Type sensitive tuple visitor - c++

Suppose I have a std::tuple made up of types like
struct A {
static void tip();
};
struct B {
static void tip();
};
struct Z {
};
std::tuple<const A&,const B&,const Z&> tpl;
Yes, I need separate A, B. (The implementation of ::tip() differs for each type.) What I try to implement is a type-sensitive "visitor" that iterates through the tuple starting from the beginning to the end. Upon visiting a particular element of type T a function should be called depending on whether T has the ::tip() method or not. In the simple example of above only A and B have ::tip() implemented and Z not. So, the iterator should call twice the function for types with the ::tip() method and once the other function.
Here is what I came up with:
template< int N , bool end >
struct TupleIter
{
template< typename T , typename... Ts >
typename std::enable_if< std::is_function< typename T::tip >::value , void >::type
static Iter( const T& dummy , const std::tuple<Ts...>& tpl ) {
std::cout << "tip\n";
std::get<N>(tpl); // do the work
TupleIter<N+1,sizeof...(Ts) == N+1>::Iter( std::get<N+1>(tpl) , tpl );
}
template< typename T , typename... Ts >
typename std::enable_if< ! std::is_function< typename T::tip >::value , void >::type
static Iter( const T& dummy , const std::tuple<Ts...>& tpl ) {
std::cout << "no tip\n";
std::get<N>(tpl); // do the work
TupleIter<N+1,sizeof...(Ts) == N+1>::Iter( std::get<N+1>(tpl) , tpl );
}
};
template< int N >
struct TupleIter<N,true>
{
template< typename T , typename... Ts >
static void Iter( const std::tuple<Ts...>& tpl ) {
std::cout << "end\n";
}
};
I use a dummy instance of the type of the element at the iterator position and decide via enable_if which function to call. Unfortunately this doesn't work/isn't a nice solution:
The compiler complains about recursive instantiation
The const T& dummy is not a clean solution
I was wondering if enable_if is the right strategy to do the decision and how can one recursively iterate through the std::tuple capturing the first type and keeping all the remaining arguments in vital state. Read through How to split a tuple? but it doesn't do any decision.
How can one implement such a thing in a correct and portable way in C++11?

Well, it was harder than I expected, but this works.
Some things you were doing wrong/that I modified:
You can't evaluate this: std::is_function< typename T::tip >::value, since T::tip is not a type. Even if this could be evaluated, what would happen when T::tip does not exist? Substitution would still fail.
Since you use const references as your tuple's inner types, you had to clean them before trying to find the tip member inside them. By cleaning I mean removing const and removing the reference.
That dummy type stuff was not a good idea, there was no need to use that parameter. You can achieve the same thing using std::tuple_element, which retrieves the i-th type from a tuple.
I modified TupleIter's template parameters to the following, which means:
"TupleIter that processes the index-th type, inside a tuple of size n".
template<size_t index, size_t n>
struct TupleIter;
The whole code is this:
#include <tuple>
#include <iostream>
#include <type_traits>
struct A {
static void tip();
};
struct B {
static void tip();
};
struct Z {
};
// Indicates whether the template parameter contains a static member named tip.
template<class T>
struct has_tip {
template<class U>
static char test(decltype(&U::tip));
template<class U>
static float test(...);
static const bool value = sizeof(test<typename std::decay<T>::type>(0)) == sizeof(char);
};
// Indicates whether the n-th type contains a tip static member
template<size_t n, typename... Ts>
struct nth_type_has_tip {
static const bool value = has_tip<typename std::tuple_element<n, std::tuple<Ts...>>::type>::value;
};
// Generic iteration
template<size_t index, size_t n>
struct TupleIter
{
template< typename... Ts >
typename std::enable_if< nth_type_has_tip<index, Ts...>::value , void >::type
static Iter(const std::tuple<Ts...>& tpl)
{
std::cout << "tip\n";
TupleIter<index + 1, n>::Iter(tpl );
}
template< typename... Ts >
typename std::enable_if< !nth_type_has_tip<index, Ts...>::value , void >::type
static Iter(const std::tuple<Ts...>& tpl) {
std::cout << "no tip\n";
TupleIter<index + 1, n>::Iter(tpl );
}
};
// Base class, we've reached the tuple end
template<size_t n>
struct TupleIter<n, n>
{
template<typename... Ts >
static void Iter( const std::tuple<Ts...>& tpl ) {
std::cout << "end\n";
}
};
// Helper function that forwards the first call to TupleIter<>::Iter
template<typename... Ts>
void iterate(const std::tuple<Ts...> &tup) {
TupleIter<0, sizeof...(Ts)>::Iter(tup);
}
int main() {
A a;
B b;
Z z;
std::tuple<const A&,const B&,const Z&> tup(a,b,z);
iterate(tup);
}

Here is another take on the question, very similar to mfontanini answer, but showcasing:
boost::fusion::for_each (instead of manually iterate over the tuple).
A variant for implementing has_type using an expression-based SFINAE approach, that I feel a little bit simpler to follow than the usual sizeof trick.
