JNI and the library it links to - java-native-interface

I searched but did not find an answer to this "problem". Basically, one usually needs to include the jni.h header to access jni functions, but the header contains mostly function prototypes and struct declarations, so we either include the sources to resolve the functions or include a static or dynamic library(none found so far) so the linker can resolve the function prototype declarations.
I have so far used the Android NDK to build a native library and all I did was include the jni.h header to use jni functions, but even on Oracle's documentation and examples all they do is include the jni.h header and specify include directories to the compiler, so how does the compiler find the implementations?

how does the compiler find the implementations?
The compiler doesn't have to find the implementations, the JVM tells you where they are dynamically:
JNIEnv is a typedef for the struct JNIEnv_. That struct contains a const struct JNINativeInterface_* called functions and many methods. If you take a look at the JNI documentation you will notice that most methods have a JNIEnv* as their first argument, however you call them with env->method(...), without the JNIEnv* argument. The methods from the documentation are the actual methods and pointers to them are in functions in JNIEnv_. The methods in JNIEnv_ are wrappers that simply call the method-pointers in functions. Whenever the JVM creates a JNIEnv_ and the corresponding JNINativeInterface_, it dynamically writes all the method addresses.

Related

How to use a provided DLL file with HPP header?

I’m currently having some problems trying to implement an integration with a Verifone PoS.
The bank we are working with provided us with one .dll file, one .h file and one .hpp file.
I’m usually a Java or PHP developer, so for the last days I consumed everything I found on the web about DLL files and how to use them, but none seemed to work so far. I got a lot of errors, many of them being something like “invalid dll”.
I found on the web that alongside a dll file there should have been a .lib file. I asked the third party about this, but apparently
There is no .lib file. The .dll file contains all the required info for an integration
From their documentation of library I found this:
The form of the supplied binary is a dynamic library. By its nature, a dynamic library allows for easier updates and corrections, not requiring recompilation or relinking of the client (calling) code, as long as the procedures prototypes (function parameters and return types) remain the same.
The language used for the library implementation is C++.
To access the functionalities implemented in the library binary, a C-style header interface is provided. This is comprised of the function prototypes available to be called as well as the types of the result-structures through which the returned data needs to be interpreted to make sense for the previously accessed functionality (the specific requested transaction).
So yeah, the .h file includes only the data types, and the .hpp file contains some declarations that looks like this:
extern "C" __declspec(dllexport) bool doSomething(int param);
Also in their documentation there is an example of how an implemetation should look (and it is fairly simple):
bool someVar = doSomething(1);
It looks like those functions can be called as simple as that, but they cannot. If I try to do that I get an “undefined function” (or similar) error.
At this point the only thing that seemed to have somehow worked (maybe) is loading the DLL with the LoadLibrary function. But besides the fact that whatever function I try to call, with whatever parameters, it returns false, it seems kind of wrong that I do not use the .hpp file at all.
So here we are. How I should aproach this? Is there a way to load the DLL and use the provided HPP file as function definitions? If not, is there another way beside LoadLibrary + GetProcAddress combo to do this?
Thank you!
I'm assuming the dll is a native dll, not a managed assembly (.net dll).
