How to pass std::unique_ptr around? - c++

I am having my first attempt at using C++11 unique_ptr; I am replacing a polymorphic raw pointer inside a project of mine, which is owned by one class, but passed around quite frequently.
I used to have functions like:
bool func(BaseClass* ptr, int other_arg) {
bool val;
// plain ordinary function that does something...
return val;
}
But I soon realized that I wouldn't be able to switch to:
bool func(std::unique_ptr<BaseClass> ptr, int other_arg);
Because the caller would have to handle the pointer ownership to the function, what I don't want to. So, what is the best solution to my problem?
I though of passing the pointer as reference, like this:
bool func(const std::unique_ptr<BaseClass>& ptr, int other_arg);
But I feel very uncomfortable in doing so, firstly because it seems non instinctive to pass something already typed as _ptr as reference, what would be a reference of a reference. Secondly because the function signature gets even bigger. Thirdly, because in the generated code, it would be necessary two consecutive pointer indirections to reach my variable.

If you want the function to use the pointee, pass a reference to it. There's no reason to tie the function to work only with some kind of smart pointer:
bool func(BaseClass& base, int other_arg);
And at the call site use operator*:
func(*some_unique_ptr, 42);
Alternatively, if the base argument is allowed to be null, keep the signature as is, and use the get() member function:
bool func(BaseClass* base, int other_arg);
func(some_unique_ptr.get(), 42);

The advantage of using std::unique_ptr<T> (aside from not having to remember to call delete or delete[] explicitly) is that it guarantees that a pointer is either nullptr or it points to a valid instance of the (base) object. I will come back to this after I answer your question, but the first message is DO use smart pointers to manage the lifetime of dynamically allocated objects.
Now, your problem is actually how to use this with your old code.
My suggestion is that if you don't want to transfer or share ownership, you should always pass references to the object. Declare your function like this (with or without const qualifiers, as needed):
bool func(BaseClass& ref, int other_arg) { ... }
Then the caller, which has a std::shared_ptr<BaseClass> ptr will either handle the nullptr case or it will ask bool func(...) to compute the result:
if (ptr) {
result = func(*ptr, some_int);
} else {
/* the object was, for some reason, either not created or destroyed */
}
This means that any caller has to promise that the reference is valid and that it will continue to be valid throughout the execution of the function body.
Here is the reason why I strongly believe you should not pass raw pointers or references to smart pointers.
A raw pointer is only a memory address. Can have one of (at least) 4 meanings:
The address of a block of memory where your desired object is located. (the good)
The address 0x0 which you can be certain is not dereferencable and might have the semantics of "nothing" or "no object". (the bad)
The address of a block of memory which is outside of the addressable space of your process (dereferencing it will hopefully cause your program to crash). (the ugly)
The address of a block of memory which can be dereferenced but which doesn't contain what you expect. Maybe the pointer was accidentally modified and now it points to another writable address (of a completely other variable within your process). Writing to this memory location will cause lots of fun to happen, at times, during the execution, because the OS will not complain as long as you are allowed to write there. (Zoinks!)
Correctly using smart pointers alleviates the rather scary cases 3 and 4, which are usually not detectable at compile time and which you generally only experience at runtime when your program crashes or does unexpected things.
Passing smart pointers as arguments has two disadvantages: you cannot change the const-ness of the pointed object without making a copy (which adds overhead for shared_ptr and is not possible for unique_ptr), and you are still left with the second (nullptr) meaning.
I marked the second case as (the bad) from a design perspective. This is a more subtle argument about responsibility.
Imagine what it means when a function receives a nullptr as its parameter. It first has to decide what to do with it: use a "magical" value in place of the missing object? change behavior completely and compute something else (which doesn't require the object)? panic and throw an exception? Moreover, what happens when the function takes 2, or 3 or even more arguments by raw pointer? It has to check each of them and adapt its behavior accordingly. This adds a whole new level on top of input validation for no real reason.
The caller should be the one with enough contextual information to make these decisions, or, in other words, the bad is less frightening the more you know. The function, on the other hand, should just take the caller's promise that the memory it is pointed to is safe to work with as intended. (References are still memory addresses, but conceptually represent a promise of validity.)

