Poll a file for change? - clojure

It is often a pattern that I wish to poll a file for changes (when it was last written). When the file does change from its previous value, I wish to execute some function. Something of the form.
(poll-for-changes file-str on-change-fx current-value)
where
file-str is just a string that specifies the files location
on-change-fx is the function that should be called when the file at file-str changes. Let us say that the on-change-fx should take the File object pointing to file-str as a argument.
current-value the current value of the file in milliseconds. You might set to 0 to guarantee that this function will run at least once, or to the actual value to only run this function when you actually detect a change.
I would just like this function implemented in the clearest, most concise, Clojurist way possible. Thank you.

If you're looking to poll a directory or files and act on it, I think watchtower is pretty good to look at.
Java 7 has a WatchService, which uses file system events to react to changes. In this case, you don't poll at all, but block on a future file event. I don't think there are any projects in Clojure that are out there leveraging that, although I spent some time toying with it to write a small library. The source for it is here
I don't claim my library is even complete, but it does use the Java 7 service, so you could use that for inspiration on your own project.

There are two approaches you could use here:
Use Java interop and the Java 7 WatchService API.
Inspect and learn from existing idiomatic, concise code (in this case by Stuart Sierra) that does something like you want. Note it also uses Java Interop.
I think option #1 is your best bet, and the implementation of the function should be straight forward. You will likely want to use doto and the -> and ->> macros to make the code more readable.

Nowadays I would probably try hara.io.watch first.
Otherwise there are many alternatives (as stated in the hara docs) :
clojure-watch
dirwatch
hawk
watchtower
java-watcher
panoptic
ojo
filevents
And some code can be extracted from :
lein-midje
ns-tracker
lazytest
You could also do what hara does and wrap java.nio.file.WatchService.

Related

Any way or ideas to protect or sign source code?

This is probably a strange question. My project involves a few other people that need to work on the code too. I'm not sure how careful they would be with it and I don't want it to leak. For this reason I split it into 2 parts, one is in the form of a library, the rest just plain source code. There is one other guy that needs everything so he also has the source to the library. I don't want this guy to make any changes to the library. I put in a version number that gets printed when everything is running but I have no way of knowing (from looking at logs) if the library was authentic (from me only).
I was hoping there is some way I can use a public-private-key signature or something like this but against what? I probably can't just calculate an MD5 hash either because the linker probably puts the library function in different places all the time.
I realize it's probably not feasible to sign and verify source code but I would be curious to hear if anybody has any ideas.
You can use one of the VCS (version control systems) listed here.
By my experience you can use Github, it is easy to work with.

C++ code to input function as string and then use the function ahead in the code

I need to define functions in c++ code to be user defined. Basically that he writes the function in form of a string which is exact c++ code, then use that function in the very next line of code.
I have tried to append output to a file which is imported, but it obviously failed
You simply cannot do it. C++ code can not be interpreted at run-time. You may want to try Qt/QML which will give an opportunity to run a javascript code or an entire QML file from network/string or any other method which can deliver your code to the host application.
I assume you are talking about a pure function such as a mathematical formula.
To my knowledge, what you ask is not possible without
a) writing your own parser, that effectively creates functions from strings or
b) using external libraries - a quick google search brought be to this library that seems to provide the functionality you are looking for. I have no personal experience with it, though.
As #Useless pointed out, "editing" the code after compilation is not intended in a compiled language as c++. This could be tricked by having a second code compiled and executed in the background; this, however, seems rather unelegant and would rely on additional threads, compilers and the operating system.