Usually, the dll author adds a preprocessor definition to the build system, like DLL_EXPORT. So if the author compiles the dll, the import library (a small .lib file) will contain all functions that used the DLL_API macro. Then the author can ship the very same header to a user. Because that user won't have the DLL_EXPORT macro defined, DLL_API will resolve to a dllimport, which basically says that the annotated function is defined in the import library.
Such a header might look like this (the whole #if condition is usually in its own header file which is then included in all headers that export functions):
#ifdef DLL_EXPORT
# define DLL_API __declspec(dllexport)
#else
# define DLL_API __declspec(dllimport)
#endif
extern "C"
{
void DLL_API SomeFunction(int x);
void DLL_API AnotherFunction(int x);
}
If the author builds the project (in msvc) the compiler will generate the dll file and a small .lib file, which is the import library. This lib will essentially do what you have to do now: calling LoadLibrary and GetProcAddress to resolve all the functions that have been annotated with __declspec(dllexport).
The following part is a bit speculative and I'm guessing a bit here.
All __declspec(dllimport) does, is tell consumers that this dll contains those functions. But the linker has to link a declaration to its definition (implementation) so the function must be defined somewhere at compiletime. And that place is the import library (.lib). If you don't link with the import library, you will get a linker error when you build your project.
This means simply changing the dllexport to a dllimport won't solve your problems. Without an import library your only option is to load the dll manually with LoadLibrary and search for each function.
If I were you, I'd ask the author for an example project that uses the dll. AFAIK, the only ways to use a native dll is either by linking to an import library or by loading everything manually.
Manually generating the import library from the dll
I've tested this to make sure it works.
First of all, fix the header file to either use the macros like I did in the example above, or just use dllimport directly.
Second, open the developer command prompt for VS and follow the steps from this answer. Make sure to use the correct file names and target architecture (x64 or x86). Now you should have a .lib file.
Thrid, add the lib to your project.
Add the directory of the lib (place it somewhere close to the project so you can use relative paths). Open the project properties and follow the steps in this image:
Make sure that Configuration and Platform are correct (you probably want it like in the image). You can also use relative paths. Click on the Macros button to see all predefined paths available to you.
Add the lib to the linker dependencies:
Put the header somewhere in your project where you can access it.
Now you can simply include the header anywhere in your project and use the functions declared inside it. But note that the dll file has to be placed somewhere where LoadLibrary can find it. Preferably this is the same directory where your project's executable is located.
Bonus facts
The definition file (.def) is actually very simple. The def file for my sample code above is:
LIBRARY MyLibrary
EXPORTS
AnotherFunction
SomeFunction
If I remove the extern "C" block around my declarations, my function names will be mangled and the def file looks like this:
LIBRARY MyLibrary
EXPORTS
?AnotherFunction##YAXH#Z
?SomeFunction##YAXH#Z
If you put those functions inside a namespace (for example FooSpace), that namespace name will also be part of the function name:
LIBRARY MyLibrary
EXPORTS
?AnotherFunction#FooSpace##YAXH#Z
?SomeFunction#FooSpace##YAXH#Z
Note that all extern "C" entities will ignore namespaces, meaning all extern "C" functions, variables, types, ... will be put into the global namespace, no matter if you define them inside a namespace or not.
These are also the names that you'd have to pass to GetProcAddress if you did it manually.

