Static Class variable for Thread Count in C++ - c++

I am writing a thread based application in C++. The following is sample code showing how I am checking the thread count. I need to ensure that at any point in time, there are only 20 worker threads spawned from my application:
#include<stdio.h>
using namespace std;
class ThreadWorkerClass
{
private:
static int threadCount;
public:
void ThreadWorkerClass()
{
threadCount ++;
}
static int getThreadCount()
{
return threadCount;
}
void run()
{
/* The worker thread execution
* logic is to be written here */
//Reduce count by 1 as worker thread would finish here
threadCount --;
}
}
int main()
{
while(1)
{
ThreadWorkerClass twObj;
//Use Boost to start Worker Thread
//Assume max 20 worker threads need to be spawned
if(ThreadWorkerClass::getThreadCount() <= 20)
boost::thread *wrkrThread = new boost::thread(
&ThreadWorkerClass::run,&twObj);
else
break;
}
//Wait for the threads to join
//Something like (*wrkrThread).join();
return 0;
}
Will this design require me to take a lock on the variable threadCount? Assume that I will be running this code in a multi-processor environment.

The design is not good enough. The problem is that you exposed the constructor, so whether you like it or not, people will be able to create as many instances of your object as they want. You should do some sort of threads pooling. i.e. You have a class maintaining a set of pools and it gives out threads if available. something like
class MyThreadClass {
public:
release(){
//the method obtaining that thread is reponsible for returning it
}
};
class ThreadPool {
//create 20 instances of your Threadclass
public:
//This is a blocking function
MyThreadClass getInstance() {
//if a thread from the pool is free give it, else wait
}
};
So everything is maintaned internally by the pooling class. Never give control over that class to the others. you can also add query functions to the pooling class, like hasFreeThreads(), numFreeThreads() etc...
You can also enhance this design through giving out smart pointer so you can follow how many people are still owning the thread.
Making the people obtaining the thread responsible for releasing it is sometimes dangerous, as processes crashes and they never give the tread back, there are many solutions to that, the simplest one is to maintain a clock on each thread, when time runs out the thread is taken back by force.

Related

How to initiate a thread in a class in C++ 14?

class ThreadOne {
public:
ThreadOne();
void RealThread();
void EnqueueJob(s_info job);
std::queue<s_info> q_jobs;
private:
H5::H5File* targetFile = new H5::H5File("file.h5", H5F_ACC_TRUNC);
std::condition_variable cv_condition;
std::mutex m_job_q_;
};
ThreadOne::ThreadOne() {
}
void ThreadOne::RealThread() {
while (true) {
std::unique_lock<std::mutex> lock(m_job_q_);
cv_condition.wait(lock, [this]() { return !this->q_jobs.empty(); });
s_info info = std::move(q_jobs.front());
q_jobs.pop();
lock.unlock();
//* DO THE JOB *//
}
}
void ThreadOne::EnqueueJob(s_info job) {
{
std::lock_guard<std::mutex> lock(m_job_q_);
q_jobs.push(std::move(job));
}
cv_condition.notify_one();
}
ThreadOne *tWrite = new ThreadOne();
I want to make a thread and send it a pointer of an array and its name as a struct(s_info), and then make the thread write it into a file. I think that it's better than creating a thread whenever writing is needed.
I could make a thread pool and allocate jobs to it, but it's not allowed to write the same file concurrently in my situation, I think that just making a thread will be enough and the program will still do CPU-bound jobs when writing job is in process.
To sum up, this class (hopefully) gets array pointers and their dataset names, puts them in q_jobs and RealThread writes the arrays into a file.
I referred to a C++ thread pool program and the program initiates threads like this:
std::vector<std::thread> vec_worker_threads;
vector_worker_threads.reserve(num_threads_);
vector_worker_threads.emplace_back([this]() { this->RealThread(); });
I'm new to C++ and I understand what the code above does, but I don't know how to initiate RealThread in my class without a vector. How can I make an instance of the class that has a thread(RealThread) that's already ready inside it?
From what I can gather, and as already discussed in the comments, you simply want a std::thread member for ThreadOne:
class ThreadOne {
std::thread thread;
public:
~ThreadOne();
//...
};
//...
ThreadOne::ThreadOne() {
thread = std::thread{RealThread, this};
}
ThreadOne::~ThreadOne() {
// (potentially) notify thread to finish first
if(thread.joinable())
thread.join();
}
//...
ThreadOne tWrite;
Note that I did not start the thread in the member-initializer-list of the constructor in order to avoid the thread accessing other members that have not been initialized yet. (The default constructor of std::thread does not start any thread.)
I also wrote a destructor which will wait for the thread to finish and join it. You must always join threads before destroying the std::thread object attached to it, otherwise your program will call std::terminate and abort.
Finally, I replaced tWrite from being a pointer to being a class type directly. There is probably no reason for you to use dynamic allocation there and even if you have a need for it, you should be using
auto tWrite = std::make_unique<ThreadOne>();
or equivalent, instead, so that you are not going to rely on manually deleteing the pointer at the correct place.
Also note that your current RealThread function seems to never finish. It must return at some point, probably after receiving a notification from the main thread, otherwise thread.join() will wait forever.