#include <boost/tuple/tuple.hpp>
#include <boost/fusion/include/boost_tuple.hpp>
#include <boost/fusion/algorithm.hpp>
#include <iostream>
struct nat // not a type
{
private:
nat();
nat(const nat&);
nat& operator=(const nat&);
~nat();
};
template <typename T>
struct has_tip
{
static auto has_tip_imp(...) -> nat;
template <typename U>
static auto has_tip_imp(U&&) -> decltype(U::tip());
typedef decltype(has_tip_imp(std::declval<T>())) type;
static const bool value = !std::is_same<type, nat>::value;
};
struct CallTip
{
template<typename T>
typename std::enable_if<has_tip<T>::value>::type
operator()(T& t) const
{
std::cout << "tip\n";
T::tip();
}
template<typename T>
typename std::enable_if<!has_tip<T>::value>::type
operator()(T& t) const
{
std::cout << "no tip\n";
return;
}
};
struct A {
static void tip(){}
};
struct B {
static void tip(){}
};
struct Z {
};
int main()
{
A a;
B b;
Z z;
boost::tuple<const A&,const B&,const Z&> tpl(a, b, z);
boost::fusion::for_each(tpl, CallTip());
}
Note that if your compiler support variadic template you can use std::tuple instead of boost::tuple inside fusion::for_each by including #include<boost/fusion/adapted/std_tuple.hpp>
Edit :
As pointed by Xeo in the comment, it is possible to simplify a lot the expression-SFINAE approach by removing completely the trait has_tip and simply forward to a little call helper.
The final code is really neat and tight !
#include <boost/tuple/tuple.hpp>
#include <boost/fusion/include/boost_tuple.hpp>
#include <boost/fusion/algorithm.hpp>
#include <iostream>
struct CallTip
{
template<typename T>
void operator()(const T& t) const
{
call(t);
}
template<class T>
static auto call(const T&) -> decltype(T::tip())
{
std::cout << "tip\n";
T::tip();
}
static void call(...)
{
std::cout << "no tip\n";
}
};
struct A {
static void tip(){}
};
struct B {
static void tip(){}
};
struct Z {
};
int main()
{
A a;
B b;
Z z;
boost::tuple<const A&,const B&,const Z&> tpl(a, b, z);
boost::fusion::for_each(tpl, CallTip());
}

Related

Switch statement variadic template expansion

Let me please consider the following synthetic example:
inline int fun2(int x) {
return x;
}
inline int fun2(double x) {
return 0;
}
inline int fun2(float x) {
return -1;
}
int fun(const std::tuple<int,double,float>& t, std::size_t i) {
switch(i) {
case 0: return fun2(std::get<0>(t));
case 1: return fun2(std::get<1>(t));
case 2: return fun2(std::get<2>(t));
}
}
The question is how should I expand this to the general case
template<class... Args> int fun(const std::tuple<Args...>& t, std::size_t i) {
// ?
}
Guaranteeing that
fun2 can be inlined into fun
search complexity not worse than O(log(i)) (for large i).
It is known that optimizer usually uses lookup jump table or compile-time binary search tree when large enough switch expanded. So, I would like to keep this property affecting performance for large number of items.
Update #3: I remeasured performance with uniform random index value:
1 10 20 100
#TartanLlama
gcc ~0 42.9235 44.7900 46.5233
clang 10.2046 38.7656 40.4316 41.7557
#chris-beck
gcc ~0 37.564 51.3653 81.552
clang ~0 38.0361 51.6968 83.7704
naive tail recursion
gcc 3.0798 40.6061 48.6744 118.171
clang 11.5907 40.6197 42.8172 137.066
manual switch statement
gcc 41.7236
clang 7.3768
Update #2: It seems that clang is able to inline functions in #TartanLlama solution whereas gcc always generates function call.
Ok, I rewrote my answer. This gives a different approach to what TartanLlama and also what I suggested before. This meets your complexity requirement and doesn't use function pointers so everything is inlineable.
Edit: Much thanks to Yakk for pointing out a quite significant optimization (for the compile-time template recursion depth required) in comments
Basically I make a binary tree of the types / function handlers using templates, and implement the binary search manually.
It might be possible to do this more cleanly using either mpl or boost::fusion, but this implementation is self-contained anyways.
It definitely meets your requirements, that the functions are inlineable and runtime look up is O(log n) in the number of types in the tuple.