Function is declared, but not defined in shared library

I have a source code of some library. There is a function that is only declared (in a header file), but not defined in the source code.
extern "C" {
extern int theFunc(int);
}
What is the reason to have only a declaration of a function in a library?
In addition of Mike Kinghan's answer (which covers most of the cases), there is also a (rather unusual) reason to declare in the library header file a function not implemented in that library. Sometimes, that library expects a plugin and the user is expected to provide such a plugin (in some way, perhaps passing the plugin file name to some other function). The library would use dynamic loading techniques (such as dlopen(3) on Linux) to install such a plugin. And it would fetch some particular function (with dlsym(3) on Linux) from the plugin. Then it makes sense to declare, but not define such a plugin function, in the library headers.
I do admit that this case is unusual and contrived.
For a concrete example, read about GCC plugins. Your plugin should #include "gcc-plugin.h" which indirectly declares
/* Declaration for "plugin_init" function so that it doesn't need to be
duplicated in every plugin. */
extern int plugin_init (struct plugin_name_args *plugin_info,
struct plugin_gcc_version *version);
but that plugin_init should be defined by your plugin code. Then GCC would dlopen your plugin, using something equivalent to
void*plhdl = dlopen("/home/you/yourplugin.so", RTLD_NOW);
and later get a function pointer using
typeof(plugin_init)* funptr = dlsym(plhdl, "plugin_init");
Notice that the symbol plugin_init does not appear in the code segment of GCC.
Another example is the Qt framework (a set of libraries). Read about Qt plugins.

