Destructor not called - c++

This is excerpt from my WinMain method. It is not complete but I think it is sufficient to illustrate core of problem. Please don't ask why I am deleting data module explicitly when it should be done automatically. This is entirely another issue (has to do with incorrect finalization order when application initialization ends prematurely with exception in one of constructors).
extern PACKAGE TDataModule_Local *DataModule_Local;
class TDataModule_Local :
public TDataModule
{
...
public:
__fastcall TDataModule_Local(TComponent *Owner);
__fastcall ~TDataModule_Local();
}
WINAPI wWinMain(HINSTANCE, HINSTANCE, LPTSTR, int)
{
Application->Initialize();
Application->CreateForm(__classid(TMainForm), &MainForm);
Application->CreateForm(__classid(TDataModule_Local), &DataModule_Local);
Application->Run();
if (DataModule_Local != NULL)
{
delete DataModule_Local; // destructor not called! why?
DataModule_Local = NULL;
}
return 0;
}
Whats weird destructor of data module is not called when I use delete operator. Is is called after program reaches enclosing brace of WinMain method:

You said
deleting data module explicitly when it should be done automatically
Obviously whatever code is designed to free it automatically is still trying to do so, blissfully ignorant of your problems with finalization order.
Just because you've set your pointer to NULL doesn't mean that there isn't a copy of the pointer sitting in a list of objects to be cleaned up on exit.

Related

Calling Release on COM object never appears to return

I'm debugging an intermittent issue on a customer site. I've got it down to the point that it appears that a call to Release() on a COM object is not returning.
The first log is printing but I never see the second log. I can only assume that the call to Release() never returned for some reason (or could it be the CoInitializeEx()).
I have no idea what to look for next, any help/clues would be greatly appreciated.
Logger::getLogger()->logTrace("AudioCapturer::_shutdown. _pEndpointAudioClient_COM Released. (%s)", _deviceName.c_str());
releaseComObject(_pAudioCaptureClient_COM);
Logger::getLogger()->logTrace("AudioCapturer::_shutdown (%s) succeeded", _deviceName.c_str());
Here is the supporting code:
IAudioCaptureClient *_pAudioCaptureClient_COM;
// Class that Initializes COM on creation and Unitializes on destruction
AutoCOM::AutoCOM() { CoInitializeEx(NULL, COINIT_MULTITHREADED); }
AutoCOM::~AutoCOM() { CoUninitialize(); }
#define AUTO_COM_SUPPORT AutoCOM _autoCOM
// Safe releasing of COM objects. Zeros the pointer
// to the COM object. Safe to use with NULL
// pointers.
template <class T> void releaseComObject(T*& pT) {
if (pT) {
AUTO_COM_SUPPORT;
(pT)->Release();
pT = NULL;
}
}
Never found a duplication scenario for the issue. But the problem was averted with the user of smart pointers, which was mentioned by #Cheersandhth.-Alf. Thanks for the feedback.
Basically used the following macro to define smart pointers, and removed all references to Release()
_COM_SMARTPTR_TYPEDEF(IMyInterface, __uuidof(IMyInterface));

Application breaks on CCriticalSection::Lock

I am upgrading an application from VC6 to VS2010 (Legacy Code). The application runs as it should in VC6 but after converting the project to VS2010 I encountered some problems.
On exiting the application, the program breaks while attempting to lock on entering a critical section.
The lock count usually alternates from -1(Unlocked) to -2(Locked) but just before the program crashes, the lock count is 0.
g_RenderTargetCriticalSection.Lock();// Breaks here
if (g_RenderTargets.Lookup(this, pRenderTarget))
{
ASSERT_VALID(pRenderTarget);
g_RenderTargets.RemoveKey(this);
delete pRenderTarget;
}
g_RenderTargetCriticalSection.Unlock();
Here is the CCriticalSection::Lock() function where ::EnterCriticalSection(&m_sect); fails. I found it strange that on failing, the lock count changes from 0 to -4??
_AFXMT_INLINE BOOL (::CCriticalSection::Lock())
{
::EnterCriticalSection(&m_sect);
return TRUE;
}
If anyone has encountered anything similar to this, some insight would be greatly appreciated. Thanks in advance.
The comments indicate this is a file-scope object destructor order issue. There are various ways you could address this. Since I haven't seen the rest of the code it's difficult to offer specific advice, but one idea is to change the CS to live in a shared_ptr and have your CWnd hold onto a copy so it won't be destroyed prematurely. e.g.:
std::shared_ptr<CCriticalSection> g_renderTargetCriticalSection(new CCriticalSection());
Then in your window class:
class CMyWindow : public CWnd
{
private:
std::shared_ptr<CCriticalSection> m_renderTargetCriticalSection;
public:
CMyWindow()
: m_renderTargetCriticalSection(g_renderTargetCriticalSection)
{
// ...
}
~CMyWindow()
{
// guaranteed to still be valid since our shared_ptr is keeping it alive
CSingleLock lock(m_renderTargetCriticalSection.get(), TRUE);
// ...
}
// ...
};
The issue was that the application's Main Window was being destroyed after the application's global object was destroyed. This meant that the g_renderTargetCriticalSection was already Null when the main window was trying to be destroyed.
The solution was to destroy the Application's main window before it's global object (CDBApp theApp) calls ExitInstance() and is destroyed.
int CDBApp::ExitInstance()
{
LOGO_RELEASE
//Destroy the Main Window before the CDBApp Object (theApp) is destroyed.
if(m_Instance.m_hWnd)
m_Instance.DestroyWindow();
return CWinApp::ExitInstance();
}
This code doesn't make sense:
int CDBApp::ExitInstance()
{
LOGO_RELEASE
//Destroy the Main Window before the CDBApp Object (theApp) is destroyed.
if(m_Instance.m_hWnd)
m_Instance.DestroyWindow();
return CWinApp::ExitInstance();
}
m_Instance is a handle, not a class, so it can't be used to call functions!

