I am trying to understand the theory behind OpenGL and I'm studying VBOs at the moment.
This is what I understand so far: when we declare a series of vertices, let's say 3 vertices that form a triangle primitive, we basically store those nowhere, they're simply declared in code.
But, if we want to store them somewhere we can use a VBO that stores the definition of those vertices. And, through the same VBO we send all that vertex info to the Vertex Shader (which is a bunch of code). Now, the VBO is located in the GPU, so we are basically storing all that info on the GPU's memory when we call the VBO. Then the Vertex Shader, which is part of the Pipeline Rendering process, "comes" to the GPU's memory, "looks" into the VBO and retrieves all that info. In other words, the VBO stores the vertex data (triangle vertices) and sends it to the Vertex Shader.
So, VBO -> send info to -> Vertex Shader.
Is this correct? I'm asking to make sure if this is the correct interpretation, as I find myself drawing triangles on screen and sometimes letters made up of many triangles with a bunch of code and functions that I basically learned by memory but don't really understand what they do.
To break it down:
// here I declare the VBO
unsigned int VBO;
// we have 1 VBO, so we generate an ID for it, and that ID is: GL_ARRAY_BUFFER
glGenBuffers(1, &VBO)
// GL_ARRAY_BUFFER is the VBO's ID, which we are going to bind to the VBO itself
glBindBuffer(GL_ARRAY_BUFFER, VBO)
// bunch of info in here that basically says: I want to take the vertex data (the
// triangle that I declared as a float) and send it to the VBO's ID, which is
// GL_ARRAY_BUFFER, then I want to specify the size of the vertex
// data, the vertex data itself and the 'static draw' thingy
glBufferData(...).
After doing all that, the VBO now contains all the vertex data within. So we tell the VBO, ok now send it to the Vertex Shader.
And that's the start of the Pipeline, jsut the beginning.
Is this correct? (I haven't read what VAOs do yet, before I get to that I'd like to know if the way I deconstruct VBOs in my mind is the right way, or else I'm confused)
I think you are mixing up lots of different things and have several confusions, so I'm try to work through most of them in the order you brought them up:
when we declare a series of vertices, let's say 3 vertices that form a triangle primitive, we basically store those nowhere, they're simply declared in code.
No. If you store data "nowhere", then you don't have it. Also you are mixing up declaration, definiton and initialization of variables here. For vertex data (like all other forms of data), there are two basic strategies:
You store the data somewhere, typically in a file. Specifying it directly in source code just means that it is stored in some binary file, potentially the executable itself (or some shared library used by it)
You procedurally generate the data through some mathematical formula or more general by some algortihm
Methods 1. and 2 can of course be mixed, and usually, method 2 will need some parameters (which itself need to be stored somewhere, so the parameters are just case 1 again).
And, through the same VBO we send all that vertex info to the Vertex Shader (which is a bunch of code). Now, the VBO is located in the GPU, so we are basically storing all that info on the GPU's memory when we call the VBO.
OpenGL is actually just a specification which is completely agnostic about the existence of a GPU and the existence of VRAM. And as such, OpenGL uses the concept of buffer objects (BOs) as some continuous block of memory of a certain size which is completely managed by the GL implementation. You as the user can ask the GL to create or destroy such BOs, specify their size, and have complete control of the contents - you can put an MP3 file into a BO if you like (not that there would be a good use case for this).
The GL implementation on the other hand controls where this memory is actually allocated, and GL implementations for GPUs
which actually have dedicated video memory have the option to store a BO directly in VRAM. The hints like GL_STATIC_DRAW are there to help the GL implementation decide where to best put such a buffer (but that hint system is somewhat flawed, and better alternatives exist in modern GL, but I'm not going into that here). GL_STATIC_DRAW means you intent to specify the contents once and use the may times as the source of a drawing option - so the data won't change often (and certainly not on a per-frame basis or even more often), and it might be a very good idea to store it in VRAM if such a thing exists.
Then the Vertex Shader, which is part of the Pipeline Rendering process, "comes" to the GPU's memory, "looks" into the VBO and retrieves all that info.