Here's the complete listing:
#include <cassert>
#include <cstdint>
#include <tuple>
#include <iostream>
using std::size_t;
// Basic typelist object
template<typename... TL>
struct TypeList{
static const int size = sizeof...(TL);
};
// Metafunction Concat: Concatenate two typelists
template<typename L, typename R>
struct Concat;
template<typename... TL, typename... TR>
struct Concat <TypeList<TL...>, TypeList<TR...>> {
typedef TypeList<TL..., TR...> type;
};
template<typename L, typename R>
using Concat_t = typename Concat<L,R>::type;
// Metafunction First: Get first type from a typelist
template<typename T>
struct First;
template<typename T, typename... TL>
struct First <TypeList<T, TL...>> {
typedef T type;
};
template<typename T>
using First_t = typename First<T>::type;
// Metafunction Split: Split a typelist at a particular index
template<int i, typename TL>
struct Split;
template<int k, typename... TL>
struct Split<k, TypeList<TL...>> {
private:
typedef Split<k/2, TypeList<TL...>> FirstSplit;
typedef Split<k-k/2, typename FirstSplit::R> SecondSplit;
public:
typedef Concat_t<typename FirstSplit::L, typename SecondSplit::L> L;
typedef typename SecondSplit::R R;
};
template<typename T, typename... TL>
struct Split<0, TypeList<T, TL...>> {
typedef TypeList<> L;
typedef TypeList<T, TL...> R;
};
template<typename T, typename... TL>
struct Split<1, TypeList<T, TL...>> {
typedef TypeList<T> L;
typedef TypeList<TL...> R;
};
template<int k>
struct Split<k, TypeList<>> {
typedef TypeList<> L;
typedef TypeList<> R;
};
// Metafunction Subdivide: Split a typelist into two roughly equal typelists
template<typename TL>
struct Subdivide : Split<TL::size / 2, TL> {};
// Metafunction MakeTree: Make a tree from a typelist
template<typename T>
struct MakeTree;
/*
template<>
struct MakeTree<TypeList<>> {
typedef TypeList<> L;
typedef TypeList<> R;
static const int size = 0;
};*/
template<typename T>
struct MakeTree<TypeList<T>> {
typedef TypeList<> L;
typedef TypeList<T> R;
static const int size = R::size;
};
template<typename T1, typename T2, typename... TL>
struct MakeTree<TypeList<T1, T2, TL...>> {
private:
typedef TypeList<T1, T2, TL...> MyList;
typedef Subdivide<MyList> MySubdivide;
public:
typedef MakeTree<typename MySubdivide::L> L;
typedef MakeTree<typename MySubdivide::R> R;
static const int size = L::size + R::size;
};
// Typehandler: What our lists will be made of
template<typename T>
struct type_handler_helper {
typedef int result_type;
typedef T input_type;
typedef result_type (*func_ptr_type)(const input_type &);
};
template<typename T, typename type_handler_helper<T>::func_ptr_type me>
struct type_handler {
typedef type_handler_helper<T> base;
typedef typename base::func_ptr_type func_ptr_type;
typedef typename base::result_type result_type;
typedef typename base::input_type input_type;
static constexpr func_ptr_type my_func = me;
static result_type apply(const input_type & t) {
return me(t);
}
};
// Binary search implementation
template <typename T, bool b = (T::L::size != 0)>
struct apply_helper;
template <typename T>
struct apply_helper<T, false> {
template<typename V>
static int apply(const V & v, size_t index) {
assert(index == 0);
return First_t<typename T::R>::apply(v);
}
};
template <typename T>
struct apply_helper<T, true> {
template<typename V>
static int apply(const V & v, size_t index) {
if( index >= T::L::size ) {
return apply_helper<typename T::R>::apply(v, index - T::L::size);
} else {
return apply_helper<typename T::L>::apply(v, index);
}
}
};
// Original functions
inline int fun2(int x) {
return x;
}
inline int fun2(double x) {
return 0;
}
inline int fun2(float x) {
return -1;
}
// Adapted functions
typedef std::tuple<int, double, float> tup;
inline int g0(const tup & t) { return fun2(std::get<0>(t)); }
inline int g1(const tup & t) { return fun2(std::get<1>(t)); }
inline int g2(const tup & t) { return fun2(std::get<2>(t)); }
// Registry
typedef TypeList<
type_handler<tup, &g0>,
type_handler<tup, &g1>,
type_handler<tup, &g2>
> registry;
typedef MakeTree<registry> jump_table;
int apply(const tup & t, size_t index) {
return apply_helper<jump_table>::apply(t, index);
}
// Demo
int main() {
{
tup t{5, 1.5, 15.5f};
std::cout << apply(t, 0) << std::endl;
std::cout << apply(t, 1) << std::endl;
std::cout << apply(t, 2) << std::endl;
}
{
tup t{10, 1.5, 15.5f};
std::cout << apply(t, 0) << std::endl;
std::cout << apply(t, 1) << std::endl;
std::cout << apply(t, 2) << std::endl;
}
{
tup t{15, 1.5, 15.5f};
std::cout << apply(t, 0) << std::endl;
std::cout << apply(t, 1) << std::endl;
std::cout << apply(t, 2) << std::endl;
}
{
tup t{20, 1.5, 15.5f};
std::cout << apply(t, 0) << std::endl;
std::cout << apply(t, 1) << std::endl;
std::cout << apply(t, 2) << std::endl;
}
}
Live on Coliru:
http://coliru.stacked-crooked.com/a/3cfbd4d9ebd3bb3a
If you make fun2 into a class with overloaded operator():
struct fun2 {
inline int operator()(int x) {
return x;
}
inline int operator()(double x) {
return 0;
}
inline int operator()(float x) {
return -1;
}
};
then we can modify dyp's answer from here to work for us.
Note that this would look a lot neater in C++14, as we could have all the return types deduced and use std::index_sequence.
//call the function with the tuple element at the given index
template<class Ret, int N, class T, class Func>
auto apply_one(T&& p, Func func) -> Ret
{
return func( std::get<N>(std::forward<T>(p)) );
}
//call with runtime index
template<class Ret, class T, class Func, int... Is>
auto apply(T&& p, int index, Func func, seq<Is...>) -> Ret
{
using FT = Ret(T&&, Func);
//build up a constexpr array of function pointers to index
static constexpr FT* arr[] = { &apply_one<Ret, Is, T&&, Func>... };
//call the function pointer at the specified index
return arr[index](std::forward<T>(p), func);
}
//tag dispatcher
template<class Ret, class T, class Func>
auto apply(T&& p, int index, Func func) -> Ret
{
return apply<Ret>(std::forward<T>(p), index, func,
gen_seq<std::tuple_size<typename std::decay<T>::type>::value>{});
}
We then call apply and pass the return type as a template argument (you could deduce this using decltype or C++14):
auto t = std::make_tuple(1,1.0,1.0f);
std::cout << apply<int>(t, 0, fun2{}) << std::endl;
std::cout << apply<int>(t, 1, fun2{}) << std::endl;
std::cout << apply<int>(t, 2, fun2{}) << std::endl;
Live Demo
I'm not sure if this will completely fulfil your requirements due to the use of function pointers, but compilers can optimize this kind of thing pretty aggressively. The searching will be O(1) as the pointer array is just built once then indexed directly, which is pretty good. I'd try this out, measure, and see if it'll work for you.