Library design: allow user to decide between "header-only" and dynamically linked?

I have created several C++ libraries that currently are header-only. Both the interface and the implementation of my classes are written in the same .hpp file.
I've recently started thinking that this kind of design is not very good:
If the user wants to compile the library and link it dynamically, he/she can't.
Changing a single line of code requires full recompilation of existing projects that depend on the library.
I really enjoy the aspects of header-only libraries though: all functions get potentially inlined and they're very very easy to include in your projects - no need to compile/link anything, just a simple #include directive.
Is it possible to get the best of both worlds? I mean - allowing the user to choose how he/she wants to use the library. It would also speed up development, as I'd work on the library in "dynamically-linking mode" to avoid absurd compilation times, and release my finished products in "header-only mode" to maximize performance.
The first logical step is dividing interface and implementation in .hpp and .inl files.
I'm not sure how to go forward, though. I've seen many libraries prepend LIBRARY_API macros to their function/class declarations - maybe something similar would be needed to allow the user to choose?
All of my library functions are prefixed with the inline keyword, to avoid "multiple definition of..." errors. I assume the keyword would be replaced by a LIBRARY_INLINE macro in the .inl files? The macro would resolve to inline for "header-only mode", and to nothing for the "dynamically-linking mode".
Preliminary note: I am assuming a Windows environment, but this should be easily transferable to other environments.
Your library has to be prepared for four situations:
Used as header-only library
Used as static library
Used as dynamic library (functions are imported)
Built as dynamic library (functions are exported)
So let's make up four preprocessor defines for those cases: INLINE_LIBRARY, STATIC_LIBRARY, IMPORT_LIBRARY, and EXPORT_LIBRARY (it is just an example; you may want to use some sophisticated naming scheme).
The user has to define one of them, depending on what he/she wants.
Then you can write your headers like this:
// foo.hpp
#if defined(INLINE_LIBRARY)
#define LIBRARY_API inline
#elif defined(STATIC_LIBRARY)
#define LIBRARY_API
#elif defined(EXPORT_LIBRARY)
#define LIBRARY_API __declspec(dllexport)
#elif defined(IMPORT_LIBRARY)
#define LIBRARY_API __declspec(dllimport)
#endif
LIBRARY_API void foo();
#ifdef INLINE_LIBRARY
#include "foo.cpp"
#endif
Your implementation file looks just like usual:
// foo.cpp
#include "foo.hpp"
#include <iostream>
void foo()
{
std::cout << "foo";
}
If INLINE_LIBRARY is defined, the functions are declared inline and the implementation gets included like a .inl file.
If STATIC_LIBRARY is defined, the functions are declared without any specifier, and the user has to include the .cpp file into his/her build process.
If IMPORT_LIBRARY is defined, the functions are imported, and there isn't a need for any implementation.
If EXPORT_LIBRARY is defined, the functions are exported and the user has to compile those .cpp files.
Switching between static / import / export is a really common thing, but I'm not sure if adding header-only to the equation is a good thing. Normally, there are good reasons for defining something inline or not to do so.
Personally, I like to put everything into .cpp files unless it really has to be inlined (like templates) or it makes sense performance-wise (very small functions, usually one-liners). This reduces both compile time and - way more important - dependencies.
But if I choose to define something inline, I always put it in separate .inl files, just to keep the header files clean and easy to understand.
It is operating system and compiler specific. On Linux with a very recent GCC compiler (version 4.9) you might produce a static library using interprocedural linktime optimization.
This means that you build your library with g++ -O2 -flto both at compile and at library link time, and that you use your library with g++ -O2 -flto both at compile and link time of the invoking program.
This is to complement #Horstling's answer.
You can either create a static or a dynamic library. When you create statically-linked libraries, compiled code for all functions/objects will be saved to a file (with .lib extension in Windows). At main project (the project using the library) 's link time, these codes will be linked into your final executable together with the main project codes. So the final executable wouldn't have any runtime dependency.
Dynamically linked libraries will be merged into the main project at run time (and not link time). When you compile the library you get a .dll file (which contains actual compiled code) and a .lib file (which contains enough data for the compiler/runtime to find functions/objects in the .dll file). At link time, the executable will be configured to load the .dll and use compiled code from that .dll as needed. You will need to distribute the .dll file with your executable to be able to run it.
There is no need to choose between static or dynamic linking (or header-only) when designing your library, you create multiple project/makefiles, one to create a static .lib, another to create a .lib/.dll pair, and distribute both versions, for the user to choose between. (You'll need to use preprocessor macros like the ones #Horstling suggested).
You cannot put any templates in a pre-compiled library, unless you use a technique called Explicit Instantiation, which limits template parameters.
Also note that modern compiler/linkers usually do not respect the inline modifier. They may inline a function even if it's not designated as inline, or may dynamically call another that has inline modifier, as they see fit. (Regardless, I'll advise explicitly putting inline where applicable for maximum compatibility). So, there won't be any runtime performance penalty if you use a statically linked library instead of a header-only library (and enable compiler/linker optimizations, of course). As others have suggested, for really small functions that are sure to benefit from being called inline, it is best practice to put them in header files, so dynamically linked libraries will also not suffer any significant performance loss. (In any case, inlining functions will only affect performance for functions that are being called very often, inside loops that are going to be called thousands/millions of times).
