Techniques for drawing tiles with OpenGL - opengl

I've been using XNA for essentialy all of my programming so far and would like to move on to OpenGL (along with SFML for IO, creating the window etc.) with C++ . For starters I'd like to create a tile-based game and I've mostly looked at LazyFoo's tutorials.
I just have a two questions:
How should I draw the tiles? Should I use immediate drawing, arrays, VBOs or what? VBOs feel like overkill for this but I'm not sure. It's very tempting to use immediate drawing but apparently it's deprecated. Maybe it's fine for this purpose since it's 2D and only for a bunch of quads.
I'd like a lot of different tiles and thus all of my tiles will not fit into a single texture without making it massive. I've read that using bindTexture isn't very cheap and thus I should avoid as many calls as I can. I thought that maybe I can create a manager for my textures and stitch them all together into one big texture and bind that but then the dimensions of that is an issue.

Don't use immediate mode! It's cumbersome to work with and has been removed from recent OpenGL versions. Use Vertex Arrays, ideally through VBOs. In the end they're much easier to use, believe me.
Regarding that switching of textures. We're talking about optimizing the texture switch patterns in very complex scenes. In your case it will hardly matter at all.
Update
Right now you worry abount things without having even used them. That's worse than premature optimization. I suggest you first get a good grip on OpenGL, then start worrying about state switch management.

With regards to the texture atlas; this is usually done by stitching textures into groups of power-of-two sized textures. For example in a tile-based game you might have a particular tile set (say, tiles for an ice world) grouped together on 2 or 3 textures. When you want to render them you would determine what tiles are visible, then you bind each texture once and render the tiles from that texture for any tiles that are visible on screen.
This requires quite a lot of set-up time to get right; you need keep information on each sub-texture of the atlas so you can find the right texture and render the appropriate region of that texture whenever a tile is referenced. You also need a good way of grouping rendering operations so that they occur when the appropriate texture is bound.
Like datenwolf said, I wouldn't focus too much on complicated texture systems early on; eager binding of textures will be plenty fast enough until you get further down the road.

Related

opengl - possibility of a mirroring shader?

Until today, when I wanted to create reflections (a mirror) in opengl, I rendered a view into a texture and displayed that texture on the mirroring surface.
What i want to know is, are there any other methods to create a mirror in opengl?
And 2. can this be done lonely in shaders (e.g. geometry shader) ?
Ray-tracing. You can write a ray-tracer in the fragment shader (every fragment follows a ray). Ray-tracers can perfectly deal with reflection (mirroring) on all kinds of surfaces.
You can find an OpenGL example here and a WebGL example including mirroring here.
There are no universal way to do that, in any 3D API i know of.
Depending on your case there are several possible techniques with different downsides.
Planar reflections: That's what you are doing already.
Note that your mirror needs to be flat and you have to clip so anything closer than the mirror ins't rendered into the texture.
Good old cubemaps: attach a cubemap to each mirror then sample it in the reflection direction. This works for any surface but you will need to render the cubemaps (which can be done only once if you don't care about moving objects being reflected). I don't think you can do this without shaders but only the mirror will need one. Its a very common technique as it's easy do implement, can be dynamic and fairly cheap while being easy to integrate into an existing engine.
Screen space ray-marching: It's what danny-ruijters suggested. Kind of like SSAO : for each pixel, sample the depth buffer along the reflection vector until you hit something. This has the advantage to be applicable anywhere (on arbitrary complex surfaces) however it can only reflect stuff that appear on screen which can introduce lots of small artifacts but it's completly dynamic and very simple to implement. Note that you will need an additional pass (or rendering normals into a buffer) to access your scene final color in while computing the reflections. You absolutely need shaders for that, but it's post process so it won't interfere with the scene rendering if that's what you fear.
Some modern game engines use this to add small details to reflective surfaces without the burden of having to compute/store cubemaps.
They are probably many other ways to render mirrors but these are the tree main one (at least for what i know) ways of doing reflections.

C++ OpenGL array of coordinates to draw lines/borders and filled rectangles?