c++11 shared_ptr using in multi-threads

Recently I'm thinking a high performance event-driven multi-threads framework using c++11. And it mainly takes c++11 facilities such as std::thread, std::condition_variable, std::mutex, std::shared_ptr etc into consideration. In general, this framework has three basic components: job, worker and streamline, well, it seems to be a real factory. When user construct his business model in server end, he just needs to consider the data and its processor. Once the model is established, user only needs to construct data class inherited job and processor class inherited worker.
For example:
class Data : public job {};
class Processsor : public worker {};
When server get data, it just new a Data object through auto data = std::make_shared<Data>() in the data source callback thread and call the streamline. job_dispatch to transfer the processor and data to other thread. Of course user doesn't have to think to free memory. The streamline. job_dispatch mainly do below stuff:
void evd_thread_pool::job_dispatch(std::shared_ptr<evd_thread_job> job) {
auto task = std::make_shared<evd_task_wrap>(job);
task->worker = streamline.worker;
// worker has been registered in streamline first of all
{
std::unique_lock<std::mutex> lck(streamline.mutex);
streamline.task_list.push_back(std::move(task));
}
streamline.cv.notify_all();
}
The evd_task_wrap used in the job_dispatch defined as:
struct evd_task_wrap {
std::shared_ptr<evd_thread_job> order;
std::shared_ptr<evd_thread_processor> worker;
evd_task_wrap(std::shared_ptr<evd_thread_job>& o)
:order(o) {}
};
Finally the task_wrap will be dispatched into the processing thread through task_list that is a std::list object. And the processing thread mainly do the stuff as:
void evd_factory_impl::thread_proc() {
std::shared_ptr<evd_task_wrap> wrap = nullptr;
while (true) {
{
std::unique_lock<std::mutex> lck(streamline.mutex);
if (streamline.task_list.empty())
streamline.cv.wait(lck,
[&]()->bool{return !streamline.task_list.empty();});
wrap = std::move(streamline.task_list.front());
streamline.task_list.pop_front();
}
if (-1 == wrap->order->get_type())
break;
wrap->worker->process_task(wrap->order);
wrap.reset();
}
}
But I don't know why the process will often crash in the thread_proc function. And the coredump prompt that sometimes the wrap is a empty shared_ptr or segment fault happened in _Sp_counted_ptr_inplace::_M_dispose that is called in wrap.reset(). And I supposed the shared_ptr has the thread synchronous problem in this scenario while I know the control block in shared_ptr is thread-safety. And of course the shared_ptr in job_dispatch and thread_proc is different shared_ptr object even though they point to the same storage. Does anyone has more specific suggestion on how to solve this problem? Or if there exists similar lightweight framework with automatic memory management using c++11
The example of process_task such as:
void log_handle::process_task(std::shared_ptr<crx::evd_thread_job> job) {
auto j = std::dynamic_pointer_cast<log_job>(job);
j->log->Printf(0, j->print_str.c_str());
write(STDOUT_FILENO, j->print_str.c_str(), j->print_str.size());
}
class log_factory {
public:
log_factory(const std::string& name);
virtual ~log_factory();
void print_ts(const char *format, ...) { //here dispatch the job
char log_buf[4096] = {0};
va_list args;
va_start(args, format);
vsprintf(log_buf, format, args);
va_end(args);
auto job = std::make_shared<log_job>(log_buf, &m_log);
m_log_th.job_dispatch(job);
}
public:
E15_Log m_log;
std::shared_ptr<log_handle> m_log_handle;
crx::evd_thread_pool m_log_th;
};
I detected a problem in your code, which may or may not be related:
You use notify_all from your condition variable. That will awaken ALL threads from sleep. It is OK if you wrap your wait in a while loop, like:
while (streamline.task_list.empty())
streamline.cv.wait(lck, [&]()->bool{return !streamline.task_list.empty();});
But since you are using an if, all threads leave the wait. If you dispatch a single product and having several consumer threads, all but one thread will call wrap = std::move(streamline.task_list.front()); while the tasklist is empty and cause UB.

