Implementing logical shifts - bit-manipulation

I need to implement a bitwise shift (logical, not arithmetic) on OpenInsight 8.
In the system mostly everything is a string but there are 4 functions that treat numbers as 32-bit integers. The bitwise functions available are AND, OR, NOT and XOR. Any arithmetic operators treat the number as signed.
I'm currently having a problem with implementing left and right shifts which I need to implement SHA-1.
Can anyone suggest an algorithm which can help me accomplish this? Pseudocode is good enough, I just need a general idea.

You can implement shifting with integer multiplication and division:
Shift left = *2
Shift right = /2
Perhaps you need to mask the number first to make the most siginificant bit zero to prevent integer overflow.

logical shift down by one bit using signed arithmetic and bitwise ops
if v < 0 then
v = v & 0x7fffffff // clear the top bit
v = v / 2 // shift the rest down
v = v + 0x40000000 // set the penultimate bit
else
v = v / 2
fi

If there's no logical right shift you can easily achieve that by right shifting arithmetically n bits then clear the top n bits
For example: shift right 2 bits:
x >= 2;
x &= 0x3fffffff;
Shift right n bits
x >= n;
x &= ~(0xffffffff << (32 - n));
// or
x >= n;
x &= (1 << (32 - n)) - 1;
For left shifting there's no logical/mathematical differentiation because they are all the same, just shift 0s in.

Related

Getting exponent value using bit shifts (C, C++) [duplicate]

Note - This is NOT a duplicate of this question - Count the consecutive zero bits (trailing) on the right in parallel: an explanation? . The linked question has a different context, it only asks the purpose of signed() being use. DO NOT mark this question as duplicate.
I've been finding a way to acquire the number of trailing zeros in a number. I found a bit twiddling Stanford University Write up HERE here that gives the following explanation.
unsigned int v; // 32-bit word input to count zero bits on right
unsigned int c = 32; // c will be the number of zero bits on the right
v &= -signed(v);
if (v) c--;
if (v & 0x0000FFFF) c -= 16;
if (v & 0x00FF00FF) c -= 8;
if (v & 0x0F0F0F0F) c -= 4;
if (v & 0x33333333) c -= 2;
if (v & 0x55555555) c -= 1;
Why does this end up working ? I have an understanding of how Hex numbers are represented as binary and bitwise operators, but I am unable to figure out the intuition behind this working ? What is the working mechanism ?
The code is broken (undefined behavior is present). Here is a fixed version which is also slightly easier to understand (and probably faster):
uint32_t v; // 32-bit word input to count zero bits on right
unsigned c; // c will be the number of zero bits on the right
if (v) {
v &= -v; // keep rightmost set bit (the one that determines the answer) clear all others
c = 0;
if (v & 0xAAAAAAAAu) c |= 1; // binary 10..1010
if (v & 0xCCCCCCCCu) c |= 2; // binary 1100..11001100
if (v & 0xF0F0F0F0u) c |= 4;
if (v & 0xFF00FF00u) c |= 8;
if (v & 0xFFFF0000u) c |= 16;
}
else c = 32;
Once we know only one bit is set, we determine one bit of the result at a time, by simultaneously testing all bits where the result is odd, then all bits where the result has the 2's-place set, etc.
The original code worked in reverse, starting with all bits of the result set (after the if (c) c--;) and then determining which needed to be zero and clearing them.
Since we are learning one bit of the output at a time, I think it's more clear to build the output using bit operations not arithmetic.
This code (from the net) is mostly C, although v &= -signed(v); isn't correct C. The intent is for it to behave as v &= ~v + 1;
First, if v is zero, then it remains zero after the & operation, and all of the if statements are skipped, so you get 32.
Otherwise, the & operation (when corrected) clears all bits to the left of the rightmost 1, so at that point v contains a single 1 bit. Then c is decremented to 31, i.e. all 1 bits within the possible result range.
The if statements then determine its numeric position one bit at a time (one bit of the position number, not of v), clearing the bits that should be 0.
The code first transforms v is such a way that is is entirely null, except the left most one that remains. Then, it determines the position of this first one.
First let's see how we suppress all ones but the left most one.
Assume that k is the position of the left most one in v. v=(vn-1,vn-2,..vk+1,1,0,..0).
-v is the number that added to v will give 0 (actually it gives 2^n, but bit 2^n is ignored if we only keep the n less significant bits).
What must the value of bits in -v so that v+-v=0?
obviously bits k-1..0 of -k must be at 0 so that added to the trailing zeros in v they give a zero.
bit k must be at 1. Added to the one in vk, it will give a zero and a carry at one at order k+1
bit k+1 of -v will be added to vk+1 and to the carry generated at step k. It must be the logical complement of vk+1. So whatever the value of vk+1, we will have 1+0+1 if vk+1=0 (or 1+1+0 if vk+1=1) and result will be 0 at order k+1 with a carry generated at order k+2.
This is similar for bits n-1..k+2 and they must all be the logical complement of the corresponding bit in v.
Hence, we get the well-known result that to get -v, one must
leave unchanged all trailing zeros of v
leave unchanged the left most one of v
complement all the other bits.
If we compute v&-v, we have
v vn-1 vn-2 ... vk+1 1 0 0 ... 0
-v & ~vn-1 ~vn-2 ... ~vk+1 1 0 0 ... 0
v&-v 0 0 ... 0 1 0 0 ... 0
So v&-v only keeps the left most one in v.
To find the location of first one, look at the code:
if (v) c--; // no 1 in result? -> 32 trailing zeros.
// Otherwise it will be in range c..0=31..0
if (v & 0x0000FFFF) c -= 16; // If there is a one in left most part of v the range
// of possible values for the location of this one
// will be 15..0.
// Otherwise, range must 31..16
// remaining range is c..c-15
if (v & 0x00FF00FF) c -= 8; // if there is one in either byte 0 (c=15) or byte 2 (c=31),
// the one is in the lower part of range.
// So we must substract 8 to boundaries of range.
// Other wise, the one is in the upper part.
// Possible range of positions of v is now c..c-7
if (v & 0x0F0F0F0F) c -= 4; // do the same for the other bits.
if (v & 0x33333333) c -= 2;
if (v & 0x55555555) c -= 1;

