opengl - possibility of a mirroring shader? - c++

Until today, when I wanted to create reflections (a mirror) in opengl, I rendered a view into a texture and displayed that texture on the mirroring surface.
What i want to know is, are there any other methods to create a mirror in opengl?
And 2. can this be done lonely in shaders (e.g. geometry shader) ?

Ray-tracing. You can write a ray-tracer in the fragment shader (every fragment follows a ray). Ray-tracers can perfectly deal with reflection (mirroring) on all kinds of surfaces.
You can find an OpenGL example here and a WebGL example including mirroring here.

There are no universal way to do that, in any 3D API i know of.
Depending on your case there are several possible techniques with different downsides.
Planar reflections: That's what you are doing already.
Note that your mirror needs to be flat and you have to clip so anything closer than the mirror ins't rendered into the texture.
Good old cubemaps: attach a cubemap to each mirror then sample it in the reflection direction. This works for any surface but you will need to render the cubemaps (which can be done only once if you don't care about moving objects being reflected). I don't think you can do this without shaders but only the mirror will need one. Its a very common technique as it's easy do implement, can be dynamic and fairly cheap while being easy to integrate into an existing engine.
Screen space ray-marching: It's what danny-ruijters suggested. Kind of like SSAO : for each pixel, sample the depth buffer along the reflection vector until you hit something. This has the advantage to be applicable anywhere (on arbitrary complex surfaces) however it can only reflect stuff that appear on screen which can introduce lots of small artifacts but it's completly dynamic and very simple to implement. Note that you will need an additional pass (or rendering normals into a buffer) to access your scene final color in while computing the reflections. You absolutely need shaders for that, but it's post process so it won't interfere with the scene rendering if that's what you fear.
Some modern game engines use this to add small details to reflective surfaces without the burden of having to compute/store cubemaps.
They are probably many other ways to render mirrors but these are the tree main one (at least for what i know) ways of doing reflections.

Related

How to simulate mathimatically correct shadows of transparent objects?

I want to simulate shadows casted by complex and composite transparent objects.
This shadows must be mathematically correct for particular light source (at least for point light). I think this is true for any graphical library, is it?
Than, there must NOT be any refraction at all.
This image is not what I actually want to get of course.
Does OpenGL can do this? If it can not then what should I use instead?
UPD. So I need some path tracer. Is there some wich I could use programmatically: give it file of 3d-scene with objects and get the result of tracing?
This shadows must be mathematically correct
There's no such thing as a mathematically correct or wrong illumination. What you mean is physically correct.
Images like you want to create them rely on light propagation. The only way to properly simulate light propagation is to shoot virtual photons into a scene and follow their path. This is called path tracing.
Does OpenGL can do this?
OpenGL just draws points, lines and triangles… one at a time, without any concept of a scene or models.
Old, fixed function pipeline OpenGL had a simple Blinn illumination model built in, but this did just calculate a "light" value per vertex based on surface orientation (normal) and position relative to a light source.
Modern OpenGL does not even do that. Instead it relies on the programmer to provide programs that are executed for every vertex to decide where in the picture it goes and for every fragment (roughly a pixel) drawn to determine which color to give it.
In this programs, called shaders you can do just about anything. So if you want to implement a path tracer using OpenGL shaders, you can most certainly do this. But this path tracer will not interact with the points, lines and triangles you draw. Instead these will just serve to define the boundaries within which the shaders do their computations.
If it can not then what should I use instead?
It's not so much a question of if it is possible, but how easy it is to implement. In your case OpenGL is certainly not the right programming environment, because you'd be essentially starting from scratch. Instead you should use one of the existing path tracers around. There are also some, that are GPU accelerated.

Is there a way to use GLSL programs as filters?

Assume that we have different shader programs for different objects in a game. For example the player model has a shader that controls skeleton system (bone matrices multiplication etc.), or a particle has a shader for sparkling effects, wall has parallax mapping etc.
But what if I want to add fog to the game that must affect every one of these objects ? For example I have a room that will have a red fog, should I change EVERY glsl program to have fog code or is there a possible way to make global filters ? Should I change every glsl program when i want to add a feature ?
The typical process for this type of thing is to use a full-screen shader in post processing using the depth buffer from your fully rendered scene, or using a z-pass, which renders only to the depth buffer. You can chain them together and create any number of effects. It typically involves some render-to-texture work, and is not a real trivial task (too much to post code here), but it's not THAT difficult either.
If you want to take a look at a decent post-processing system, take a look at the PostFx system in Torque3D:
https://github.com/GarageGames/Torque3D
And here is an example of creating fog with GLSL in post:
http://isnippets.blogspot.com/2010/10/real-time-fog-using-post-processing-in.html