Using a boost thread: Signal and wait for termination

i'm currently writing a c/c++ dll for later use mostly in Delphi and i'm more familiar with threads in Delphi than c/c++ and especially boost. So i wonder how i can achieve the following scenario?
class CMyClass
{
private:
boost::thread* doStuffThread;
protected:
void doStuffExecute(void)
{
while(!isTerminationSignal()) // loop until termination signal
{
// do stuff
}
setTerminated(); // thread is finished
};
public:
CMyClass(void)
{
// create thread
this->doStuffThread = new boost::thread(boost::bind(&CMyClass::doStuffExecute, this));
};
~CMyClass(void)
{
// finish the thread
signalThreadTermination();
waitForThreadFinish();
delete this->doStuffThread;
// do other cleanup
};
}
I have red countless articles about boost threading, signals and mutexes but i don't get it, maybe because it's friday ;) or is it not doable how i think to do it?
Regards
Daniel
Just use an atomic boolean to tell the thread to stop:
class CMyClass
{
private:
boost::thread doStuffThread;
boost::atomic<bool> stop;
protected:
void doStuffExecute()
{
while(!stop) // loop until termination signal
{
// do stuff
}
// thread is finished
};
public:
CMyClass() : stop(false)
{
// create thread
doStuffThread = boost::thread(&CMyClass::doStuffExecute, this);
};
~CMyClass()
{
// finish the thread
stop = true;
doStuffThread.join();
// do other cleanup
};
}
To wait for the thread to finish you just join it, that will block until it is finished and can be joined. You need to join the thread anyway before you can destroy it, or it will terminate your program.
There is no need to use a pointer and create the thread with new, just use a boost::thread object directly. Creating everything on the heap is wasteful, unsafe and poor style.
There is no need to use boost::bind to pass arguments to the thread constructor. For many many years boost::thread has supported passing multiple arguments to its constructor directly and it does the binding internally.
It's important that stop has been initialized to false before the new thread is created, otherwise if the new thread is spawned very quickly it could check the value of stop before it is initialized, and might happen to read a true value from the uninitialized memory, and then it would never enter the loop.
On the subject of style, writing foo(void) is considered by many C++ programmers to be a disgusting abomination. If you want to say your function takes no arguments then just write foo().