I'm working on a simple GUI for my application on OpenGL and all I need is to draw a bunch of rectangles and a 1px border arround them. Instead of going with glBegin and glEnd for each widget that has to draw (which can reduce performance). I need to know if this can be done with some sort of arrays/lists (batch data) of coordinates and their color.
Requirements:
Rectangles are simple filled with one color for every corner or each corner with a color. (mainly to form gradients)
Lines/borders are simple with one color and 1px thick, but they may not always closed (do not form a loop).
Use of textures/images is excluded. Only geometry data.
Must be compatible with older OpenGL versions (down to version 1.3)
Is there a way to achieve this with some sort of arrays and not glBegin and glEnd? I'm not sure how to do this for lines/borders.
I've seen this kind of implementation in Gwen GUI but it uses textures.
Example: jQuery EasyUI Metro Theme
In any case in modern OpenGL you should restrain to use old fashion API calls like glBegin and the likes. You should use the purer approach that has been introduced with core contexts from OpenGL 3.0. The philosophy behind it is to become much closer to actual way of modern hardware functionning. DiretX10 took this approach, somehow OpenGL ES also.
It means no more lists, no more immediate mode, no more glVertex or glTexCoord. In any case the drivers were already constructing VBOs behind this API because the hardware only understands that. So the OpenGL core "initiative" is to reduce OpenGL implementation complexity in order to let the vendors focus on hardware and stop producing bad drivers with buggy support.
Considering that, you should go with VBO, so you make an interleaved or multiple separated buffer data to store positions and color information, then you bind to attributes and use a shader combination to render the whole. The attributes you declare in the vertex shader are the attributes you bound using glBindVertexBuffer.
good explanation here:
http://www.opengl.org/wiki/Vertex_Specification
The recommended way is then to make one vertex buffer for the whole GUI and every element should just be put one after another in the buffer, then you can render your whole GUI in one draw call. This is how you will get the best performance.
Then if your GUI has dynamic elements this is no longer possible exept if using glUpdateBufferSubData or the likes but it has complex performance implications. You are better to cut your vertex buffer in as many buffers that are necessary to compose the independent parts, then you can render with uniforms modified between each draw call at will to configure the change of looks that is necessary in the dynamic part.

What is the point of an SDL2 Texture?

I'm kind of stuck on the logic behind an SDL2 texture. To me, they are pointless since you cannot draw to them.
In my program, I have several surfaces (or what were surfaces before I switched to SDL2) that I just blitted together to form layers. Now, it seems, I have to create several renderers and textures to create the same effect since SDL_RenderCopy takes a texture pointer.
Not only that, but all renderers have to come from a window, which I understand, but still fouls me up a bit more.
This all seems extremely bulky and slow. Am I missing something? Is there a way to draw directly to a texture? What are the point of textures, and am I safe to have multiple (if not hundreds) of renderers in place of what were surfaces?
SDL_Texture objects are stored as close as possible to video card memory and therefore can easily be accelerated by your GPU. Resizing, alpha blending, anti-aliasing and almost any compute-heavy operation can harshly be affected by this performance boost. If your program needs to run a per-pixel logic on your textures, you are encouraged to convert your textures into surfaces temporarily. Achieving a workaround with streaming textures is also possible.
Edit:
Since this answer recieves quite the attention, I'd like to elaborate my suggestion.
If you prefer to use Texture -> Surface -> Texture workflow to apply your per-pixel operation, make sure you cache your final texture unless you need to recalculate it on every render cycle. Textures in this solution are created with SDL_TEXTUREACCESS_STATIC flag.
Streaming textures (creation flag is SDL_TEXTUREACCESS_STREAMING) are encouraged for use cases where source of the pixel data is network, a device, a frameserver or some other source that is beyond SDL applications' full reach and when it is apparent that caching frames from source is inefficient or would not work.
It is possible to render on top of textures if they are created with SDL_TEXTUREACCESS_TARGET flag. This limits the source of the draw operation to other textures although this might already be what you required in the first place. "Textures as render targets" is one of the newest and least widely supported feature of SDL2.
Nerd info for curious readers:
Due to the nature of SDL implementation, the first two methods depend on application level read and copy operations, though they are optimized for suggested scenarios and fast enough for realtime applications.
Copying data from application level is almost always slow when compared to post-processing on GPU. If your requirements are more strict than what SDL can provide and your logic does not depend on some outer pixel data source, it would be sensible to allocate raw OpenGL textures painted from you SDL surfaces and apply shaders (GPU logic) to them.
Shaders are written in GLSL, a language which compiles into GPU assembly. Hardware/GPU Acceleration actually refers to code parallelized on GPU cores and using shaders is the prefered way to achieve that for rendering purposes.
Attention! Using raw OpenGL textures and shaders in conjunction with SDL rendering functions and structures might cause some unexpected conflicts or loss of flexibility provided by the library.
TLDR;
It is faster to render and operate on textures than surfaces although modifying them can sometimes be cumborsome.
Through creating a SDL2 Texture as a STREAMING type, one can lock and unlock the entire texture or just an area of pixels to perform direct pixel operations. One must create prior a SDL2 Surface, and link with lock-unlock as follows:
SDL_Surface surface = SDL_CreateSurface(..);
SDL_LockTexture(texture, &rect, &surface->pixels, &surface->pitch);
// paint into surface pixels
SDL_UnlockTexture(texture);
The key is, if you draw to texture of larger size, and the drawing is incremental ( e.g. data graph in real time ) be sure to only lock and unlock the actual area to update. Otherwise the operations will be slow, with heavy memory copying.
I have experienced reasonable performance and the usage model is not too difficult to understand.
In SDL2 it is possible to render off-screen / render directly to a texture. The function to use is:
int SDL_SetRenderTarget(SDL_Renderer *renderer, SDL_Texture *texture);
This only works if the renderer enables SDL_RENDERER_TARGETTEXTURE.