I agree with Martinho, but I think it is important to point out the ownership semantics of a pass-by-reference. I think the correct solution is to use a simple pass-by-reference here:
bool func(BaseClass& base, int other_arg);
The commonly accepted meaning of a pass-by-reference in C++ is like as if the caller of the function tells the function "here, you can borrow this object, use it, and modify it (if not const), but only for the duration of the function body." This is, in no way, in conflict with the ownership rules of the unique_ptr because the object is merely being borrowed for a short period of time, there is no actual ownership transfer happening (if you lend your car to someone, do you sign the title over to him?).
So, even though it might seem bad (design-wise, coding practices, etc.) to pull the reference (or even the raw pointer) out of the unique_ptr, it actually is not because it is perfectly in accordance with the ownership rules set by the unique_ptr. And then, of course, there are other nice advantages, like clean syntax, no restriction to only objects owned by a unique_ptr, and so.

Personally, I avoid pulling a reference from a pointer/smart pointer. Because what happens if the pointer is nullptr? If you change the signature to this:
bool func(BaseClass& base, int other_arg);
You might have to protect your code from null pointer dereferences:
if (the_unique_ptr)
func(*the_unique_ptr, 10);
If the class is the sole owner of the pointer, the second of Martinho's alternative seems more reasonable:
func(the_unique_ptr.get(), 10);
Alternatively, you can use std::shared_ptr. However, if there's one single entity responsible for delete, the std::shared_ptr overhead does not pay off.

Related

Is this the right way to return a struct in a parameter?

I made the following method in a C++/CLI project:
void GetSessionData(CDROM_TOC_SESSION_DATA& data)
{
auto state = CDROM_TOC_SESSION_DATA{};
// ...
data = state;
}
Then I use it like this in another method:
CDROM_TOC_SESSION_DATA data;
GetSessionData(data);
// do something with data
It does work, returned data is not garbage, however there's something I don't understand.
Question:
C++ is supposed to clean up state when it has exitted its scope, so data is a copy of state, correct ?
And in what exactly it is different from the following you see on many examples:
CDROM_TOC_SESSION_DATA data;
GetSessionData(&data); // signature should be GetSession(CDROM_TOC_SESSION_DATA *data)
Which one makes more sense to use or is the right way ?
Reference:
CDROM_TOC_SESSION_DATA
Using a reference vs a pointer for an out parameter is really more of a matter of style. Both function equally well, but some people feel that the explicit & when calling a function makes it more clear that the function may modify the parameter it was passed.
i.e.
doAThing(someObject);
// It's not clear that doAThing accepts a reference and
// therefore may modify someObject
vs
doAThing(&someObject);
// It's clear that doAThing accepts a pointer and it's
// therefore possible for it to modify someOjbect
Note that 99% of the time the correct way to return a class/struct type is to just return it. i.e.:
MyType getObject()
{
MyType object{};
// ...
return object;
}
Called as
auto obj = getObject();
In the specific case of CDROM_TOC_SESSION_DATA it likely makes sense to use an out parameter, since the class contains a flexible array member. That means that the parameter is almost certainly a reference/pointer to the beginning of some memory buffer that's larger than sizeof(CDROM_TOC_SESSION_DATA), and so must be handled in a somewhat peculiar way.
C++ is supposed to clean up state when it has exitted its scope, so
data is a copy of state, correct ?
In the first example, the statement
data = state
presumably copies the value of state into local variable data, which is a reference to the same object that is identified by data in the caller's scope (because those are the chosen names -- they don't have to match). I say "presumably" because in principle, an overridden assignment operator could do something else entirely. In any library you would actually want to use, you can assume that the assignment operator does something sensible, but it may be important to know the details, so you should check.
The lifetimes of local variables data and state end when the method exits. They will be cleaned up at that point, and no attempt may be made to access them thereafter. None of that affects the caller's data object.
And in what exactly it is different from the following you see on many
examples:
CDROM_TOC_SESSION_DATA data;
GetSessionData(&data);
Not much. Here the caller passes a pointer instead of a reference. GetSessionData must be declared appropriately for that, and its implementation must explicitly dereference the pointer to access the caller's data object, but the general idea is the same for most intents and purposes. Pointer and reference are similar mechanisms for indirect access.
Which one makes more sense to use or is the right way ?
It depends. Passing a reference is generally a bit more idiomatic in C++, and it has the advantage that the method does not have to worry about receiving a null or invalid pointer. On the other hand, passing a pointer is necessary if the function has C linkage, or if you need to accommodate the possibility of receiving a null pointer.

how to make sure that a function won't get a garbage pointer?