Windows API Thread Pool simple example

[EDIT: thanks to MSalters answer and Raymond Chen's answer to InterlockedIncrement vs EnterCriticalSection/counter++/LeaveCriticalSection, the problem is solved and the code below is working properly. This should provide an interesting simple example of Thread Pool use in Windows]
I don't manage to find a simple example of the following task. My program, for example, needs to increment the values in a huge std::vector by one, so I want to do that in parallel. It needs to do that a bunch of times across the lifetime of the program. I know how to do that using CreateThread at each call of the routine but I don't manage to get rid of the CreateThread with the ThreadPool.
Here is what I do :
class Thread {
public:
Thread(){}
virtual void run() = 0 ; // I can inherit an "IncrementVectorThread"
};
class IncrementVectorThread: public Thread {
public:
IncrementVectorThread(int threadID, int nbThreads, std::vector<int> &vec) : id(threadID), nb(nbThreads), myvec(vec) { };
virtual void run() {
for (int i=(myvec.size()*id)/nb; i<(myvec.size()*(id+1))/nb; i++)
myvec[i]++; //and let's assume myvec is properly sized
}
int id, nb;
std::vector<int> &myvec;
};
class ThreadGroup : public std::vector<Thread*> {
public:
ThreadGroup() {
pool = CreateThreadpool(NULL);
InitializeThreadpoolEnvironment(&cbe);
cleanupGroup = CreateThreadpoolCleanupGroup();
SetThreadpoolCallbackPool(&cbe, pool);
SetThreadpoolCallbackCleanupGroup(&cbe, cleanupGroup, NULL);
threadCount = 0;
}
~ThreadGroup() {
CloseThreadpool(pool);
}
PTP_POOL pool;
TP_CALLBACK_ENVIRON cbe;
PTP_CLEANUP_GROUP cleanupGroup;
volatile long threadCount;
} ;
static VOID CALLBACK runFunc(
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,
PTP_WORK Work) {
ThreadGroup &thread = *((ThreadGroup*) Context);
long id = InterlockedIncrement(&(thread.threadCount));
DWORD tid = (id-1)%thread.size();
thread[tid]->run();
}
void run_threads(ThreadGroup* thread_group) {
SetThreadpoolThreadMaximum(thread_group->pool, thread_group->size());
SetThreadpoolThreadMinimum(thread_group->pool, thread_group->size());
TP_WORK *worker = CreateThreadpoolWork(runFunc, (void*) thread_group, &thread_group->cbe);
thread_group->threadCount = 0;
for (int i=0; i<thread_group->size(); i++) {
SubmitThreadpoolWork(worker);
}
WaitForThreadpoolWorkCallbacks(worker,FALSE);
CloseThreadpoolWork(worker);
}
void main() {
ThreadGroup group;
std::vector<int> vec(10000, 0);
for (int i=0; i<10; i++)
group.push_back(new IncrementVectorThread(i, 10, vec));
run_threads(&group);
run_threads(&group);
run_threads(&group);
// now, vec should be == std::vector<int>(10000, 3);
}
So, if I understood well :
- the command CreateThreadpool creates a bunch of Threads (hence, the call to CreateThreadpoolWork is cheap as it doesn't call CreateThread)
- I can have as many thread pools as I want (if I want to do a thread pool for "IncrementVector" and one for my "DecrementVector" threads, I can).
- if I need to divide my "increment vector" task into 10 threads, instead of calling 10 times CreateThread, I create a single "worker", and Submit it 10 times to the ThreadPool with the same parameter (hence, I need the thread ID in the callback to know which part of my std::vector to increment). Here I couldn't find the thread ID, since the function GetCurrentThreadId() returns the real ID of the thread (ie., something like 1528, not something between 0..nb_launched_threads).
Finally, I am not sure I understood the concept well : do I really need a single worker and not 10 if I split my std::vector into 10 threads ?
Thanks!
You're roughly right up to the last point.
The whole idea about a thread pool is that you don't care how many threads it has. You just throw a lot of work into the thread pool, and let the OS determine how to execute each chunk.
So, if you create and submit 10 chunks, the OS may use between 1 and 10 threads from the pool.
You should not care about those thread identities. Don't bother with thread ID's, minimum or maximum number of threads, or stuff like that.
If you don't care about thread identities, then how do you manage what part of the vector to change? Simple. Before creating the threadpool, initialize a counter to zero. In the callback function, call InterlockedIncrement to retrieve and increment the counter. For each submitted work item, you'll get a consecutive integer.