Invalid solution for code challenge with operator restrictions

To answer this question, I read this source code on github and found a problem with the second function.
The challenge is to write C code with various restrictions in terms of operators and language constructions to perform given tasks.
/*
* fitsShort - return 1 if x can be represented as a
* 16-bit, two's complement integer.
* Examples: fitsShort(33000) = 0, fitsShort(-32768) = 1
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 8
* Rating: 1
*/
int fitsShort(int x) {
/*
* after left shift 16 and right shift 16, the left 16 of x is 00000..00 or 111...1111
* so after shift, if x remains the same, then it means that x can be represent as 16-bit
*/
return !(((x << 16) >> 16) ^ x);
}
Left shifting a negative value or a number whose shifted value is beyond the range of int has undefined behavior, right shifting a negative value is implementation defined, so the above solution is incorrect (although it is probably the expected solution).
Is there a solution to this problem that only assumes 32-bit two's complement representation?
The following only assumes 2's complement with at least 16 bits:
int mask = ~0x7FFF;
return !(x&mask)|!(~x&mask);
That uses a 15-bit constant; if that is too big, you can construct it from three smaller constants, but that will push it over the 8-operator limit.
An equivalent way of writing that is:
int m = 0x7FFF;
return !(x&~m)|!~(x|m);
But it's still 7 operations, so int m = (0x7F<<8)|0xFF; would still push it to 9. (I only added it because I don't think I've ever before found a use for !~.)

Fastest Way to XOR all bits from value based on bitmask?