I have a function that accepts a pointer and return an enum depending on some conditions related to that pointer:
my_enum function(char* prt)
{
/* function body*/
if (condition1) return enum1;
if (condition2) return enum2;
if (condition3) return enum3;
if (condition4) return enum4;
else return enum5;
}
I have another function which also accepts a pointer, invokes my_function and reacts to the obtained value:
void another_function(char* ptr)
{
my_enum result = function(ptr);
if (result == MY_VALUE) std::cout<<"OK"<<endl;
}
I'm running Valgrind to check for memory leaks. The above code results in the following error:
Conditional jump depends on an uninitialized variable.
In fact, it is possible to pass an uninitialized pointer to the function function.
My question is: What is the best way of dealing with this situation (apart from using references instead)? I can't make sure that everyone who will use that code, will initialize the pointer that he will pass to the function. I can't check inside my function if the pointer points to some garbage (I'm checking whether it is a null pointer though) as well.
Should I ignore such errors? If they are useless, why does Valgrind bother to inform me about them? There must be something I can do.
How far are you willing to go? If someone WANTS to break your code, they will, you can't help it.
The more efficient protections you apply the more difficult they get.
The one simple one is to check for NULL. That doesn't prevent stupid pointers, but it prevents ones consciously invalidated. Most people are satisfied by that.
Then you may give the pointer a wrapper class. Instantiating this class requires a valid object pointed to (or some hopeless jumping through hoops to give it an invalid one, which amounts to purposefully shooting your foot), so no scenario of uninitialized pointer can occur - but the object can cease to exist before its pointer is used.
Then you can maintain a factory/manager class for these objects and their pointers. Every time the pointer destination object is created or destroyed, its pointer is created or invalidated. This will be fail-proof unless your code is multi-threading and destruction can occur while your function is already past the checks and before using the validated value.
Then you can add thread safety, wrapping both your function and the manager in mutexes. This adds all kinds of headaches related to deadlocks and synchronization. But the user must really try very hard to create a class derived from yours (probably with #define private public first) that overrides its safety features...
With each step your overhead climbs to levels where the effect really stops being worth the effort. So just check that pointer for NULL and stop worrying about others out to get you.
Opinions will vary on what is the "best" approach, since it is impossible to prevent someone passing a bad (e.g. uninitialised, dangling) pointer at all.
A common solution is to avoid raw pointers altogether, and write the function in a way that does not accept a pointer at all.
One way is to accept a reference. Writing your code so it doesn't use raw pointers at all makes it harder to call your function with a bad parameter. The limitation is that the caller can still create a bad reference (e.g. by dereferencing a bad pointer) but it takes more effort (or a longer sequence of mistakes if done unwittingly) to pass a bad reference to a function than it does to pass a bad pointer.
Another way is to accept some class object by value (or reference, in some cases) to hold your pointer. Then implement all member functions of that so that they prevent a situation of holding a bad pointer. Give that class no member functions that accept a pointer. Ensure the constructors and other member functions maintain consistency (formally, the constructors establish a rigorous set of invariants, other member functions maintain that set of invariants). This includes techniques like throwing an exception if an attempt is made to construct an object using bad data (if an exception is thrown in the process of constructing an object, that object never exists, and cannot be passed in any manner to your function). As a result, your function can assume - if it is successfully called - that the data it receives is valid.
The thing is, the above make it harder to accidentally pass bad data to your function. No technique can absolutely prevent someone who is determined enough (whether through genius or foolishness) to find a way to bypass all the safeguards, and to pass bad data to your function.
There are essentially two solutions.
Expect a valid pointer and state that clearly in the documentation of your API. Then any invalid use will cause UB, but it's not your fault. However, handling raw pointers is C-style and frowned upon by C++ programmers.
Take (the reference to) an encapsulated pointer type, which is always sensibly initialised, such as std::string (instead of const char*), std::unique_ptr, or std::shared_ptr. For example,
my_enum function(std::string const&str)
{
/* function body*/
if (str.empty()) // deal with improper input
std::cerr<<"warning: empty string in function()"<<std::endl;
if (condition1) return enum1;
if (condition2) return enum2;
if (condition3) return enum3;
if (condition4) return enum4;
else return enum5;
}
or
my_enum function(std::unique_ptr<SomeType> const&ptr)
{
/* function body*/
if (!ptr) { // deal with improper input
std::cerr<<"warning: invalid pointer in function()"<<std::endl;
return enum_error;
}
if (condition1) return enum1;
if (condition2) return enum2;
if (condition3) return enum3;
if (condition4) return enum4;
else return enum5;
}
This avoids raw pointers and is the C++ way for dealing with this sort of situation. One problem with the latter code is that it only works for unique_ptr arguments. One may generalise this to be overloaded (using SFINAE or otherwise) to take (const reference to) any auto-pointer like objects (for instance defined as objects obj with member obj::get() const returning a const obj::element_type*).