A way to destroy "thread" class

Here is a skeleton of my thread class:
class MyThread {
public:
virutal ~MyThread();
// will start thread with svc() as thread entry point
void start() = 0;
// derive class will specialize what the thread should do
virtual void svc() = 0;
};
Somewhere in code I create an instance of MyThread and later I want to destroy it.
In this case MyThread~MyThread() is called. MyThread:svc() is still running and using the object's data members. So I need a way politely inform MyThread:svc() to stop spinning, before proceeding with the destructor.
What is the acceptable way to destroy the thread object?
Note: I'm looking for platform agnostic solution.
UPD: It's clear that the root of problem is that there's no relationship between C++ object representing thread and OS thread. So the question is: in context of object destuction, is there an acceptable way to make thread object behave like an ordinary C++ object or should it be treated as an unusual one (e.g. should we call join() before destoying it?
Considering your additional requirements posted as comment to Checkers' reply (which is the
most straightforward way to do that):
I agree that join in DTor is problematic for various reasons. But from that the lifetime of your thread object is unrelated to the lifetime of the OS thread object.
First, you need to separate the data the thread uses from the thread object itself. They are distinct entities with distinct lifetime requirements.
One approach is to make the data refcounted, and have any thread that wants to access it hold a strong reference to the data. This way, no thread will suddenly grab into the void, but the data will be destroyed as soon as noone touches it anymore.
Second, about the thread object being destroyed when the thread joins:
I am not sure if this is a good idea. The thread object is normally a way to query the state of a thread - but with a thread object that dies as soon as the thread finishes, noone can tell you wether the thread finished.
Generally, I'd completely decouple the lifetime of the thread object from the lifetime of the OS thread: Destroying your thread object should not affect the thread itself. I see two basic approaches to this:
Thread Handle Object - reference counted again, returned by thread creator, can be released as early as one likes without affecting the OS thread. It would expose methods such as Join, IsFinished, and can give access to the thread shared data.
(If the thread object holds relevant execution state, the threafFunc itself could hold a reference to it, thereby ensuring the instance won't be released before the thread ends)
Thin Wrapper - You simply create a temporary around an OS thread handle. You could not hold additional state for the thread easily, but it might be just enough to make it work: At any place, you can turn an OS thread handle into an thread object. The majority of communication - e.g. telling the thread to terminate - would be via the shared data.
For your code example, this means: separate the start() from the svc()
You'd roughly work with this API (XxxxPtr could be e.g. boost::shared_ptr):
class Thread
{
public:
bool IsFinished();
void Join();
bool TryJoin(long timeout);
WorkerPtr GetWorker();
static ThreadPtr Start(WorkerPtr worker); // creates the thread
};
class Worker
{
private:
virtual void Svc() = 0;
friend class Thread; // so thread can run Svc()
}
Worker could contain a ThreadPtr itself, giving you a guarantee that the thread object exists during execution of Svc(). If multiple threads are allowed to work on the same data, this would have to be a thread list. Otherwise, Thread::Start would have to reject Workers that are already associated with a thread.
Motivation: What to do with rogue threads that block?
Assuming a thread fails to terminate within time for one reason or another, even though you told it to. You simply have three choices:
Deadlock, your applicaiton hangs. That usually happens if you join in the destructor.
Violently terminate the thread. That's potentially a violent termination of the app.
Let the thread run to completion on it's own data - you can notify the user, who can safely save & exit. Or you simply let the rogue thread dance on it's own copy of the data (not reference by the main thread anymore) until it completes.
Usually any OS-specific threads API will allow you to "join" a thread. That is, to block indefinitely on a thread handle until the thread functions returns.
So,
Signal the thread function to return (e.g. by setting a flag in its loop to false).
Join the thread, to make sure the actual thread terminates before you try to delete the thread object.
Then you can proceed with destruction of the thread object (you may also join in the destructor, though some people object to blocking destructors.).
I've had a project before with a similar "thread worker" class and a corresponding "work item" class (a-la Java's Thread and Runnable, except thread does not terminate but waits for a new Runnable object to be executed).