I think one could put it that way, although some GPUs have a dedicated "vertex fetch" hardware stage which actually reads the vertex data which is then fed to the vertex shaders. But that's not a really important point - the vertex shader needs to access each vertex' data, and that means the GPU will read that memory (VRAM or system memory or whatever) at some point before or during the execution of a vertex shader.
In other words, the VBO stores the vertex data (triangle vertices)
Yes. A buffer object which is used as source for the vertex shader's per-vertex inputs ("vertex attributes") is called a vertex buffer object ("VBO"), so that just follows directly from the definition of the term.
and sends it to the Vertex Shader.
I wouldn't put it that way. A BO is just a block of memory, it doesn't actively do anything. It is just a passive element: it is being written to or being read from. That's all.
// here I declare the VBO
unsigned int VBO;
No, you are declaring (and defining) a variable in the context of your programming language, and this variable is later used to hold the name of a buffer object. And in the GL, object names are just positive integers (so 0 is reserved for the GL as "no such object" or "default object", depending on the object type).
// we have 1 VBO, so we generate an ID for it, and that ID is: GL_ARRAY_BUFFER
glGenBuffers(1, &VBO)
No. glGenBuffers(n,ptr) just generates names for n new buffer objects, so it will generate n previously unused buffer names (and mark them as used) and returns them by writing them to the array pointed to byptr. So in this case, it just creates one new buffer object name and stores it in your VBO variable.
GL_ARRAY_BUFFER has nothing to do with this.
// GL_ARRAY_BUFFER is the VBO's ID, which we are going to bind to the VBO itself
glBindBuffer(GL_ARRAY_BUFFER, VBO)
No, GL_ARRAY_BUFFER is not the VBO's ID, the value of yourVBO variable is the VBO's ID (name!).
GL_ARRAY_BUFFER is the binding target. OpenGL buffer objects can be used for different purposes, and using them as the source for vertex data is just one of them, and GL_ARRAY_BUFFER refers to that use case.
Note that classic OpenGL uses the concept of binding for two purposes:
bind-to-use: Whenever you issue a GL call which depends on some GL objects, the objects you want to work with have to be currently bound to some (specific, depending on the use case) binding target (not only buffer objects, but also textures and others).
bind-to_modify: Whenever you as the user want to modify the state of some object, you have to bind it first to some binding target, and all the object state modify functions don't directly take the name of the GL object to work on as parameter, but the binding target, and will affect the object which is currently bound at that target. (Modern GL also has direct state access which allows you to modify objects without having to bind them first, but I'm also not going into details about that here).
Binding a buffer object to some of the buffer object binding targets means that you can use that object for the purpose defined by the target. But note that a buffer object doesn't change because it is bound to a target. You can bind a buffer object to different targets even at the same time. A GL buffer object doesn't have a type. Calling a buffer a "VBO" usually just means that you intent to use it as GL_ARRAY_BUFFER, but the GL doesn't care. It does care about what is buffer is bound as GL_ARRAY_BUFFER at the time of the glVertexAttribPointer() call.
// bunch of info in here that basically says: I want to take the vertex data (the
// triangle that I declared as a float) and send it to the VBO's ID, which is
// GL_ARRAY_BUFFER, then I want to specify the size of the vertex
// data, the vertex data itself and the 'static draw' thingy
glBufferData(...).
Well, glBufferData just creates the actual data storage for a GL buffer object (that is, the real memory), meaning you specify the size of the buffer (and the usage hint I mentioned earlier where you tell the GL how you intend to use the memory), and it optionally allows you to initialize the buffer by copying data from your application's memory into the buffer object. It doesn't care about the actual data, and the types you use).
Since you use GL_ARRAY_BUFFER here as the target parameter, this operation will affect the BO which is currently bound as GL_ARRAY_BUFFER.
After doing all that, the VBO now contains all the vertex data within.
Basically, yes.
So we tell the VBO, ok now send it to the Vertex Shader.
No. The GL uses Vertex Array Objects (VAOs) which store for each vertex shader input attribute where to find the data (in which buffer object, at which offset inside the buffer object) and how to interpret this data (by specifying the data types).