I've got an interesting problem that has me looking for a more efficient way of doing things.
Let's say we have a value (in binary)
(VALUE) 10110001
(MASK) 00110010
----------------
(AND) 00110000
Now, I need to be able to XOR any bits from the (AND) value that are set in the (MASK) value (always lowest to highest bit):
(RESULT) AND1(0) xor AND4(1) xor AND5(1) = 0
Now, on paper, this is certainly quick since I can see which bits are set in the mask. It seems to me that programmatically I would need to keep right shifting the MASK until I found a set bit, XOR it with a separate value, and loop until the entire byte is complete.
Can anyone think of a faster way? I'm looking for the way to do this with the least number of operations and stored values.
If I understood this question correctly, what you want is to get every bit from VALUE that is set in the MASK, and compute the XOR of those bits.
First of all, note that XOR'ing a value with 0 will not change the result. So, to ignore some bits, we can treat them as zeros.
So, XORing the bits set in VALUE that are in MASK is equivalent to XORing the bits in VALUE&MASK.
Now note that the result is 0 if the number of set bits is even, 1 if it is odd.
That means we want to count the number of set bits. Some architectures/compilers have ways to quickly compute this value. For instance, on GCC this can be obtained with __builtin_popcount.
So on GCC, this can be computed with:
int set_bits = __builtin_popcount(value & mask);
return set_bits % 2;
If you want the code to be portable, then this won't do. However, a comment in this answer suggests that some compilers can inline std::bitset::count to efficiently obtain the same result.
If I'm understanding you right, you have
result = value & mask
and you want to XOR the 1 bits of mask & result together. The XOR of a series of bits is the same as counting the number of bits and checking if that count is even or odd. If it's odd, the XOR would be 1; if even, XOR would give 0.
count_bits(mask & result) % 2 != 0
mask & result can be simplified to simply result. You don't need to AND it with mask again. The % 2 != 0 can be alternately written as & 1.
count_bits(result) & 1
As far as how to count bits, the Bit Twiddling Hacks web page gives a number of bit counting algorithms.
Counting bits set, Brian Kernighan's way
unsigned int v; // count the number of bits set in v
unsigned int c; // c accumulates the total bits set in v
for (c = 0; v; c++)
{
v &= v - 1; // clear the least significant bit set
}
Brian Kernighan's method goes through as many iterations as there are
set bits. So if we have a 32-bit word with only the high bit set, then
it will only go once through the loop.
If you were to use that implementation, you could optimize it a bit further. If you think about it, you don't need the full count of bits. You only need to track their parity. Instead of counting bits you could just flip c each iteration.
unsigned bit_parity(unsigned v) {
unsigned c;
for (c = 0; v; c ^= 1) {
v &= v - 1;
}
}
(Thanks to Slava for the suggestion.)
Using that the XOR with 0 doesn't change anything, it's OK to apply the mask and then unconditionally XOR all bits together, which can be done in a parallel-prefix way. So something like this (not tested):
x = m & v;
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
x ^= x >> 2;
x ^= x >> 1;
result = x & 1
You can use more (or fewer) steps as needed, this is for 32 bits.
One significant issue to be aware of if using v &= v - 1 in the main body of your code is it will change the value of v to 0 in conducting the count. With other methods, the value is changed to the number of 1's. While count logic is generally wrapped as a function, where that is no longer a concern, if you are required to present your counting logic in the main body of your code, you must preserve a copy of v if that value is needed again.
In addition to the other two methods presented, the following is another favorite from bit-twiddling hacks that generally has a bit better performance than the loop method for larger numbers:
/* get the population 1's in the binary representation of a number */
unsigned getn1s (unsigned int v)
{
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
v = (v + (v >> 4)) & 0x0F0F0F0F;
v = v + (v << 8);
v = v + (v << 16);
return v >> 24;
}

How to set the highest-valued 1 bit to 0 , prefferably in c++ [duplicate]

This question already has answers here:
What's the best way to toggle the MSB?
(4 answers)
Closed 8 years ago.
If, for example, I have the number 20:
0001 0100
I want to set the highest valued 1 bit, the left-most, to 0.
So
0001 0100
will become
0000 0100
I was wondering which is the most efficient way to achieve this.
Preferrably in c++.
I tried substracting from the original number the largest power of two like this,
unsigned long long int originalNumber;
unsigned long long int x=originalNumber;
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
x >>= 1;
originalNumber ^= x;
,but i need something more efficient.
The tricky part is finding the most significant bit, or counting the number of leading zeroes. Everything else is can be done more or less trivially with left shifting 1 (by one less), subtracting 1 followed by negation (building an inverse mask) and the & operator.
The well-known bit hacks site has several implementations for the problem of finding the most significant bit, but it is also worth looking into compiler intrinsics, as all mainstream compilers have an intrinsic for this purpose, which they implement as efficiently as the target architecture will allow (I tested this a few years ago using GCC on x86, came out as single instruction). Which is fastest is impossible to tell without profiling on your target architecture (fewer lines of code, or fewer assembly instructions are not always faster!), but it is a fair assumption that compilers implement these intrinsics not much worse than you'll be able to implement them, and likely faster.
Using an intrinsic with a somewhat intellegible name may also turn out easier to comprehend than some bit hack when you look at it 5 years from now.
Unluckily, although a not entirely uncommon thing, this is not a standardized function which you'd expect to find in the C or C++ libraries, at least there is no standard function that I'm aware of.
For GCC, you're looking for __builtin_clz, VisualStudio calls it _BitScanReverse, and Intel's compiler calls it _bit_scan_reverse.
Alternatively to counting leading zeroes, you may look into what the same Bit Twiddling site has under "Round up to the next power of two", which you would only need to follow up with a right shift by 1, and a NAND operation. Note that the 5-step implementation given on the site is for 32-bit integers, you would have to double the number of steps for 64-bit wide values.
#include <limits.h>
uint32_t unsetHighestBit(uint32_t val) {
for(uint32_t i = sizeof(uint32_t) * CHAR_BIT - 1; i >= 0; i--) {
if(val & (1 << i)) {
val &= ~(1 << i);
break;
}
}
return val;
}
Explanation
Here we take the size of the type uint32_t, which is 4 bytes. Each byte has 8 bits, so we iterate 32 times starting with i having values 31 to 0.
In each iteration we shift the value 1 by i to the left and then bitwise-and (&) it with our value. If this returns a value != 0, the bit at i is set. Once we find a bit that is set, we bitwise-and (&) our initial value with the bitwise negation (~) of the bit that is set.
For example if we have the number 44, its binary representation would be 0010 1100. The first set bit that we find is bit 5, resulting in the mask 0010 0000. The bitwise negation of this mask is 1101 1111. Now when bitwise and-ing & the initial value with this mask, we get the value 0000 1100.
In C++ with templates
This is an example of how this can be solved in C++ using a template:
#include <limits>
template<typename T> T unsetHighestBit(T val) {
for(uint32_t i = sizeof(T) * numeric_limits<char>::digits - 1; i >= 0; i--) {
if(val & (1 << i)) {
val &= ~(1 << i);
break;
}
}
return val;
}
If you're constrained to 8 bits (as in your example), then just precalculate all possible values in an array (byte[256]) using any algorithm, or just type it in by hand.
Then you just look up the desired value:
x = lookup[originalNumber]
Can't be much faster than that. :-)
UPDATE: so I read the question wrong.
But if using 64 bit values, then break it apart into 8 bytes, maybe by casting it to a byte[8] or overlaying it in a union or something more clever. After that, find the first byte which are not zero and do as in my answer above with that particular byte. Not as efficient I'm afraid, but still it is at most 8 tests (and in average 4.5) + one lookup.
Of course, creating a byte[65536} lookup will double the speed.
The following code will turn off the right most bit:
bool found = false;
int bit, bitCounter = 31;
while (!found) {
bit = x & (1 << bitCounter);
if (bit != 0) {
x &= ~(1 << bitCounter);
found = true;
}
else if (bitCounter == 0)
found = true;
else
bitCounter--;
}
I know method to set more right non zero bit to 0.
a & (a - 1)
It is from Book: Warren H.S., Jr. - Hacker's Delight.
You can reverse your bits, set more right to zero and reverse back. But I do now know efficient way to invert bits in your case.