How to store a type for later comparison

First off my use case, as I may think in the wrong direction: I want to create a map that maps a value to types. So for example:
Map<std::string> map;
map.insert<int, double, char>("Hey");
auto string = map.at<int, double, char>();
This alone is fairly easy to do with std::type_index. However, I want to add the possibility to match types that are not exact the searched ones, when they are convertible. So the following should also return "Hey", as float can be converted to double:
auto string = map.at<int, float, char>();
I can't use type_index for this case as std::is_convertible only works directly on types. This would be the version without conversion, but as far as it seems it's not easily possible to add conversion handling into it without major changes.
My current attempt looks kind of like the following, please note that this is not working and just shows what I have tried to implement:
template<typename T>
class Map {
T value;
std::vector<Map<T>> children; // all the children of the current node.
// in the above example, if this was
// the int node, the only child
// would be the double node
template<typename T1>
constexpr bool is_convertible() const {
return std::is_convertible<__T__, T1>::value; // this isn't applicable
// since __T__ can't be
// stored (this nodes
// type)
}
public:
template<typename T1, typename... Tn>
void insert(T&& value) {
// iterate through/create the child nodes until the last template param
}
template<typename T1, typename... Tn>
T& at() {
// iterate through thechild nodes until a matching child is found
// either exact match or a convertible
for(auto &c: children) {
// if the above function would work
if(c.template is_convertible<T1>()) {
return c.template at<Tn...>();
}
}
}
}
Now I'm at my wits end how to achieve this. I thought of implementing lambdas as comparator functions, but while the lambda can store the type of the current node, it can't accept a template parameter on call to compare to.
Is there some C+1y generic lambda comparator magic, or even an easier way?
I hope this does what you want, there's ample space for extension and for creating template specialization that attach to any type combination you want. It's not super-pretty, but it can probably be refactored a bit and beautified.
#include <iostream>
template <typename... Args>
struct map {
};
template <>
struct map<int, float, char> {
static constexpr char value[] = "int float char";
};
constexpr char map<int,float,char>::value[];
template <typename T>
struct map<int, T> {
static constexpr typename std::enable_if<std::is_integral<T>::value, char>::type value[] = "int, T";
};
template <typename T>
constexpr typename std::enable_if<std::is_integral<T>::value, char>::type map<int,T>::value[];
int main() {
std::string v = map<int,float,char>::value;
std::string w = map<int,int>::value;
std::string w2 = map<int,unsigned>::value;
// std::string w3 = map<int,float>::value; Won't compile
std::cout << v << "\n";
std::cout << w << "\n";
std::cout << w2 << "\n";
return 0;
}
I wrote some weird code using boost::fusion that comes close to doing what you want:
#include <boost/fusion/container/map.hpp>
#include <boost/fusion/include/insert.hpp>
#include <boost/fusion/include/pair.hpp>
#include <boost/fusion/include/for_each.hpp>
#include <string>
#include <iostream>
#include <tuple>
#include <type_traits>
#include <memory>
template <std::size_t Value1, std::size_t Value2>
struct MinSizeT {
static const std::size_t value = (Value1 > Value2) ? Value2 : Value1;
};
template<typename T1, typename T2, std::size_t N>
struct TupleIsConvertibleHelper {
static const bool value = std::is_convertible<typename std::tuple_element<N - 1, T1>::type, typename std::tuple_element<N - 1, T2>::type>::value && TupleIsConvertibleHelper<T1, T2, N - 1>::value;
};
template<typename T1, typename T2>
struct TupleIsConvertibleHelper<T1, T2, 0> {
static const bool value = true;
};
template<typename T1, typename T2>
bool TupleIsConvertible() { // Return true if all types in T1 are convertible to their corresponding type in T2
if (std::tuple_size<T1>::value != std::tuple_size<T2>::value)
return false;
constexpr std::size_t minSize = MinSizeT<std::tuple_size<T1>::value, std::tuple_size<T2>::value>::value;
return TupleIsConvertibleHelper<T1, T2, minSize>::value;
}
template<typename MapInserter>
class Map {
MapInserter mc;
template<typename... Types>
struct do_at {
template <typename T>
void operator()(T const& x) const { // Find an exact match or the last convertible match
typedef std::tuple<Types...> t1;
typedef typename T::first_type t2;
if (exactMatch)
return;
if (std::is_same<t1, t2>::value) {
exactMatch = true;
value = x.second;
}
else if (TupleIsConvertible<t1, t2>())
value = x.second;
}
mutable bool exactMatch;
mutable typename MapInserter::value_type value;
do_at() : exactMatch(false) {}
};
public:
Map(MapInserter _mc) : mc(_mc) { }
template<typename... Types>
typename MapInserter::value_type at() {
do_at<Types...> res;
boost::fusion::for_each(mc.data->map, res);
return res.value;
}
};
template<typename ValueType, typename MapType = boost::fusion::map<>, typename ParentType = void*>
struct MapInserter {
typedef ValueType value_type;
struct Helper {
MapType map;
std::shared_ptr<ParentType> parent; // Must keep parent alive because fusion is lazy.