2D engine with OpenGL: Use Z buffer or own implementation for sprite sorting?

If I was making a 3D engine, the answer to this question would be clear: I'd go for using the depth buffer instead of thinking of sorting all my polygons on my own.
However, this is a different situation with 2D, because here layers can be implemented easily without the help of OpenGL - and you then could even sort and move sprites within layers. (Which isn't possible in OpenGL afaik)
(Why) should I use the OpenGL depth buffer instead of a C++ layer system running on the CPU?
How much slower would the depth buffer version be?
It is clear to me that making a layer system in C++ would impose as good as no performance impact at all, as I have to iterate over the sprites for rendering in any case.
I would suggest you to do it in software since you probably want to use transparency on your sprites and that implies you render them from back to front. Also sorting a couple of sprites shouldn't be that CPU demanding.
Use both, if you can.
Depth information is nice for post-processing and stuff like 3D-glasses, so you shouldn't throw it away. These kinds of effects can be very nice for 2D games.
Also, if you draw your (opaque) layers front to back, you can save fill-rate because the Z-Buffer can do the clipping for you (Depth tests are faster than actual drawing).
Depth testing is usually almost free, especially when you got hierarchical Z info. Because of this and the fill-rate savings, using depth testing will probably be even faster.
On the other hand, the software sorting is nice so you can actually do front to back rendering for opaque sprites and it's mandatory to do alpha-blending right (of course, you draw these sprites back to front).
Direct answers:
allowing the GPU to use the depth buffer would allow you to dynamically adjust the draw order of things without any on-CPU shuffling and would free you from having to assign things to different layers in situations where doing so is a bit of a fiction — for example, you could have effects like projectiles that come from the background towards and then in front of the player, without having to figure out which layer to assign them to all the time
on the GPU, the use of a depth would have no measurable effect, even if you're on an embedded chip, a plug-in card from more than a decade ago or an integrated part; they're so fundamental to modern GPUs that they've been optimised down to costing nothing in practical terms
However, I'd imagine you actually want to do it on the CPU for the simple reason of treating transparency correctly. A depth buffer stores one depth per pixel, so if you draw a near transparent object then attempt to draw something behind it, the thing behind won't be drawn even though it should be visible. In a 2d game it's likely that anti-aliasing will give your sprites partially transparent edges; if you submit drawing to the GPU in draw order then your partial transparencies will always be composited correctly. If you leave the z-buffer to do it then you risk weird looking fringing.

How to implement independent rendering layers in Direct3D9?

I'm working on a windowed Direct3D data plotting application that needs to display multiple overlays on top of the data (similar to HUDs in games). Since there could be a large amount of data that needs plotting, and not all overlays will be changed every time, I figured it wouldn't be a good idea to replot verticies when only one overlay in the display changes.
This led me to the idea of rendering the textures and verticies of the overlays to multiple textures with transparent backgrounds that could be overlaid in the render loop and updated independently (similar to layers in Photoshop).
Before I embark on changing a large portion of this program to render to textures as opposed to surfaces, I was just wondering if using textures is the best approach.
RTT works well, I used it in a game I did recently. Each scene (scene refers to layer, "HUD" was a scene, "Main" was the main scene etc...) was rendered onto a texture, then each texture was rendering onto a quad, sorted back to front (for alpha blending). I chose this over just rendering the scenes directly onto the back buffer because it allowed me to do post-processing.
For your caching purposes this seems to be the best way to go, but just be aware that the textures can eat memory quickly, and sometimes its just better to render everything again, making sure you sort back to front.
Render to texture will certainly work and could be a good route but it is probably overkill. Modern 3D hardware is very fast and I'd suggest you verify whether performance is really an issue re-rendering when you need an update before investing significant time making major changes to your program.
If performance is an issue your time might be better spent optimizing the code that renders your plot since that will benefit updates that involve changes to the data as well as those that just change an overlay. I'm a graphics programmer for games and generally with realtime 3D you want to focus your optimization efforts on your worst case (you have to redraw everything) rather than your best (only one overlay needs an update).
Rendering to texture render target surfaces is a very good idea, and can be used for a lot of things e.g. optimization/caching, but beware of the blend operation with regular alpha (a*c1 + (1-a)*c2); if # is ARGB blend, then l1#l2#l3 != l3#l1#l2; i.e. it's not commutative, but by using pre-multiplied alpha in all textures/layers the blend operation can be made commutative.
The ultimate reference is the Porter/Duff article "Compositing Digital Images" from 1984.