Open-source C++ scanning library

Rationale: In my day-to-day C++ code development, I frequently need to
answer basic questions such as who calls what in a very large C++ code
base that is frequently changing. But, I also need to have some
automated way to exactly identify what the code is doing around a
particular area of code. "grep" tools such as Cscope are useful (and
I use them heavily already), but are not C++-language-aware: They
don't give any way to identify the types and kinds of lexical
environment of a given use of a type or function a such way that is
conducive to automation (even if said automation is limited to
"read-only" operations such as code browsing and navigation, but I'm
asking for much more than that below).
Question: Does there exist already an open-source C/C++-based library
(native, not managed, not Microsoft- or Linux-specific) that can
statically scan or analyze a large tree of C++ code, and can produce
result sets that answer detailed questions such as:
What functions are called by some supplied function?
What functions make use of this supplied type?
Ditto the above questions if C++ classes or class templates are involved.
The result set should provide some sort of "handle". I should be able
to feed that handle back to the library to perform the following types
of introspection:
What is the byte offset into the file where the reference was made?
What is the reference into the abstract syntax tree (AST) of that
reference, so that I can inspect surrounding code constructs? And
each AST entity would also have file path, byte-offset, and
type-info data associated with it, so that I could recursively walk
up the graph of callers or referrers to do useful operations.
The answer should meet the following requirements:
API: The API exposed must be one of the following:
C or C++ and probably is "C handle" or C++-class-instance-based
(and if it is, must be generic C o C++ code and not Microsoft- or
Linux-specific code constructs unless it is to meet specifics of
the given platform), or
Command-line standard input and standard output based.
C++ aware: Is not limited to C code, but understands C++ language
constructs in minute detail including awareness of inter-class
inheritance relationships and C++ templates.
Fast: Should scan large code bases significantly faster than
compiling the entire code base from scratch. This probably needs to
be relaxed, but only if Incremental result retrieval and Resilient
to small code changes requirements are fully met below.
Provide Result counts: I should be able to ask "How many results
would you provide to some request (and no don't send me all of the
results)?" that responds on the order of less than 3 seconds versus
having to retrieve all results for any given question. If it takes
too long to get that answer, then wastes development time. This is
coupled with the next requirement.
Incremental result retrieval: I should be able to then ask "Give me
just the next N results of this request", and then a handle to the
result set so that I can ask the question repeatedly, thus
incrementally pulling out the results in stages. This means I
should not have to wait for the entire result set before seeing
some subset of all of the results. And that I can cancel the
operation safely if I have seen enough results. Reason: I need to
answer the question: "What is the build or development impact of
changing some particular function signature?"
Resilient to small code changes: If I change a header or source
file, I should not have to wait for the entire code base to be
rescanned, but only that header or source file
rescanned. Rescanning should be quick. E.g., don't do what cscope
requires you to do, which is to rescan the entire code base for
small changes. It is understood that if you change a header, then
scanning can take longer since other files that include that header
would have to be rescanned.
IDE Agnostic: Is text editor agnostic (don't make me use a specific
text editor; I've made my choice already, thank you!)
Platform Agnostic: Is platform-agnostic (don't make me only use it
on Linux or only on Windows, as I have to use both of those
platforms in my daily grind, but I need the tool to be useful on
both as I have code sandboxes on both platforms).
Non-binary: Should not cost me anything other than time to download
and compile the library and all of its dependencies.
Not trial-ware.
Actively Supported: It is likely that sending help requests to mailing lists
or associated forums is likely to get a response in less than 2
days.
Network agnostic: Databases the library builds should be able to be used directly on
a network from 32-bit and 64-bit systems, both Linux and Windows
interchangeably, at the same time, and do not embed hardcoded paths
to filesystems that would otherwise "root" the database to a
particular network.
Build environment agnostic: Does not require intimate knowledge of my build environment, with
the notable exception of possibly requiring knowledge of compiler
supplied CPP macro definitions (e.g. -Dmacro=value).
I would say that CLang Index is a close fit. However I don't think that it stores data in a database.
Anyway the CLang framework offer what you actually need to build a tool tailored to your needs, if only because of its C, C++ and Objective-C parsing / indexing capabitilies. And since it's provided as a set of reusable libraries... it was crafted for being developed on!
I have to admit that I haven't used either because I work with a lot of Microsoft-specific code that uses Microsoft compiler extensions that i don't expect them to understand, but the two open source analyzers I'm aware of are Mozilla Pork and the Clang Analyzer.
If you are looking for results of code analysis (metrics, graphs, ...) why not use a tool (instead of API) to do that? If you can, I suggest you to take a look at Understand.
It's not free (there's a trial version) but I found it very useful.
Maybe Doxygen with GraphViz could be the answer of some of your constraints but not all,for example the analysis of Doxygen is not incremental.

c++: generate function call tree

I want to parse current c++ files in a project and list out all the methods/functions in it and then generate the function call and caller trees.
F.g. you can refer how doxygen generates the call tree.
I have checked gccxml but it doesn't list the functions called from another function.
Please suggest me some lightweight tools (open source) which I can use it.
thanks!
The static call tree isn't necessarily the runtime call tree. Callbacks and virtual functions muddy the water. So static analysis can only give you part of the answer.
The only way I've ever been able to get a reliable call tree was to run gprof on the compiled executable. The output can be massaged into a very accurate call tree.
gccxml, currently, essentially ignores function bodies (including calls to other functions). A good overview of C++ parsing options currently available is here -- not necessarily a bearer of good news, but recommended reading.
You mention Doxygen. Why not use that?
I probably misunderstood , but visual studio have something similar.
Right Click a function and select Call Browser.
It's impossible to provide a full call tree analysis for an application that's dependent on asynchronous event reception. This is way we have test. Even in the simplest cases where the application is fully deterministic this could be a relatively daunting task and I would argue provide marginal value. Then how would you analyze the results? To what effect?