Helper() = default;
Helper(MapType&& _map, std::shared_ptr<ParentType> _parent) : map(std::move(_map)), parent(_parent) {}
};
std::shared_ptr<Helper> data;
template<typename... KeyTypes>
auto Insert(ValueType value) -> MapInserter<ValueType, decltype(boost::fusion::insert(data->map, boost::fusion::end(data->map), boost::fusion::make_pair<std::tuple<KeyTypes...>>(value))), Helper> {
auto newMap = boost::fusion::insert(data->map, boost::fusion::end(data->map), boost::fusion::make_pair<std::tuple<KeyTypes...>>(value));
return MapInserter<ValueType, decltype(newMap), Helper>(std::move(newMap), data);
}
MapInserter() : data(std::make_shared<Helper>()) { }
MapInserter(MapType&& _map, std::shared_ptr<ParentType> _parent) : data(std::make_shared<Helper>(std::move(_map), _parent)) {}
MapInserter(MapInserter&&) = default;
MapInserter(const MapInserter&) = default;
};
int main() {
auto mc = MapInserter<std::string>().
Insert<int, char, float>("***int, char, float***").
Insert<float, double>("***float, double***").
Insert<int>("***int***").
Insert<unsigned, bool>("***unsigned, bool***");
Map<decltype(mc)> map(mc);
std::cout << map.at<int, char, float>() << std::endl; // "***int, char, float***"
std::cout << map.at<int, char, double>() << std::endl; // "***int, char, float***"
std::cout << map.at<char>() << std::endl; // "***int***"
return 0;
}
template<class...>struct types { typedef types type; };
template<class T, class types>struct type_index;
template<class T, class...Ts>
struct type_index<T,types<T, Ts...>>:
std::integral_constant<unsigned,0>
{};
template<class T, class T0, class...Ts>
struct type_index<T,types<T0, Ts...>>:
std::integral_constant<unsigned,type_index<T,types<Ts...>::value+1>
{};
template<template<class>class filter, class types_in, class types_out=types<>, class details=void>
struct filter;
template<template<class>class filter, class T0, class... Ts, class... Zs>
struct filter<filter, types<T0,types...>, types<Zs...>,
typename std::enable_if< filter<T0>::value >::type
>: filter<filter, types<types...>, types<Zs...,T0>>
{};
template<template<class>class filter, class T0, class... Ts, class... Zs>
struct filter<filter, types<T0,types...>, types<Zs...>,
typename std::enable_if< !filter<T0>::value >::type
>: filter<filter, types<types...>, types<Zs...>>
{};
template<template<class>class filter, class... Zs>
struct filter<filter, types<>, types<Zs...>,
void
>: types<Zs...>
{};
template<typename T>
struct convertable_to_test {
template<typename U>
using test = std::is_convertible<U, T>;
};
template<class T, class types>
struct get_convertable_to_types:filter< convertable_to_test<T>::template test, types> {};
which is a start.
Create a master types<Ts...> of all of the types your system supports. Call this SupportedTypes.
Map types<Ts...> to std::vector<unsigned> of each type offset in the above list. Now you can store a collection of types at runtime. Call this a runtime type vector.
When adding an entry types<Args...> to the map, run get_convertable_to_types on each type in types<Args...>, and build a cross product in types< types<...>... >. Store the resulting exponential number of runtime type vectors in your implementation details map.
When you query with types<Ts...>, conver to the runtime type vector, and look it up in the implementation details map. And done!
An alternative approach would be to write get_convertable_from_types, and do the mapping to an exponential number of types<Ts...> at the query point, convert each to a runtime type vector. When adding stuff to the map, store only one runtime type vector. This has slower lookup performance, but faster setup performance, and uses far less memory.
I was going to finish this, but got busy.

How to reverse template parameters when tag dispatching is used?

I have been using tag dispatching to model a problem.
Note : This code runs, I am simply interested in a solution that doesn't involve so much coding, only to reverse the arguments of a dispatched algorithm.
Here is the code in question:
#include <iostream>
struct A_tag {};
struct B_tag {};
// Tag getter
template<typename Type>
struct get { typedef void tag; };
namespace dispatch {
template<typename T1, typename T2>
struct my_algorithm {};
template<>
struct my_algorithm<A_tag, B_tag>
{
template<typename P1, typename P2>
static void apply(P1 const& p1, P2 const& p2)
{
auto p1val = p1.value();
auto p2val = p2.someFunction();
std::cout << p1val << " " << p2val << std::endl;
}
};
//Specialization reversal: can this be made shorter?
//A lot of lines used just to reverse the algorithm.
template<>
struct my_algorithm<B_tag, A_tag>
{
template<typename P2, typename P1>
static void apply(P2 const & p2, P1 const & p1)
{
my_algorithm<typename get<P1>::tag, typename get<P2>::tag>::apply(p1, p2);
}
};
}
// First and Second are test classes.
class First
{
public:
double value() const { return 5; };
};
template<>
struct get<First>
{
typedef A_tag tag; // Expect First to behave as A
};
class Second
{
public:
double someFunction() const { return 6; };
};
template<>
struct get<Second>
{
typedef B_tag tag; // Expect Second behave as B
};
// Tag dispatcher.
template<typename P1, typename P2>
void my_algorithm(P1 const & p1, P2 const & p2)
{
dispatch::my_algorithm<typename get<P1>::tag, typename get<P2>::tag>::apply(p1, p2);
}
int main(int argc, const char *argv[])
{
First f;
Second s;
my_algorithm(f, s);
// Commutative algorithm.
my_algorithm(s,f);
return 0;
}
Some dispatched algorithms work the same irrespective of the order of template parameters. The dispatch::my_algorithm::apply functions do all the work in this example. I have managed to reverse the template parameters using full template specialization for the dispatch::my_algorithm class and calling the static apply function with reversed arguments.