C++ access violation when calling instance method

I'm creating a DirectX 11 helper class that looks kind of like this:
#import "DXClass.h" // I have declared the constructor and the other methods here
// All of the DirectX libraries are imported in the header as well
DXClass::DXClass()
{
// Pointers created, etc.
}
DXClass:~DXClass()
{
// Other DirectX objects released
// With an if (bbSRView) {}, the exception still occurs, so bbSRView is not NULL
// bbSRView is a ID3D11ShaderResourceView*
// When the other violation does not occur, one does here:
bbSRView->Release();
bbSRView = NULL;
// More releases
void DXClass::Initialize()
{
SetupDisplay();
// Other initialization that works fine
}
void DXClass::SetupDisplay()
{
// This is where the debugger shows the access violation.
// factory is declared as DXGIFactory*
HRESULT hr = CreateDXGIFactory(__uuidof(IDXGIFactory), (void **)&factory);
// Loop through adapters and outputs, etc.
}
This class is initialized like this: dxClass = new DXClass();
The Initialize() function is called in another method of the class that created dxClass.
When the application is run, I get an access violation at the beginning of the setupDisplay() function. However, if I take the code in setupDisplay() and put it in Initialize(), removing the call to setupDisplay(), no access violation occurs. Also, if I remove the code from setupDisplay() so that it is an empty function, and then call it in Initialize(), no access violation occurs.
It appears that no pointers are NULL, and the application will start fine if it is changed as described above. However, on another note, the application receives another access violation when quitting. The debugger points to a Release() call on an ID3D11ShaderResourceView*, which I have pointed out in my code snippet. This pointer also appears to be valid.
I have also checked the similar questions, but the this pointer of the class appears to be valid, and I am not creating any buffers that could be overflowing. There also isn't anything that could be deleting/freeing the object early.
I have no idea what could be causing the errors. :/
Thanks :D
EDIT:
Here's an isolated test, with the same errors:
I have in my main function:
INT APIENTRY wWinMain(HINSTANCE, HINSTANCE, LPWSTR, INT)
{
App *app = new App();
app->Run();
app->Release();
}
In my App class, I have removed all window functionality and any other variables so that it looks like this:
App::App()
{
dxClass = new DXClass();
}
App::~App()
{
delete dxClass;
}
void App::Run()
{
dxClass->Initialize();
while (true) {} // Never reaches here
}
The access violation still occurs at the same place. Also, same results if I replace the factory instance variable with:
IDXGIFactory *f;
HRESULT hr = CreateDXGIFactory(__uuidof(IDXGIFactory), (void **)&f);
Which has worked for me in other applications.
An access violation when calling Release() usually means the object has already received it's final Release() from somewhere else (and it has destroyed itself). One possible solution would be to AddRef() when passing the pointer into your DXClass