Bit shifts with ABAP

I'm trying to port some Java code, which requires arithmetic and logical bit shifts, to ABAP.
As far as I know, ABAP only supports the bitwise NOT, AND, OR and XOR operations.
Does anyone know another way to implement these kind of shifts with ABAP? Is there perhaps a way to get the same result as the shifts, by using just the NOT, AND, OR and XOR operations?
Disclaimer: I am not specifically familiar with ABAP, hence this answer is given on a more general level.
Assuming that what you said is true (ABAP doesn't support shifts, which I somewhat doubt), you can use multiplications and divisions instead.
Logical shift left (LSHL)
Can be expressed in terms of multiplication:
x LSHL n = x * 2^n
For example given x=9, n=2:
9 LSHL 2 = 9 * 2^2 = 36
Logical shift right (LSHR)
Can be expressed with (truncating) division:
x LSHR n = x / 2^n
Given x=9, n=2:
9 LSHR 2 = 9 / 2^2 = 2.25 -> 2 (truncation)
Arithmetic shift left (here: "ASHL")
If you wish to perform arithmetic shifts (=preserve sign), we need to further refine the expressions to preserve the sign bit.
Assuming we know that we are dealing with a 32-bit signed integer, where the highest bit is used to represent the sign:
x ASHL n = ((x AND (2^31-1)) * 2^n) + (x AND 2^31)
Example: Shifting Integer.MAX_VALUE to left by one in Java
As an example of how this works, let us consider that we want to shift Java's Integer.MAX_VALUE to left by one. Logical shift left can be represented as *2. Consider the following program:
int maxval = (int)(Integer.MAX_VALUE);
System.out.println("max value : 0" + Integer.toBinaryString(maxval));
System.out.println("sign bit : " + Integer.toBinaryString(maxval+1));
System.out.println("max val<<1: " + Integer.toBinaryString(maxval<<1));
System.out.println("max val*2 : " + Integer.toBinaryString(maxval*2));
The program's output:
max value : 01111111111111111111111111111111 (2147483647)
sign bit : 10000000000000000000000000000000 (-2147483648)
max val<<1: 11111111111111111111111111111110 (-2)
max val*2 : 11111111111111111111111111111110 (-2)
The result is negative due that the highest bit in integer is used to represent sign. We get the exact number of -2, because of the way negative numbers are represents in Java (for details, see for instance http://www.javabeat.net/qna/30-negative-numbers-and-binary-representation-in/).
Edit: the updated code can now be found over here: github gist