Can the argument reversal be done more quickly? Even if I somehow manage to pack it and "call it" , what happens for other algorithms when apply takes on more arguments?
I would personally think about using overloading, instead of so many classes. And you will also need, somehow, a tag selector.
Let us start with the tag selector.
// Note: to start simply we assume that a tag is only ever present once
// if not, we just need to add an index.
template <typename Tag,
typename Type,
typename std::disable_if<same_type<Tag, typename get<Head>::tag>::type>
struct has_tag: std::false_type {};
template <typename Tag,
typename Type,
typename std::enable_if<same_type<Tag, typename get<Head>::tag>::type>
struct has_tag: std::true_type {};
template <typename Tag, typename Head, typename... Tail>
struct tag_selector {
using type = if_<has_tag<Tag, Head>,
Head,
typename tag_selector<Tag, Tail...>::type>;
}; // tag_selector
template <typename Tag>
struct tag_selector {}; // compile-time error if tag absent
// A helper function
template <typename Result, typename Head, typename... Tail>
auto tag_select_impl(std::true_type, Head const& head, Tail const&... tail)
-> Result const&
{
return Head;
}
template <typename Result, typename Head, typename NH, typename... Tail>
auto tag_select_impl(std::false_type, Head const&, NH const& nh, Tail const&... tail)
-> Result const&
{
return tag_select_impl<Result>(has_tag<Tag, NH>{}, nh, tail);
}
// And now the runtime function
template <typename Tag, typename Head, typename... Tail>
auto tag_select(Tag, Head const& head, Tail const&... tail) ->
typename tag_selector<Tag, Head, Tail...>::type const&
{
using Result = typename tag_selector<Tag, Head, Tail...>::type;
return tag_select_impl<Result>(has_tag<Tag, Head>{}, head, tail);
}
So, in brief, all of this is just so that tag_select(tag, args...) returns the first argument that matches the tag. The good news is that it is pretty generic :)
Then, we can actually implement the algorithm:
void internal_impl(First const& first, Second const& second) {
std::cout << first.value() << " " << second.someFunction() << "\n";
} // internal_impl
template <typename A, typename B>
void interface(A const& a, B const& b) {
internal_impl(tag_select(A_tag{}, a, b), tag_select(B_tag{}, a, b));
}
Note: the tag select is 1. murky (probably can do cleaner) and 2. only allows const& arguments for now which is annoying; there is probably a way to solve both issues.
With tag modification to have an order:
struct A_tag { static const int value = 0; };
struct B_tag { static const int value = 1; };
then with:
template <typename P1, typename P2>
struct ordered_type
{
private:
typedef typename get<P1>::tag tag_P1;
typedef typename get<P2>::tag tag_P2;
static const bool ordered = tag_P1::value <= tag_P2::value;
public:
typedef typename std::conditional<ordered, tag_P1, tag_P2>::type tag1;
typedef typename std::conditional<ordered, tag_P2, tag_P1>::type tag2;
typedef typename std::conditional<ordered, P1, P2>::type type1;
typedef typename std::conditional<ordered, P2, P1>::type type2;
static constexpr const type1& getFirst(const P1& p1, const P2& p2)
{
return std::get<ordered ? 0 : 1>(std::tie(p1, p2));
}
static constexpr const type2& getSecond(const P1& p1, const P2& p2)
{
return std::get<ordered ? 1 : 0>(std::tie(p1, p2));
}
};
You may remove your Specialization reversal and write your tag dispatcher:
// Tag dispatcher.
template<typename P1, typename P2>
void my_algorithm(P1 const & p1, P2 const & p2)
{
typedef ordered_type<P1, P2> h;
dispatch::my_algorithm<typename h::tag1,
typename h::tag2>::apply(h::getFirst(p1, p2),
h::getSecond(p1, p2));
}

Detecting a function in C++ at compile time

Is there a way, presumably using templates, macros or a combination of the two, that I can generically apply a function to different classes of objects but have them respond in different ways if they do not have a specific function?
I specifically want to apply a function which will output the size of the object (i.e. the number of objects in a collection) if the object has that function but will output a simple replacement (such as "N/A") if the object doesn't. I.e.
NO_OF_ELEMENTS( mySTLMap ) -----> [ calls mySTLMap.size() to give ] ------> 10
NO_OF_ELEMENTS( myNoSizeObj ) --> [ applies compile time logic to give ] -> "N/A"
I expect that this might be something similar to a static assertion although I'd clearly want to compile a different code path rather than fail at build stage.
From what I understand, you want to have a generic test to see if a class has a certain member function. This can be accomplished in C++ using SFINAE. In C++11 it's pretty simple, since you can use decltype:
template <typename T>
struct has_size {
private:
template <typename U>
static decltype(std::declval<U>().size(), void(), std::true_type()) test(int);
template <typename>
static std::false_type test(...);
public:
typedef decltype(test<T>(0)) type;
enum { value = type::value };
};
If you use C++03 it is a bit harder due to the lack of decltype, so you have to abuse sizeof instead:
template <typename T>
struct has_size {
private:
struct yes { int x; };
struct no {yes x[4]; };
template <typename U>
static typename boost::enable_if_c<sizeof(static_cast<U*>(0)->size(), void(), int()) == sizeof(int), yes>::type test(int);
template <typename>
static no test(...);
public:
enum { value = sizeof(test<T>(0)) == sizeof(yes) };
};
Of course this uses Boost.Enable_If, which might be an unwanted (and unnecessary) dependency. However writing enable_if yourself is dead simple:
template<bool Cond, typename T> enable_if;
template<typename T> enable_if<true, T> { typedef T type; };
In both cases the method signature test<U>(int) is only visible, if U has a size method, since otherwise evaluating either the decltype or the sizeof (depending on which version you use) will fail, which will then remove the method from consideration (due to SFINAE. The lengthy expressions std::declval<U>().size(), void(), std::true_type() is an abuse of C++ comma operator, which will return the last expression from the comma-separated list, so this makes sure the type is known as std::true_type for the C++11 variant (and the sizeof evaluates int for the C++03 variant). The void() in the middle is only there to make sure there are no strange overloads of the comma operator interfering with the evaluation.