How do you handle command line options and config files?

What packages do you use to handle command line options, settings and config files?
I'm looking for something that reads user-defined options from the command line and/or from config files.
The options (settings) should be dividable into different groups, so that I can pass different (subsets of) options to different objects in my code.
I know of boost::program_options, but I can't quite get used to the API. Are there light-weight alternatives?
(BTW, do you ever use a global options object in your code that can be read from anywhere? Or would you consider that evil?)
At Google, we use gflags. It doesn't do configuration files, but for flags, it's a lot less painful than using getopt.
#include <gflags/gflags.h>
DEFINE_string(server, "foo", "What server to connect to");
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
if (!server.empty()) {
Connect(server);
}
}
You put the DEFINE_foo at the top of the file that needs to know the value of the flag. If other files also need to know the value, you use DECLARE_foo in them. There's also pretty good support for testing, so unit tests can set different flags independently.
For command lines and C++, I've been a fan of TCLAP: Templatized Command Line Argument Parser.
http://sourceforge.net/projects/tclap/
Well, you're not going to like my answer. I use boost::program_options. The interface takes some getting used to, but once you have it down, it's amazing. Just make sure to do boatloads of unit testing, because if you get the syntax wrong you will get runtime errors.
And, yes, I store them in a singleton object (read-only). I don't think it's evil in that case. It's one of the few cases I can think of where a singleton is acceptable.
If Boost is overkill for you, GNU Gengetopt is probably, too, but IMHO, it's a fun tool to mess around with.
And, I try to stay away from global options objects, I prefer to have each class read its own config. Besides the whole "Globals are evil" philosophy, it tends to end up becoming an ever-growing mess to have all of your configuration in one place, and also it's harder to tell what configuration variables are being used where. If you keep the configuration closer to where it's being used, it's more obvious what each one is for, and easier to keep clean.
(As to what I use, personally, for everything recently it's been a proprietary command line parsing library that somebody else at my company wrote, but that doesn't help you much, unfortunately)
I've been using TCLAP for a year or two now, but randomly I stumbled across ezOptionParser. ezOptionParser doesn't suffer from "it shouldn't have to be this complex"-syndrome the same way that other option parsers do.
I'm pretty impressed so far and I'll likely be using it going forward, specifically because it supports config files. TCLAP is a more sophisticated library, but the simplicity and extra features from ezOptionParser is very compelling.
Other perks from its website include (as of 0.2.0):
Pretty printing of parsed inputs for debugging.
Auto usage message creation in three layouts (aligned, interleaved or staggered).
Single header file implementation.
Dependent only on STL.
Arbitrary short and long option names (dash '-' or plus '+' prefixes not required).
Arbitrary argument list delimiters.
Multiple flag instances allowed.
Validation of required options, number of expected arguments per flag, datatype ranges, user defined ranges, membership in lists and case for string lists.
Validation criteria definable by strings or constants.
Multiple file import with comments.
Exports to file, either set options or all options including defaults when available.
Option parse index for order dependent contexts.
GNU getopt is pretty nice. If you want a C++ feel, consider getoptpp which is a wrapper around the native getopt.
As far as configuration file is concerned, you should try to make it as stupid as possible so that parsing is easy. If you are bit considerate, you might want to use yaac&lex but that would be really a big bucks for small apps.
I also would like to suggest that you should support both config files and command line options in your application. Config files are better for those options which are to be changed less frequently. Command-line options are good when you want to pass the immediate changing arguments (typically when you are creating a app, which would be called by some other program.)
If you are working with Visual Studio 2005 on x86 and x64 Windows there is some good Command Line Parsing utilities in the SimpleLibPlus library. I have used it and found it very useful.
Not sure about command line argument parsing. I have not needed very rich capabilities in that area and have generally rolled my own to save adding more dependencies to my software. Depending upon what your needs are you may or may not want to try this route. The C++ programs I have written are generally not invoked from the command line.
On the other hand, for a config file you really can't beat an XML based format. It's readable, extensible, structured, etc... :) Plus there are lots of XML parsers out there. Despite the fact it is a C library, I tend to use libxml2 from xmlsoft.org.
Try Apache Ant. Its primary usage is Java projects, but there isn't anything Java about it, and its usable for almost anything.
Usage is fairly simple and you've got a lot of community support too. It's really good at doing things the way you're asking.
As for global options in code, I think they're quite necessary and useful. Don't misuse them, though.