In the end, there was no difference if you join in a separate "shutdown" function or in the destructor, except a separate function is a bit more clear.
If you join in a destructor and a thread blocks, you will wait indefinitely.
If you join in a separate function and a thread blocks, you will wait indefinitely.
If you detach the thread and let it finish on its own, it will usually block application from exiting, so you will wait indefinitely.
So there is no straightforward way to make a thread behave like a regular C++ object and ignore its OS thread semantics, unless you can guarantee that your thread code can terminate almost immediately when notified to do so.
You could havee somthing like this in your svc method
while (alive){ //loops}
//free resources after while.
In your destructor, you could set the alive member to false. Or, you could have a pleaseDie() method, that sets the alive member to false, and can be called from the outside requesting the Thread instance to stop processing.
void
Thread::pleaseDie()
{
this->alive = false;
}
You first need a way to communicate with the thread to tell it to shut down. The best mechanism to do this depends on what svc() is doing. If, for example, it is looping on a message queue, you could insert a "please stop" message in that queue. Otherwise, you could simply add a member bool variable (and synchronize access to it) that is periodically checked by the svc(), and set by the thread wanting to destroy the object. Your could add a pure virtual stop() function to your base class, giving the implementor a clear signal that it has to implement svc() to make its class "runnable", and to implement stop() to make it "stoppable".
After asking the thread to stop, you must wait for it to exit before destroying the object. Again, there are several ways to do this. One is to make the stop() function blocking. It could wait, for example, for a "ok, I'm really stopped now" condition variable to be set by the thread running svc(). Alternatively, the caller could "wait" on the thread running svc(). The way to "wait" is platform dependent.
Most thread systems allow you to send a signal to a thead.
Example: pthreads
pthread_kill(pthread_t thread, int sig);
This will send a signall to a thread.
You can use this to kill the thread. Though this can leave a few of the resources hanging in an undefined state.
A solution to the resource problem is to install a signall handler.
So that when the signal handler is called it throws an exception. This will cause the thread stack to unwind to the entry point where you can then get the thread to check a variable about weather it is sill alive.
NOTE: You should never allow an exception to propogate out of a thread (this is so undefined my eyes bleed thinking about it). Basically catch the exception at the thread entry point then check some state variable to see if the thread should really exit.
Meanwhile the thread that sends the signal should wait for the thread to die by doing a join.
The only issues are that when you throw out of signal handler function you need to be careful. You should not use a signal that is asynchronus (ie one that could have been generated by a signal in another thread). A good one to use is SIGSEGV. If this happens normally then you have accessed invalid memory any you thread should think about exiting anyway!
You may also need to specify an extra flag on some systems to cope.
See This article
A working example using pthreads:
#include <pthread.h>
#include <iostream>
extern "C" void* startThread(void*);
extern "C" void shouldIexit(int sig);
class Thread
{
public:
Thread();
virtual ~Thread();
private:
friend void* startThread(void*);
void start();
virtual void run() = 0;
bool running;
pthread_t thread;
};
// I have seen a lot of implementations use a static class method to do this.
// DON'T. It is not portable. This is because the C++ ABI is not defined.
//
// It currently works on several compilers but will break if these compilers
// change the ABI they use. To gurantee this to work you should use a
// function that is declared as extern "C" this guarantees that the ABI is
// correct for the callback. (Note this is true for all C callback functions)
void* startThread(void* data)
{
Thread* thread = reinterpret_cast<Thread*>(data);
thread->start();
}
void shouldIexit(int sig)
{
// You should not use std::cout in signal handler.
// This is for Demo purposes only.
std::cout << "Signal" << std::endl;
signal(sig,shouldIexit);
// The default handler would kill the thread.
// But by returning you can continue your code where you left off.
// Or by throwing you can cause the stack to unwind (if the exception is caught).
// If you do not catch the exception it is implementation defined weather the
// stack is unwound.
throw int(3); // use int for simplicity in demo
}