Of course this will return true if T has a size method which is callable without arguments, but gives no guarantees about the return value. I assume wou probably want to detect only those methods which don't return void. This can be easily accomplished with a slight modification of the test(int) method:
// C++11
template <typename U>
static typename std::enable_if<!is_void<decltype(std::declval<U>().size())>::value, std::true_type>::type test(int);
//C++03
template <typename U>
static typename std::enable_if<boost::enable_if_c<sizeof(static_cast<U*>(0)->size()) != sizeof(void()), yes>::type test(int);
There was a discussion about the abilities of constexpr some times ago. It's time to use it I think :)
It is easy to design a trait with constexpr and decltype:
template <typename T>
constexpr decltype(std::declval<T>().size(), true) has_size(int) { return true; }
template <typename T>
constexpr bool has_size(...) { return false; }
So easy in fact that the trait loses most of its value:
#include <iostream>
#include <vector>
template <typename T>
auto print_size(T const& t) -> decltype(t.size(), void()) {
std::cout << t.size() << "\n";
}
void print_size(...) { std::cout << "N/A\n"; }
int main() {
print_size(std::vector<int>{1, 2, 3});
print_size(1);
}
In action:
3
N/A
This can be done using a technique called SFINAE. In your specific case you could implement that using Boost.Concept Check. You'd have to write your own concept for checking for a size-method. Alternatively you could use an existing concept such as Container, which, among others, requires a size-method.
You can do something like
template< typename T>
int getSize(const T& t)
{
return -1;
}
template< typename T>
int getSize( const std::vector<T>& t)
{
return t.size();
}
template< typename T , typename U>
int getSize( const std::map<T,U>& t)
{
return t.size();
}
//Implement this interface for
//other objects
class ISupportsGetSize
{
public:
virtual int size() const= 0;
};
int getSize( const ISupportsGetSize & t )
{
return t.size();
}
int main()
{
int s = getSize( 4 );
std::vector<int> v;
s = getSize( v );
return 0;
}
basically the most generic implementation is always return -1 or "NA" but for vector and maps it will return the size. As the most general one always matches there is never a build time failure
Here you go. Replace std::cout with the output of your liking.
template <typename T>
class has_size
{
template <typename C> static char test( typeof(&C::size) ) ;
template <typename C> static long test(...);
public:
enum { value = sizeof(test<T>(0)) == sizeof(char) };
};
template<bool T>
struct outputter
{
template< typename C >
static void output( const C& object )
{
std::cout << object.size();
}
};
template<>
struct outputter<false>
{
template< typename C >
static void output( const C& )
{
std::cout << "N/A";
}
};
template<typename T>
void NO_OF_ELEMENTS( const T &object )
{
outputter< has_size<T>::value >::output( object );
}
You could try something like:
#include <iostream>
#include <vector>
template<typename T>
struct has_size
{
typedef char one;
typedef struct { char a[2]; } two;
template<typename Sig>
struct select
{
};
template<typename U>
static one check (U*, select<char (&)[((&U::size)!=0)]>* const = 0);
static two check (...);
static bool const value = sizeof (one) == sizeof (check (static_cast<T*> (0)));
};
struct A{ };
int main ( )
{
std::cout << has_size<int>::value << "\n";
std::cout << has_size<A>::value << "\n";
std::cout << has_size<std::vector<int>>::value << "\n";
}
but you have to be careful, this does neither work when size is overloaded, nor when it is a template. When you can use C++11, you can replace the above sizeof trick by decltype magic

In C++, is it possible to get the type of one element of a tuple when the element index is known at runtime?

typedef std::tuple< int, double > Tuple;
Tuple t;
int a = std::get<0>(t);
double b = std::get<1>(t);
for( size_t i = 0; i < std::tuple_size<Tuple>::value; i++ ) {
std::tuple_element<i,Tuple>::type v = std::get<i>(t);// will not compile because i must be known at compile time
}
I know it is possible to write code for get std::get working (see for example iterate over tuple ), is it possible to get std::tuple_element working too?
Some constraints (they can be relaxed):
no variadic templates, no Boost
C++ is a compile-time typed language. You cannot have a type that the C++ compiler cannot determine at compile-time.
You can use polymorphism of various forms to work around that. But at the end of the day, every variable must have a well-defined type. So while you can use Boost.Fusion algorithms to iterate over variables in a tuple, you cannot have a loop where each execution of the loop may use a different type than the last.
The only reason Boost.Fusion can get away with it is because it doesn't use a loop. It uses template recursion to "iterate" over each element and call your user-provided function.