OpenGL Geometry Extrusion with geometry Shader

With the GLE Tubing and Extrusion Library (http://www.linas.org/gle/) I am able to extrude 2D countours into 3D objects using OpenGL. The Library does all the work on the CPU and uses OpenGL immediate mode.
I guess doing the extrusion on the GPU using Geometry Shaders might be faster especially when rendering a lot of geometry. Since I do not yet have any experience with Geometry Shaders in OpenGL i would like to know if that is possible and what I have to pay attention to. Do you think it is a good Idea to move those computations to the GPU and that it will increase performance? It should also be possible to get the rendered geometry back to the CPU from the GPU, possibly using "Render to VBO".
If the geometry indeed changes every frame, you should do it on the GPU.
Keep in mind that every other solution that doesn't rely on the immediate mode will be faster than what you have right now. You might not even have to do it on the GPU.
But maybe you want to use shadow mapping instead, which is more efficient in some cases. It will also make it possible to render shadows for alpha tested objects like grass.
But it seems like you really need the resulting shadow geometry, so I'm not sure if that's an option for you.
Now back to the shadow volumes.
Extracting the shadow silhouette from a mesh using geometry shaders is a pretty complex process. But there's enough information about it on the internet.
Here's an article by Nvidia, which explains the process in detail:
Efficient and Robust Shadow Volumes Using Hierarchical Occlusion Culling and Geometry Shaders.
Here's another approach (from 2003) which doesn't even require geometry shaders, which could be interesting on low-end hardware:
http://de.slideshare.net/stefan_b/shadow-volumes-on-programmable-graphics-hardware
If you don't need the most efficient solution (using the shadow silhouette), you can also simply extract every triangle of the mesh on it's own. This is very easy using a geometry shader. I'd try that first before trying to implement silhouette extraction on the GPU.
About the "render to VBO" part of your question:
As far as I know there's no way to read the output of the geometry shader back to the CPU. Don't quote me on this, but I've never heard of a way to do this.

Techniques for drawing tiles with OpenGL

I've been using XNA for essentialy all of my programming so far and would like to move on to OpenGL (along with SFML for IO, creating the window etc.) with C++ . For starters I'd like to create a tile-based game and I've mostly looked at LazyFoo's tutorials.
I just have a two questions:
How should I draw the tiles? Should I use immediate drawing, arrays, VBOs or what? VBOs feel like overkill for this but I'm not sure. It's very tempting to use immediate drawing but apparently it's deprecated. Maybe it's fine for this purpose since it's 2D and only for a bunch of quads.
I'd like a lot of different tiles and thus all of my tiles will not fit into a single texture without making it massive. I've read that using bindTexture isn't very cheap and thus I should avoid as many calls as I can. I thought that maybe I can create a manager for my textures and stitch them all together into one big texture and bind that but then the dimensions of that is an issue.
Don't use immediate mode! It's cumbersome to work with and has been removed from recent OpenGL versions. Use Vertex Arrays, ideally through VBOs. In the end they're much easier to use, believe me.
Regarding that switching of textures. We're talking about optimizing the texture switch patterns in very complex scenes. In your case it will hardly matter at all.
Update
Right now you worry abount things without having even used them. That's worse than premature optimization. I suggest you first get a good grip on OpenGL, then start worrying about state switch management.
With regards to the texture atlas; this is usually done by stitching textures into groups of power-of-two sized textures. For example in a tile-based game you might have a particular tile set (say, tiles for an ice world) grouped together on 2 or 3 textures. When you want to render them you would determine what tiles are visible, then you bind each texture once and render the tiles from that texture for any tiles that are visible on screen.
This requires quite a lot of set-up time to get right; you need keep information on each sub-texture of the atlas so you can find the right texture and render the appropriate region of that texture whenever a tile is referenced. You also need a good way of grouping rendering operations so that they occur when the appropriate texture is bound.
Like datenwolf said, I wouldn't focus too much on complicated texture systems early on; eager binding of textures will be plenty fast enough until you get further down the road.