Instead of putting inline functions in header files (with an #include "foo.cpp" in your header), you can change makefile/project settings and add foo.cpp to the list of source files to be compiled. This way, if you change any function implementation there will be no need to re-compile the whole project and only foo.cpp will be re-compiled. As I mentioned earlier, your small functions will still be inlined by the optimizing compiler, and you don't need to worry about that.
If you use/design a pre-compiled library, you should consider the case where the library is compiled with a different version of compiler to the main project. Each different compiler version (even different configurations, like Debug or Release) uses a different C runtime (things like memcpy, printf, fopen, ...) and C++ standard library runtime (things like std::vector<>, std::string, ...). These different library implementations may complicate linking, or even create runtime errors.
As a general rule, always avoid sharing compiler runtime objects (data structures that are not defined by standards, like FILE*) across libraries, because incompatible data structures will lead to runtime errors.
When linking your project, C/C++ runtime functions must be linked into your library .lib or .lib/.dll, or your executable .exe. C/C++ runtime itself can be linked as static or dynamic library (you can set this in makefile/project settings).
You will find that dynamically linking to C/C++ runtime in both the library and the main project (even when you compile the library itself as a static library) avoids most linking problems (with duplicate function implementations in multiple runtime versions). Of course you would need to distribute runtime DLLs for all used versions with your executable and library.
There are scenarios that statically linking to C/C++ runtime is needed, and the best approach in these cases would be to compile the library with the same compiler setting as the main project to avoid linking problems.
Rationale
Put as little as necessary in header files and as much as possible in library modules, because of the very reasons that you mentioned: compile-time dependency and long compilation time. The only good reasons for header-only modules are:
generic templates for user-defined template parameter;
very short convenience functions when inlining gives significant
performance.
In case 1, it is often possible to hide some functionality that does not depend on the user-defined type in a .cpp file.
Conclusion
If you stick to this rationale, then there is no choice: templated functionality that must allow user-defined types cannot be pre-compiled, but requires a header-only implementation. Other functionality should be hidden from the user in a library to avoid exposing them to the implementation details.
Rather than a dynamic library, you could have a precompiled static library and thin header file. In an interactive quick build, you get the benefit of not having to recompile the world if implementation details changes. But a fully optimized release build can do global optimization and still figure out it can inline functions. Basically, with "link-time code generation" the toolset does the trick you were thinking about.
I'm familiar with Microsoft's compiler, which I know for sure does this as of Visual Studio 2010 (if not earlier).
Templated code will necessarily be header-only: for instantiating this code, the type parameters must be known at compilation time. There is no way to embed template code in shared libraries. Only .NET and Java support JIT instantiation from byte-code.
Re: non-template code, for short one-liners I suggest keeping it header-only. Inline functions give the compiler a lot more opportunities to optimize the final code.
To avoid "insane compilation time", Microsoft Visual C++ has a "precompiled headers" feature. I do not think GCC has a similar feature.
Long functions should not be inlined in any case.
I had one project which had header-only bits, compiled library bits and some bits I could not decide where belonged. I ended up having .inc files, conditionally included in either .hpp or .cxx depending on #ifdef. Truth to be told, the project was always compiled in "max inline" mode, so after a while I got rid of the .inc files and simply moved the contents to .hpp files.
Is it possible to get the best of both worlds?
In terms; limitations arise because tools aren't smart enough. This answer gives the current best effort that is still portable enough to be used effectively.
I've recently started thinking that this kind of design is not very good.
It ought to be. Header-only libraries are ideal because they simplify deployment: makes the reusing mechanism of the language similar to almost all others', which is just the sane thing to do. But this is C++. Current C++ tools still rely on half-a-century-old linking models that remove important degrees of flexibility, such as choosing which entry points to import or export on an individual level without being forced to change the library's original source code. Also, C++ lacks a proper module system and still relies on glorified copy-paste operations to work (although this is just a side factor to the problem in question).
In fact, MSVC is a little better in this regard. It is the only major implementation trying to achieve some degree of modularity in C++ (by attempting e.g. C++ modules). And it is the only compiler that actually allows e.g. the following:
//// Module.c++
#pragma once
inline void Func() { /* ... */ }
//// Program1.c++
#include <Module.c++>
// Inlines or "vague" links Func(), whatever is better.
int main() { Func(); }
//// Program2.c++
// This forces Func() to be imported.
// The declaration must come *BEFORE* the definition.
__declspec(dllimport) __declspec(noinline) void Func();
#include <Module.c++>
int main() { Func(); }
//// Program3.c++
// This forces Func() to be exported.
__declspec(dllexport) __declspec(noinline) void Func();
#include <Module.c++>
Note that this can be used to selectively import and export individual symbols from the library, although still cumbersomely.
GCC also accepts this (but the order of the declarations must be changed) and Clang does not have any way to achieve the same effect without changing the library's source.