If you want to do without boost, the answers to iterate over tuple already tell you everything you need to know. You have to write a compile-time for_each loop (untested).
template<class Tuple, class Func, size_t i>
void foreach(Tuple& t, Func fn) {
// i is defined at compile-time, so you can write:
std::tuple_element<i, Tuple> te = std::get<i>(t);
fn(te);
foreach<i-1>(t, fn);
}
template<class Tuple, class Func>
void foreach<0>(Tuple& t, Func fn) { // template specialization
fn(std::get<0>(t)); // no further recursion
}
and use it like that:
struct SomeFunctionObject {
void operator()( int i ) const {}
void operator()( double f ) const {}
};
foreach<std::tuple_size<Tuple>::value>(t, SomeFunctionObject());
However, if you want to iterate over members of a tuple, Boost.Fusion really is the way to go.
#include <boost/fusion/algorithm/iteration/for_each.hpp>
#include <boost/fusion/adapted/boost_tuple.hpp>
and in your code write:
boost::for_each(t, SomeFunctionObject());
This an example for boost::tuple. There is an adapter for boost::fusion to work with the std::tuple here: http://groups.google.com/group/boost-list/browse_thread/thread/77622e41af1366af/
No, this is not possible the way you describe it. Basically, you'd have to write your code for every possible runtime-value of i and then use some dispatching-logic (e.g. switch(i)) to run the correct code based on the actual runtime-value of i.
In practice, it might be possible to generate the code for the different values of i with templates, but I am not really sure how to do this, and whether it would be practical. What you are describing sounds like a flawed design.
Here is my tuple foreach/transformation function:
#include <cstddef>
#include <tuple>
#include <type_traits>
template<size_t N>
struct tuple_foreach_impl {
template<typename T, typename C>
static inline auto call(T&& t, C&& c)
-> decltype(::std::tuple_cat(
tuple_foreach_impl<N-1>::call(
::std::forward<T>(t), ::std::forward<C>(c)
),
::std::make_tuple(c(::std::get<N-1>(::std::forward<T>(t))))
))
{
return ::std::tuple_cat(
tuple_foreach_impl<N-1>::call(
::std::forward<T>(t), ::std::forward<C>(c)
),
::std::make_tuple(c(::std::get<N-1>(::std::forward<T>(t))))
);
}
};
template<>
struct tuple_foreach_impl<0> {
template<typename T, typename C>
static inline ::std::tuple<> call(T&&, C&&) { return ::std::tuple<>(); }
};
template<typename T, typename C>
auto tuple_foreach(T&& t, C&& c)
-> decltype(tuple_foreach_impl<
::std::tuple_size<typename ::std::decay<T>::type
>::value>::call(std::forward<T>(t), ::std::forward<C>(c)))
{
return tuple_foreach_impl<
::std::tuple_size<typename ::std::decay<T>::type>::value
>::call(::std::forward<T>(t), ::std::forward<C>(c));
}
The example usage uses the following utility to allow printing tuples to ostreams:
#include <cstddef>
#include <ostream>
#include <tuple>
#include <type_traits>
template<size_t N>
struct tuple_print_impl {
template<typename S, typename T>
static inline void print(S& s, T&& t) {
tuple_print_impl<N-1>::print(s, ::std::forward<T>(t));
if (N > 1) { s << ',' << ' '; }
s << ::std::get<N-1>(::std::forward<T>(t));
}
};
template<>
struct tuple_print_impl<0> {
template<typename S, typename T>
static inline void print(S&, T&&) {}
};
template<typename S, typename T>
void tuple_print(S& s, T&& t) {
s << '(';
tuple_print_impl<
::std::tuple_size<typename ::std::decay<T>::type>::value
>::print(s, ::std::forward<T>(t));
s << ')';
}
template<typename C, typename... T>
::std::basic_ostream<C>& operator<<(
::std::basic_ostream<C>& s, ::std::tuple<T...> const& t
) {
tuple_print(s, t);
return s;
}
And finally, here is the example usage:
#include <iostream>
using namespace std;
struct inc {
template<typename T>
T operator()(T const& val) { return val+1; }
};
int main() {
// will print out "(7, 4.2, z)"
cout << tuple_foreach(make_tuple(6, 3.2, 'y'), inc()) << endl;
return 0;
}
Note that the callable object is constructed so that it can hold state if needed. For example, you could use the following to find the last object in the tuple that can be dynamic casted to T:
template<typename T>
struct find_by_type {
find() : result(nullptr) {}
T* result;
template<typename U>
bool operator()(U& val) {
auto tmp = dynamic_cast<T*>(&val);
auto ret = tmp != nullptr;
if (ret) { result = tmp; }
return ret;
}
};
Note that one shortcoming of this is that it requires that the callable returns a value. However, it wouldn't be that hard to rewrite it to detect whether the return type is void for a give input type, and then skip that element of the resulting tuple. Even easier, you could just remove the return value aggregation stuff altogether and simply use the foreach call as a tuple modifier.
Edit:
I just realized that the tuple writter could trivially be written using the foreach function (I have had the tuple printing code for much longer than the foreach code).
template<typename T>
struct tuple_print {
print(T& s) : _first(true), _s(&s) {}
template<typename U>
bool operator()(U const& val) {
if (_first) { _first = false; } else { (*_s) << ',' << ' '; }
(*_s) << val;
return false;
}
private:
bool _first;
T* _s;
};
template<typename C, typename... T>
::std::basic_ostream<C> & operator<<(
::std::basic_ostream<C>& s, ::std::tuple<T...> const& t
) {
s << '(';
tuple_foreach(t, tuple_print< ::std::basic_ostream<C>>(s));
s << ')';
return s;
}