Uninitialized read problem

Program works fine (with random crashes) and Memory Validator reports Uninitialized read problem in pD3D = Direct3DCreate9.
What could be the problem ?
init3D.h
class CD3DWindow
{
public:
CD3DWindow();
~CD3DWindow();
LPDIRECT3D9 pD3D;
HRESULT PreInitD3D();
HWND hWnd;
bool killed;
VOID KillD3DWindow();
};
init3D.cpp
CD3DWindow::CD3DWindow()
{
pD3D=NULL;
}
CD3DWindow::~CD3DWindow()
{
if (!killed) KillD3DWindow();
}
HRESULT CD3DWindow::PreInitD3D()
{
pD3D = Direct3DCreate9( D3D_SDK_VERSION ); // Here it reports a problem
if( pD3D == NULL ) return E_FAIL;
// Other not related code
VOID CD3DWindow::KillD3DWindow()
{
if (killed) return;
diwrap::input.UnCreate();
if (hWnd) DestroyWindow(hWnd);
UnregisterClass( "D3D Window", wc.hInstance );
killed = true;
}
Inside main app .h
CD3DWindow *d3dWin;
Inside main app .cpp
d3dWin = new CD3DWindow;
d3dWin->PreInitD3D();
And here is the error report:
Error: UNINITIALIZED READ: reading register ebx
#0:00:02.969 in thread 4092
0x7c912a1f <ntdll.dll+0x12a1f> ntdll.dll!RtlUnicodeToMultiByteN
0x7e42d4c4 <USER32.dll+0x1d4c4> USER32.dll!WCSToMBEx
0x7e428b79 <USER32.dll+0x18b79> USER32.dll!EnumDisplayDevicesA
0x4fdfc8c7 <d3d9.dll+0x2c8c7> d3d9.dll!DebugSetLevel
0x4fdfa701 <d3d9.dll+0x2a701> d3d9.dll!D3DPERF_GetStatus
0x4fdfafad <d3d9.dll+0x2afad> d3d9.dll!Direct3DCreate9
0x00644c59 <Temp.exe+0x244c59> Temp.exe!CD3DWindow::PreInitD3D
c:\_work\Temp\initd3d.cpp:32
Edit: Your stack trace is very, very strange- inside the USER32.dll? That's part of Windows.
What I might suggest is that you're linking the multi-byte Direct3D against the Unicode D3D libraries, or something like that. You shouldn't be able to cause Windows functions to trigger an error.
Your Memory Validator application is reporting false positives to you. I would ignore this error and move on.
There is no copy constructor in your class CD3DWindow. This might not be the cause, but it is the very first thing that comes to mind.
If, by any chance, anywhere in your code a temporary copy is made of a CD3DWindow instance, the destructor of that copy will destroy the window handle. Afterwards, your original will try to use that same, now invalid, handle.
The same holds for the assignment operator.
This might even work, if the memory is not overwritten yet, for some time. Then suddenly, the memory is reused and your code crashes.
So start by adding this to your class:
private:
CD3DWindow(const CD3DWindow&); // left unimplemented intentionally
CD3DWindow& operator=(const CD3DWindow&); // left unimplemented intentionally
If the compiler complains, check the code it refers to.
Update: Of course, this problem might apply to all your other classes. Please read up on the "Rule of Three".

How can I schedule some code to run after all '_atexit()' functions are completed