Thread::Thread()
:running(true)
{
// Note starting the thread in the constructor means that the thread may
// start before the derived classes constructor finishes. This may potentially
// be a problem. It is started here to make the code succinct and the derived
// class used has no constructor so it does not matter.
if (pthread_create(&thread,NULL,startThread,this) != 0)
{
throw int(5); // use int for simplicity in demo.
}
}
Thread::~Thread()
{
void* ignore;
running = false;
pthread_kill(thread,SIGSEGV); // Tell thread it may want to exit.
pthread_join(thread,&ignore); // Wait for it to finish.
// Do NOT leave before thread has exited.
std::cout << "Thread Object Destroyed" << std::endl;
}
void Thread::start()
{
while(running)
{
try
{
this->run();
}
catch(...)
{}
}
std::cout << "Thread exiting" << std::endl;
}
class MyTestThread:public Thread
{
public:
virtual void run()
{
// Unless the signal causes an exception
// this loop will never exit.
while(true)
{
sleep(5);
}
}
};
struct Info
{
Info() {std::cout << "Info" << std::endl;}
~Info() {std::cout << "Done: The thread Should have exited before this" << std::endl;}
};
int main()
{
signal(SIGSEGV,shouldIexit);
Info info;
MyTestThread test;
sleep(4);
std::cout << "Exiting About to Exit" << std::endl;
}
> ./a.exe
Info
Exiting About to Exit
Signal
Thread exiting
Thread Object Destroyed
Done: The thread Should have exited before this
>
You should add dedicated thread management class (i.e. MyThreadMngr), that handles this and other tasks, like book keeping, owning the thread handles etc. The Thread itself should somehow signal to the thread manager that its going to terminate and MyThreadMngr should i.e. have a loop like Tom proposed.
There will probably be more actions that suite into such a thread manager class.
I reckon the easiest way to do this is to wrap the thread execution code in a loop
while(isRunning())
{
... thread implementation ...
}
You can also stop your thread by doing specific calls, for instance when you're using a WIN32 thread you can call TerminateThread on the thread handle in the destructor.
i give a simple and clean design, no signal, no sync, no kill needed.
per your MyThread, i suggest renaming and adding as below:
class MyThread {
public:
virutal ~MyThread();
// will be called when starting a thread,
// could do some initial operations
virtual bool OnStart() = 0;
// will be called when stopping a thread, say calling join().
virtual bool OnStop() = 0;
// derive class will specialize what the thread should do,
// say the thread loop such as
// while (bRunning) {
// do the job.
// }
virtual int OnRun() = 0;
};
the thread interface user will control the lifetime of MyThread.
and actually the real thread object is as below:
class IThread
{
public:
virtual API ~IThread() {}
/* The real destructor. */
virtual void Destroy(void) = 0;
/* Starts this thread, it will call MyThread::OnStart()
* and then call MyThread::OnRun() just after created
* the thread. */
virtual bool Start(void) = 0;
/* Stops a thread. will call MyThread::OnStop(). */
virtual void Stop(void) = 0;
/* If Wait() called, thread won't call MyThread::OnStop().
* If could, it returns the value of MyThread::OnRun()
* returned */
virtual int Wait(void) = 0;
/* your staff */
virtual MyThread * Command(void) = 0;
};
/* The interface to create a thread */
extern IThread * ThrdCreate(MyThread *p);
See the complete interfaces
http://effoaddon.googlecode.com/svn/trunk/devel/effo/codebase/addons/thrd/include/thrd_i.h
Coding Examples
Case 1. Controlled thread loop
class ThreadLoop : public MyThread
{
private:
bool m_bRunning;
public:
virtual bool OnStart() { m_bRunning = true; }
virtual bool OnStop() { m_bRunning = false; }
virtual int OnRun()
{
while (m_bRunning) {
do your job;
}
}
};
int main(int argc, char **argv)
{
ThreadLoop oLoop;
IThread *pThread = ThrdCreate(&oLoop);
// Start the thread, it will call Loop::OnStart()
//and then call Loop::OnRun() internally.
pThread->Start();
do your things here. when it is time to stop the thread, call stop().
// Stop the thread, it will call Loop::OnStop(),
// so Loop::OnRun() will go to the end
pThread->Stop();
// done, destroy the thread
pThread->Destroy();
}
Case 2. Don't know when the thread will stop
class ThreadLoop : public MyThread
{
public:
virtual bool OnStart() { }
virtual bool OnStop() { }
virtual int OnRun()
{
do your job until finish.
}
};
int main(int argc, char **argv)
{
ThreadLoop oLoop;
IThread *pThread = ThrdCreate(&oLoop);
// Start the thread, it will call Loop::OnStart()
//and then call Loop::OnRun() internally.
pThread->Start();
do your things here. Since you don't know when the job will
finish in the thread loop. call wait().
// Wait the thread, it doesn't call Loop::OnStop()
pThread->Wait();
// done, destroy the thread
pThread->Destroy();
}
A complete IThread implementation:
see
http://effoaddon.googlecode.com/svn/trunk/devel/effo/codebase/addons/thrd/src/thrd/thrd.cpp