Later during the the draw call, the GL will fetch the data from the relevant locations within the buffer objects, as you specified it in the VAO. If this memory access is triggered by the vertex shader itself, or if there is a dedicated vertex fetch stage which reads the data before and forwards it to the vertex shader - or if there is a GPU at all - is totally implementation-specific, and none of your concern.
And that's the start of the Pipeline, just the beginning.
Well, depends on how you look at things. In a traditional rasterizer-based rendering pipline, the "vertex fetch" is more or less the first stage, and vertex buffer objects will just hold the memory where to fetch the vertex data from (and VAOs telling it which buffer objects to use, and which actual locations, and how to interpret them).
It all boils down to this: when you work in "normal" programs, all what you have is the CPU, caches, registers, main memory, etc.
However, when you work with computer graphics (and other fields), you want to use a GPU because it is faster for that particular task. The GPU is an independent computer on its own, with its own processor, pipeline and main even memory.
This means your program needs to somehow transfer all the data to the other computer and tell the other computer what to do with it. This is no easy task, so OpenGL simplifies things for you. Thus they give you an abstraction (VBO) that represents a buffer of vertices in the GPU, among many other abstractions for other tasks. Then they give you functions to create that resource (glGenBuffers), fill it with data (glBufferData), "bind it" to work with it (glBindBuffer), etc.
Remember, it is all a simplification for your benefit. In truth, the details of how everything is performed underneath is way more complex. Having abstractions like VBOs for vertices or IBOs for indexes makes it easier to work with them.
I was going to render prisms and spheres, and both use the same shaders, only different buffers for their data (vertex positions and normals).
Is it possible to compile only one shader program and use a different VAO for each type of object?
Also, both of my object types use different attribute locations and the sphere uses an element array buffer as well, will it cause any problem?
Is it possible to compile only one shader program and use a different VAO for each type of object?
There is no direct link between the shader program object and the vertex array object.
When the draw call is performed, then the vertex attributes which are specified by the currently bound vertex array object are drawn, using the currently installed program.
So yes, you can use the same shader program, for drawing different set of vertices, referred by different vertex array objects.
[...] both of my object types use different attribute locations [...]
The attribute index (location) is a active program resource and can't be changed after the shader program was linked.
The vertex attribute specification (stored in the vertex array object) has to respect the active attribute indices of the program, but multiple vertex array objects can refer to the same vertex array buffer object(s).
It is possible to create different vertex array objects, which refer to (share) the same vertex buffer object(s), but associated them to different attribute locations. But note, the attribute locations of a shader program can't be changed.
[...] the sphere uses an element array buffer as well, will it cause any problem?
Whether the index (element) buffer is used to draw the mesh, depends on the draw call (glDrawArrays or glDrawElements)
I need help to see the trade-offs between them.
It looks to me that glDrawElements() needs to get the index-data "live" as a parameter.
On the other side if I use VAOs then during startup I buffer the data and the driver might decide to put it on the GPU, then during rendering I only bind the VAO and call glDrawArrays().
Is there no way to combine the advantages? Can we buffer the index-data too?
And how would that look in the vertex shader? Can it use the index and look it up in the vertex positions array?
This information is really a bit hard to find, but one can use glDrawElements also in combination with a VAO. The index data can then (but doesn't have to) be supplied by a ELEMENT_ARRAY_BUFFER. Indexing works then as usual, one does not have to do anything special in the vertex shader. OpenGL ensures already that the indices are used in the correct way during primitiv assembly.
The spec states to this in section 10.3.10:
DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from the buffer object whose name is bound to ELEMENT_-
ARRAY_BUFFER, using their indices parameters as offsets into the buffer object
This basically means, that whenever a ELEMENT_ARRAY_BUFFER is bound, the indices parameter is used as an offset into this buffer (0 means start from the beginning). When no such buffer is bound, the indices pointer specifies the address of a index array.
I've read now, that you can't write to uniform blocks, so shader storage block has an advantage over uniform blocks. Furthermore the size of a shader storage block (the upper limit) is much higher.
What i don't get is the atomic operations attribute of a shader Storage Block, when can this become handy? Is there a real-life example?
Furthermore When i would prefer one over the other?