OpenGL, applying texture from image to isosurface

I have a program in which I need to apply a 2-dimensional texture (simple image) to a surface generated using the marching-cubes algorithm. I have access to the geometry and can add texture coordinates with relative ease, but the best way to generate the coordinates is eluding me.
Each point in the volume represents a single unit of data, and each unit of data may have different properties. To simplify things, I'm looking at sorting them into "types" and assigning each type a texture (or portion of a single large texture atlas).
My problem is I have no idea how to generate the appropriate coordinates. I can store the location of the type's texture in the type class and use that, but then seams will be horribly stretched (if two neighboring points use different parts of the atlas). If possible, I'd like to blend the textures on seams, but I'm not sure the best manner to do that. Blending is optional, but I need to texture the vertices in some fashion. It's possible, but undesirable, to split the geometry into parts for each type, or to duplicate vertices for texturing purposes.
I'd like to avoid using shaders if possible, but if necessary I can use a vertex and/or fragment shader to do the texture blending. If I do use shaders, what would be the most efficient way of telling it was texture or portion to sample? It seems like passing the type through a parameter would be the simplest way, but possible slow.
My volumes are relatively small, 8-16 points in each dimension (I'm keeping them smaller to speed up generation, but there are many on-screen at a given time). I briefly considered making the isosurface twice the resolution of the volume, so each point has more vertices (8, in theory), which may simplify texturing. It doesn't seem like that would make blending any easier, though.
To build the surfaces, I'm using the Visualization Library for OpenGL and its marching cubes and volume system. I have the geometry generated fine, just need to figure out how to texture it.
Is there a way to do this efficiently, and if so what? If not, does anyone have an idea of a better way to handle texturing a volume?
Edit: Just to note, the texture isn't simply a gradient of colors. It's actually a texture, usually with patterns. Hence the difficulty in mapping it, a gradient would've been trivial.
Edit 2: To help clarify the problem, I'm going to add some examples. They may just confuse things, so consider everything above definite fact and these just as help if they can.
My geometry is in cubes, always (loaded, generated and saved in cubes). If shape influences possible solutions, that's it.
I need to apply textures, consisting of patterns and/or colors (unique ones depending on the point's "type") to the geometry, in a technique similar to the splatting done for terrain (this isn't terrain, however, so I don't know if the same techniques could be used).
Shaders are a quick and easy solution, although I'd like to avoid them if possible, as I mentioned before. Something usable in a fixed-function pipeline is preferable, mostly for the minor increase in compatibility and development time. Since it's only a minor increase, I will go with shaders and multipass rendering if necessary.
Not sure if any other clarification is necessary, but I'll update the question as needed.
On the texture combination part of the question:
Have you looked into 3d textures? As we're talking marching cubes I should probably immediately say that I'm explicitly not talking about volumetric textures. Instead you stack all your 2d textures into a 3d texture. You then encode each texture coordinate to be the 2d position it would be and the texture it would reference as the third coordinate. It works best if your textures are generally of the type where, logically, to transition from one type of pattern to another you have to go through the intermediaries.
An obvious use example is texture mapping to a simple height map — you might have a snow texture on top, a rocky texture below that, a grassy texture below that and a water texture at the bottom. If a vertex that references the water is next to one that references the snow then it is acceptable for the geometry fill to transition through the rock and grass texture.
An alternative is to do it in multiple passes using additive blending. For each texture, draw every face that uses that texture and draw a fade to transparent extending across any faces that switch from one texture to another.
You'll probably want to prep the depth buffer with a complete draw (with the colour masks all set to reject changes to the colour buffer) then switch to a GL_EQUAL depth test and draw again with writing to the depth buffer disabled. Drawing exactly the same geometry through exactly the same transformation should produce exactly the same depth values irrespective of issues of accuracy and precision. Use glPolygonOffset if you have issues.
On the coordinates part:
Popular and easy mappings are cylindrical, box and spherical. Conceptualise that your shape is bounded by a cylinder, box or sphere with a well defined mapping from surface points to texture locations. Then for each vertex in your shape, start at it and follow the normal out until you strike the bounding geometry. Then grab the texture location that would be at that position on the bounding geometry.
I guess there's a potential problem that normals tend not to be brilliant after marching cubes, but I'll wager you know more about that problem than I do.
This is a hard and interesting problem.
The simplest way is to avoid the issue completely by using 3D texture maps, especially if you just want to add some random surface detail to your isosurface geometry. Perlin noise based procedural textures implemented in a shader work very well for this.
The difficult way is to look into various algorithms for conformal texture mapping (also known as conformal surface parametrization), which aim to produce a mapping between 2D texture space and the surface of the 3D geometry which is in some sense optimal (least distorting). This paper has some good pictures. Be aware that the topology of the geometry is very important; it's easy to generate a conformal mapping to map a texture onto a closed surface like a brain, considerably more complex for higher genus objects where it's necessary to introduce cuts/tears/joins.
You might want to try making a UV Map of a mesh in a tool like Blender to see how they do it. If I understand your problem, you have a 3D field which defines a solid volume as well as a (continuous) color. You've created a mesh from the volume, and now you need to UV-map the mesh to a 2D texture with texels extracted from the continuous color space. In a tool you would define "seams" in the 3D mesh which you could cut apart so that the whole mesh could be laid flat to make a UV map. There may be aliasing in your texture at the seams, so when you render the mesh it will also be discontinuous at those seams (ie a triangle strip can't cross over the seam because it's a discontinuity in the texture).
I don't know any formal methods for flattening the mesh, but you could imagine cutting it along the seams and then treating the whole thing as a spring/constraint system that you drop onto a flat surface. I'm all about solving things the hard way. ;-)
Due to the issues with texturing and some of the constraints I have, I've chosen to write a different algorithm to build the geometry and handle texturing directly in that as it produces surfaces. It's somewhat less smooth than the marching cubes, but allows me to apply the texcoords in a way that works for my project (and is a bit faster).
For anyone interested in texturing marching cubes, or just blending textures, Tommy's answer is a very interesting technique and the links timday posted are excellent resources on flattening meshes for texturing. Thanks to both of them for their answers, hopefully they can be of use to others. :)