
With your requirements, I would probably go for BOOST::uBLAS. Indeed, a good deployment of uBLAS should be roughly on par with MTL4 regarding speed.
The reason is that there exist bindings for ATLAS (hence shared-memory parallelization that you can efficiently optimize for your computer), and also vendor-tuned implementations like the Intel Math Kernel Library or HP MLIB.
With these bindings, uBLAS with a well-tuned ATLAS / BLAS library doing the math should be fast enough. If you link against a given BLAS / ATLAS, you should be roughly on par with MTL4 linked against the same BLAS / ATLAS using the compiler flag -DMTL_HAS_BLAS, and most likely faster than the MTL4 without BLAS according to their own observation (example see here, where GotoBLAS outperforms MTL4).
To sum up, speed should not be your decisive factor as long as you are willing to use some BLAS library. Usability and support is more important. You have to decide, whether MTL or uBLAS is better suited for you. I tend towards uBLAS given that it is part of BOOST, and MTL4 currently only supports BLAS selectively. You might also find this slightly dated comparison of scientific C++ packages interesting.
One big BUT: for your requirements (extremely big matrices), I would probably skip the "syntactic sugar" uBLAS or MTL, and call the "metal" C interface of BLAS / LAPACK directly. But that's just me... Another advantage is that it should be easier than to switch to ScaLAPACK (distributed memory LAPACK, have never used it) for bigger problems. Just to be clear: for house-hold problems, I would not suggest calling a BLAS library directly.
If you're programming vectors, matrices, and linear algebra in C++, I'd look at Eigen:
http://eigen.tuxfamily.org/
It's faster than uBLAS (not sure about MTL4) and much cleaner syntax.
For new projects, it's probably best to stay away from Boost's uBlas. The uBlas FAQ even has this warning since late 2012:
Q: Should I use uBLAS for new projects?
... the last major improvement of uBLAS was in 2008 and no significant change was committed since 2009. ... Performance? There are faster alternatives. Cutting edge? uBLAS is more than 10 years old and missed all new stuff from C++11.
There is one C++ library missing in this list: FLENS
http://flens.sf.net
Disclaimer: Yes, this is my baby
It is header only
Comes with a simple, non-performant, generic (i.e. templated) C++ reference implemenation of BLAS.
If available you can use an optimized BLAS implementation as backend. In this case its like using BLAS directly (some Benchmark I should update).
You can use overloaded operators instead of calling BLAS functions.
It comes with its own, stand-alone, generic re-implemenation of a bunch of LAPACK functions. We call this port FLENS-LAPACK.
FLENS-LAPACK has exactly the same accuracy and performance as Netlib's LAPACK. And in my experience (FLENS-)LAPACK+ATLAS or (FLENS-)LAPACK+OpenBLAS gives you the same performance as ACML or MKL.
FLENS has a different policy regarding the creation of temporary vector/matrices in the evaluation of linear algebra expressions. The FLENS policy is: Never create them!!!. However, in a special debug-mode we allow the creation of temporaries "when necessary". This "when necessary" policy thing is the default in other libraries like Eigen or Armadillo or in Matlab.
You can see the performance differences directly here:
http://www.osl.iu.edu/research/mtl/mtl4/doc/performance.php3
Both are reasonable libraries to use in terms of their interfaces, I don't think that because uBLAS got through the BOOST review process it's necessarily way more robust. I've had my share of nightmares with unobvious side effects and unintended consequences from uBLAS implementations.
That's not to say uBLAS is bad, it's really good, but I think given the dramatic performances differences for MTL these days, it's worth using it instead of uBLAS even though it's arguably a bit more risky becuase of it's "only 2 developer" support group.
At the end of the day, it's about speed with a matrix library, go with MTL4.
From my own experience, MTL4 is much faster than uBLAS and it is also faster than Eigen.
There is a parallel version of MTL4. Just have a look at simunova