I'm writing a memory tracking system and the only problem I've actually run into is that when the application exits, any static/global classes that didn't allocate in their constructor, but are deallocating in their deconstructor are deallocating after my memory tracking stuff has reported the allocated data as a leak.
As far as I can tell, the only way for me to properly solve this would be to either force the placement of the memory tracker's _atexit callback at the head of the stack (so that it is called last) or have it execute after the entire _atexit stack has been unwound. Is it actually possible to implement either of these solutions, or is there another solution that I have overlooked.
Edit:
I'm working on/developing for Windows XP and compiling with VS2005.
I've finally figured out how to do this under Windows/Visual Studio. Looking through the crt startup function again (specifically where it calls the initializers for globals), I noticed that it was simply running "function pointers" that were contained between certain segments. So with just a little bit of knowledge on how the linker works, I came up with this:
#include <iostream>
using std::cout;
using std::endl;
// Typedef for the function pointer
typedef void (*_PVFV)(void);
// Our various functions/classes that are going to log the application startup/exit
struct TestClass
{
int m_instanceID;
TestClass(int instanceID) : m_instanceID(instanceID) { cout << " Creating TestClass: " << m_instanceID << endl; }
~TestClass() {cout << " Destroying TestClass: " << m_instanceID << endl; }
};
static int InitInt(const char *ptr) { cout << " Initializing Variable: " << ptr << endl; return 42; }
static void LastOnExitFunc() { puts("Called " __FUNCTION__ "();"); }
static void CInit() { puts("Called " __FUNCTION__ "();"); atexit(&LastOnExitFunc); }
static void CppInit() { puts("Called " __FUNCTION__ "();"); }
// our variables to be intialized
extern "C" { static int testCVar1 = InitInt("testCVar1"); }
static TestClass testClassInstance1(1);
static int testCppVar1 = InitInt("testCppVar1");
// Define where our segment names
#define SEGMENT_C_INIT ".CRT$XIM"
#define SEGMENT_CPP_INIT ".CRT$XCM"
// Build our various function tables and insert them into the correct segments.
#pragma data_seg(SEGMENT_C_INIT)
#pragma data_seg(SEGMENT_CPP_INIT)
#pragma data_seg() // Switch back to the default segment
// Call create our call function pointer arrays and place them in the segments created above
#define SEG_ALLOCATE(SEGMENT) __declspec(allocate(SEGMENT))
SEG_ALLOCATE(SEGMENT_C_INIT) _PVFV c_init_funcs[] = { &CInit };
SEG_ALLOCATE(SEGMENT_CPP_INIT) _PVFV cpp_init_funcs[] = { &CppInit };
// Some more variables just to show that declaration order isn't affecting anything
extern "C" { static int testCVar2 = InitInt("testCVar2"); }
static TestClass testClassInstance2(2);
static int testCppVar2 = InitInt("testCppVar2");
// Main function which prints itself just so we can see where the app actually enters
void main()
{
cout << " Entered Main()!" << endl;
}
which outputs:
Called CInit();
Called CppInit();
Initializing Variable: testCVar1
Creating TestClass: 1
Initializing Variable: testCppVar1
Initializing Variable: testCVar2
Creating TestClass: 2
Initializing Variable: testCppVar2
Entered Main()!
Destroying TestClass: 2
Destroying TestClass: 1
Called LastOnExitFunc();
This works due to the way MS have written their runtime library. Basically, they've setup the following variables in the data segments:
(although this info is copyright I believe this is fair use as it doesn't devalue the original and IS only here for reference)
extern _CRTALLOC(".CRT$XIA") _PIFV __xi_a[];
extern _CRTALLOC(".CRT$XIZ") _PIFV __xi_z[]; /* C initializers */
extern _CRTALLOC(".CRT$XCA") _PVFV __xc_a[];
extern _CRTALLOC(".CRT$XCZ") _PVFV __xc_z[]; /* C++ initializers */
extern _CRTALLOC(".CRT$XPA") _PVFV __xp_a[];
extern _CRTALLOC(".CRT$XPZ") _PVFV __xp_z[]; /* C pre-terminators */
extern _CRTALLOC(".CRT$XTA") _PVFV __xt_a[];
extern _CRTALLOC(".CRT$XTZ") _PVFV __xt_z[]; /* C terminators */
On initialization, the program simply iterates from '__xN_a' to '__xN_z' (where N is {i,c,p,t}) and calls any non null pointers it finds. If we just insert our own segment in between the segments '.CRT$XnA' and '.CRT$XnZ' (where, once again n is {I,C,P,T}), it will be called along with everything else that normally gets called.
The linker simply joins up the segments in alphabetical order. This makes it extremely simple to select when our functions should be called. If you have a look in defsects.inc (found under $(VS_DIR)\VC\crt\src\) you can see that MS have placed all the "user" initialization functions (that is, the ones that initialize globals in your code) in segments ending with 'U'. This means that we just need to place our initializers in a segment earlier than 'U' and they will be called before any other initializers.
You must be really careful not to use any functionality that isn't initialized until after your selected placement of the function pointers (frankly, I'd recommend you just use .CRT$XCT that way its only your code that hasn't been initialized. I'm not sure what will happen if you've linked with standard 'C' code, you may have to place it in the .CRT$XIT block in that case).
One thing I did discover was that the "pre-terminators" and "terminators" aren't actually stored in the executable if you link against the DLL versions of the runtime library. Due to this, you can't really use them as a general solution. Instead, the way I made it run my specific function as the last "user" function was to simply call atexit() within the 'C initializers', this way, no other function could have been added to the stack (which will be called in the reverse order to which functions are added and is how global/static deconstructors are all called).
Just one final (obvious) note, this is written with Microsoft's runtime library in mind. It may work similar on other platforms/compilers (hopefully you'll be able to get away with just changing the segment names to whatever they use, IF they use the same scheme) but don't count on it.