I think your question is ill-posed. It sounds like you are trying to figure out the difference between uniform buffers and shader storage buffers. Blocks are simply a way to organize your shader inputs and output.
As you noted, the biggest difference between uniform buffers and shader storage buffers is that you can write to shader storage buffers from your shader programs.
Asking why writing to a ssbo is handy is like asking why a variable is handy. Anytime you want to accumulate results or share data between render passes you can use the ssbo as "scratch memory".
In the old days (I believe) you would have had to do a render to texture if you wanted to share data, and that would have gone through the whole entire graphics pipeline with all the cost that that entails.
More about uniform buffer objects here:
https://www.opengl.org/wiki/Shader_Storage_Buffer_Object
To really make sure you understand the difference, look up the various ways to supply shaders with data in chronological order:
Textures & Frame Buffer Objects
Uniforms
Uniform Buffer Objects
Texture Buffer Objects
Textures with Image Load/Store
Shader Storage Buffer Objects
This answer on SO has a nice overview of almost all of them:
Passing a list of values to fragment shader
I am trying to understand these two, how to use them and how they are related. Let's say I want to create a simple terrain and a textured cube. For both objects I have the array of triangles vertices and for the cube I have an array containing the texture's data. My question is: how do I use VAOs and VBOs to create and render these two?
Would I have to create a VAO and VBO for each object?
or should create a VAO for each object's VBO (vertices, texture data, etc.)?
There are many tutorials and books but I still don't get the very idea of how these concepts must be understood and used.
Fundamentally, you need to understand two things:
Vertex Array Objects (VAOs) are conceptually nothing but thin state wrappers.
Vertex Buffer Objects (VBOs) store actual data.
Another way of thinking about this is that VAOs describe the data stored in one or more VBOs.
Think of VBOs (and buffer objects in general) as unstructured arrays of data stored in server (GPU) memory. You can layout your vertex data in multiple arrays if you want, or you can pack them into a single array. In either case, buffer objects boil down to locations where you will store data.
Vertex Array Objects track the actual pointers to VBO memory needed for draw commands.
They are a little bit more sophisticated than pointers as you would know them in a language like C, however. Vertex pointers keep track of the buffer object that was bound when they were specified, the offset into its address space, stride between vertex attributes and how to interpret the underlying data (e.g. whether to keep integer values or to convert them to floating-point [0.0,1.0] by normalizing to the data type's range).
For example, integer data is usually converted to floating-point, but it is the command you use to specify the vertex pointer (glVertexAttribPointer (...) vs. glVertexAttribIPointer (...)) that determines this behavior.
Vertex Array Objects also track the buffer object currently bound to GL_ELEMENT_ARRAY_BUFFER.
GL_ELEMENT_ARRAY_BUFFER is where the command: glDrawElements (...) sources its list of indices from (assuming a non-zero binding) and there is no glElementArrayPointer (...) command. glDrawElements (...) combines the pointer and draw command into a single operation, and will use the binding stored in the active Vertex Array Object to accomplish this.
With that out of the way, unless your objects share vertex data you are generally going to need a unique set of VBOs for each.
You can use a single VAO for your entire software if you want, or you can take advantage of the fact that changing the bound VAO changes nearly the entire set of states necessary to draw different objects.
Thus, drawing your terrain and cube could be as simple as changing the bound VAO. You may have to do more than that if you need to apply different textures to each of them, but the VAO takes care of all vertex data related setup.
Your question is not easily answerable here, but rather in a tutorial. You probably already know these two websites, but if not, I'm leaving the references.
OGLDEV
OpenGL-Tutorial.org
Now trying to elucidate your questions, a Vertex Array Object is an OpenGL object designed with the goal of reducing API overhead for draw calls. You can think of it as a container for a Vertex Buffer and its associated states. Something similar perhaps to the old display-lists.
Normally, there is a 1 to 1 relationship between a VAO and a VBO; that is, each VAO contains a unique VBO. But this is not strictly necessary. You could have several VAOs referencing the same VBO.
The simplest way to model this in code, I think, would be for you to have a VAO class/type and a method to attach a VBO to it. Then give an instance of VAO to each mesh. The mesh in turn can have a reference to a VBO type that may be its own or a shared one.