why do I need to link a lib file to my project?

I am creating a project that uses a DLL. To build my project, I need to include a header file, and a lib file. Why do I need to include the respective lib file? shouldn't the header file declare all the needed information and then at runtime load any needed library/dll?
Thanks
In many other languages, the equivalent of the header file is all you need. But the common C linkers on Windows have always used import libraries, C++ linkers followed suit, and it's probably too late to change.
As a thought experiment, one could imagine syntax like this:
__declspec(dllimport, "kernel32") void __stdcall Sleep(DWORD dwMilliseconds);
Armed with that information the compiler/linker tool chain could do the rest.
As a further example, in Delphi one would import this function, using implicit linking, like so:
procedure Sleep(dwMilliseconds: DWORD); stdcall; external 'kernel32';
which just goes to show that import libraries are not, a priori, essential for linking to DLLs.
That is a so-called "import library" that contains minimal wiring that will later (at load time) ask the operating system to load the DLL.
DLLs are a Windows (MS/Intel) thing. The (generated) lib contains the code needed to call into the DLL and it exposes 'normal' functions to the rest of your App.
No, the header file isn't necassarily enough. The header file can contain just the declarations of the functions and classes and other things you need, not their implementations.
There is a world of difference between this code:
void Multiply(int x, int y);
and this code:
void Multiply(int x, int y)
{
return x * y;
}
The first is a declaration, and the second is a definition or implementation. Usually the first example is put in header files, and the second one is put in .CPP files (If you are creating libraries). If you included a header with the first and didn't link in anything, how is your application supposed to know how to implement Multiply?
Now if you are using header files that contain code that is ALL inlined, then you do not need to link anything. But if even one method is NOT inlined, but has its implementation in a .CPP file that is compiled to a .lib file, than you need to link in the .lib file.
[EDIT]
With your use of Import Libraries, you are telling the linker to NOT include the implementation details of the imported code into your binary. Instead the OS will then load the import DLL at run-time into your process. This will make your application smaller, but you have to ship another DLL with it. If the implementation of the library changes, you can just reship another DLL to your customers, and not have to reship the entire application.
There is another option where you can just link in a library and you don't need to ship another DLL. That option is where the Linker will include the implementation into your application, making it bigger in size. If you have to change the implementation details in the imported library, then you have to recompile and relink your entire application, and reship the entire thing to your customers.
There are two relevant phases in the building process here:
compilation: from the source code to an object file. During the compilation, the compiler needs to know what external things are available, for that one needs a declaration. Declarations designed to be used in several compilation units are grouped in header. So you need the headers for the library.
linking: For static libraries, you need the compiled version of the library. For dynamic libraries, in Unix you need the library, in windows, you need the "import library".
You could think that a library could also embed the declarations or the header could include the library which needs to be linked. The first is often done in other languages. The second is sometimes available through pragmas in C and C++, but there is no standard way to do this and would be in conflict with common usage (such as choosing a library among several which provide code variant for the same declarations, for instance debug/release single thread/multithreads). And neither choice correspond well with the simple compilation model of C and C++ which has its roots in the 60's.
The header file is consumed by the compiler. It contains all the forward declarations of functions, classes and global variables that will be used. It may also contain some inline function definitions as well.
These are used by the compiler to give it the bare minimum information that it needs to compile your code. It will not contain the implementation details.
However you still need to link in all the function, and variable definitions that you have told the compiler about. Failure to do so will result in a linker error. Often this is contains in other object files which may be joined into a single static library.
In the case of DLLs (or .so files), we still need to tell the linker where in the DLL or shared object the missing symbols are. On windows, this information is contained in a .lib file. This will generate the code to load and link the code at runtime.
On unix the the dll and lib files are combined into a single .so file which you must link against to about linker errors.
You can still use a dll without a .lib file but you will then have to load and link in all the symbols manually using operating system APIs.
from 1000 ft, the lib contains the list of the functions that dll exports and addresses that are needed for the call.

LNK4221 and LNK4006 Warnings

I am making a static library of my own. I have taken my code which works and now put it into a static library for another program to use. In my library I am using another static library which I don't want the people who will be using my API to know. Since, I want to hide that information from them I can't tell them to install the other static library.
Anyway, I used the command line Lib.exe to extract and create a smaller lib file of just the obj's I used. However, I get a bunch of LNK4006 :second definition ignored linker warnings for each obj I use followed by LNK4221 no public symbols found;archive member will be inaccessible.
I am doing this work in vs2008 and I am not sure what I am doing wrong.
I am using the #pragma comment line in my .cpp file
I have also modified the librarian to add my smaller .lib along with its location.
my code simply makes calls to a couple functions which it should be able to get from those Obj file in the smaller lib.
All my functions are implemented in .cpp file and my header just have the includes of the third party header files and come standard c++ header files. nothing fancy. I have actually no function definitions in there atm. I was going to put the API definition in there and implement that in the .cpp for this static lib that i was going to make. However, I just wanted to build my code before I added more to it.
I did read http://support.microsoft.com/default.aspx?scid=kb;EN-US;815773 but it did not provide a solution.
Even if you extract all objects from the other library and put them in your own library, your users will still be able to see what's in your library and thus see all the object names. In many cases the names of the objects will reveal what's actually the other library you are using.
Instead of distributing your library as a static library, consider distributing it as a DLL. In the DLL you can easily hide all the underlying things and only make public what you want to make public.