atexit is processed by the C/C++ runtime (CRT). It runs after main() has already returned. Probably the best way to do this is to replace the standard CRT with your own.
On Windows tlibc is probably a great place to start: http://www.codeproject.com/KB/library/tlibc.aspx
Look at the code sample for mainCRTStartup and just run your code after the call to _doexit();
but before ExitProcess.
Alternatively, you could just get notified when ExitProcess gets called. When ExitProcess gets called the following occurs (according to http://msdn.microsoft.com/en-us/library/ms682658%28VS.85%29.aspx):
All of the threads in the process, except the calling thread, terminate their execution without receiving a DLL_THREAD_DETACH notification.
The states of all of the threads terminated in step 1 become signaled.
The entry-point functions of all loaded dynamic-link libraries (DLLs) are called with DLL_PROCESS_DETACH.
After all attached DLLs have executed any process termination code, the ExitProcess function terminates the current process, including the calling thread.
The state of the calling thread becomes signaled.
All of the object handles opened by the process are closed.
The termination status of the process changes from STILL_ACTIVE to the exit value of the process.
The state of the process object becomes signaled, satisfying any threads that had been waiting for the process to terminate.
So, one method would be to create a DLL and have that DLL attach to the process. It will get notified when the process exits, which should be after atexit has been processed.
Obviously, this is all rather hackish, proceed carefully.
This is dependent on the development platform. For example, Borland C++ has a #pragma which could be used for exactly this. (From Borland C++ 5.0, c. 1995)
#pragma startup function-name [priority]
#pragma exit function-name [priority]
These two pragmas allow the program to specify function(s) that should be called either upon program startup (before the main function is called), or program exit (just before the program terminates through _exit).
The specified function-name must be a previously declared function as:
void function-name(void);
The optional priority should be in the range 64 to 255, with highest priority at 0; default is 100. Functions with higher priorities are called first at startup and last at exit. Priorities from 0 to 63 are used by the C libraries, and should not be used by the user.
Perhaps your C compiler has a similar facility?
I've read multiple times you can't guarantee the construction order of global variables (cite). I'd think it is pretty safe to infer from this that destructor execution order is also not guaranteed.
Therefore if your memory tracking object is global, you will almost certainly be unable any guarantees that your memory tracker object will get destructed last (or constructed first). If it's not destructed last, and other allocations are outstanding, then yes it will notice the leaks you mention.
Also, what platform is this _atexit function defined for?
Having the memory tracker's cleanup executed last is the best solution. The easiest way I've found to do that is to explicitly control all the relevant global variables' initialization order. (Some libraries hide their global state in fancy classes or otherwise, thinking they're following a pattern, but all they do is prevent this kind of flexibility.)
Example main.cpp:
#include "global_init.inc"
int main() {
// do very little work; all initialization, main-specific stuff
// then call your application's mainloop
}
Where the global-initialization file includes object definitions and #includes similar non-header files. Order the objects in this file in the order you want them constructed, and they'll be destructed in the reverse order. 18.3/8 in C++03 guarantees that destruction order mirrors construction: "Non-local objects with static storage duration are destroyed in the reverse order of the completion of their constructor." (That section is talking about exit(), but a return from main is the same, see 3.6.1/5.)
As a bonus, you're guaranteed that all globals (in that file) are initialized before entering main. (Something not guaranteed in the standard, but allowed if implementations choose.)
I've had this exact problem, also writing a memory tracker.
A few things:
Along with destruction, you also need to handle construction. Be prepared for malloc/new to be called BEFORE your memory tracker is constructed (assuming it is written as a class). So you need your class to know whether it has been constructed or destructed yet!
class MemTracker
{
enum State
{
unconstructed = 0, // must be 0 !!!
constructed,
destructed
};
State state;
MemTracker()
{
if (state == unconstructed)
{
// construct...
state = constructed;
}
}
};
static MemTracker memTracker; // all statics are zero-initted by linker
On every allocation that calls into your tracker, construct it!
MemTracker::malloc(...)
{
// force call to constructor, which does nothing after first time
new (this) MemTracker();
...
}
Strange, but true. Anyhow, onto destruction:
~MemTracker()
{
OutputLeaks(file);
state = destructed;
}
So, on destruction, output your results. Yet we know that there will be more calls. What to do? Well,...
MemTracker::free(void * ptr)
{
do_tracking(ptr);
if (state == destructed)
{
// we must getting called late
// so re-output
// Note that this might happen a lot...
OutputLeaks(file); // again!
}
}
And lastly:
be careful with threading
be careful not to call malloc/free/new/delete inside your tracker, or be able to detect the recursion, etc :-)
EDIT:
and I forgot, if you put your tracker in a DLL, you will probably need to LoadLibrary() (or dlopen, etc) yourself to up your reference count, so that you don't get removed from memory prematurely. Because although your class can still be called after destruction, it can't if the code has been unloaded.