Is it alright to return a reference to a non-pointer member variable as a pointer?

I recently came across some C++ code that looked like this:
class SomeObject
{
private:
// NOT a pointer
BigObject foobar;
public:
BigObject * getFoobar() const
{
return &foobar;
}
};
I asked the programmer why he didn't just make foobar a pointer, and he said that this way he didn't have to worry about allocating/deallocating memory. I asked if he considered using some smart pointer, he said this worked just as well.
Is this bad practice? It seems very hackish.
That's perfectly reasonable, and not "hackish" in any way; although it might be considered better to return a reference to indicate that the object definitely exists. A pointer might be null, and might lead some to think that they should delete it after use.
The object has to exist somewhere, and existing as a member of an object is usually as good as existing anywhere else. Adding an extra level of indirection by dynamically allocating it separately from the object that owns it makes the code less efficient, and adds the burden of making sure it's correctly deallocated.
Of course, the member function can't be const if it returns a non-const reference or pointer to a member. That's another advantage of making it a member: a const qualifier on SomeObject applies to its members too, but doesn't apply to any objects it merely has a pointer to.
The only danger is that the object might be destroyed while someone still has a pointer or reference to it; but that danger is still present however you manage it. Smart pointers can help here, if the object lifetimes are too complex to manage otherwise.
You are returning a pointer to a member variable not a reference. This is bad design.
Your class manages the lifetime of foobar object and by returning a pointer to its members you enable the consumers of your class to keep using the pointer beyond the lifetime of SomeObject object. And also it enables the users to change the state of SomeObject object as they wish.
Instead you should refactor your class to include the operations that would be done on the foobar in SomeObject class as methods.
ps. Consider naming your classes properly. When you define it is a class. When you instantiate, then you have an object of that class.
It's generally considered less than ideal to return pointers to internal data at all; it prevents the class from managing access to its own data. But if you want to do that anyway I see no great problem here; it simplifies the management of memory.
Is this bad practice? It seems very hackish.
It is. If the class goes out of scope before the pointer does, the member variable will no longer exist, yet a pointer to it still exists. Any attempt to dereference that pointer post class destruction will result in undefined behaviour - this could result in a crash, or it could result in hard to find bugs where arbitrary memory is read and treated as a BigObject.
if he considered using some smart pointer
Using smart pointers, specifically std::shared_ptr<T> or the boost version, would technically work here and avoid the potential crash (if you allocate via the shared pointer constructor) - however, it also confuses who owns that pointer - the class, or the caller? Furthermore, I'm not sure you can just add a pointer to an object to a smart pointer.
Both of these two points deal with the technical issue of getting a pointer out of a class, but the real question should be "why?" as in "why are you returning a pointer from a class?" There are cases where this is the only way, but more often than not you don't need to return a pointer. For example, suppose that variable needs to be passed to a C API which takes a pointer to that type. In this case, you would probably be better encapsulating that C call in the class.
As long as the caller knows that the pointer returned from getFoobar() becomes invalid when the SomeObject object destructs, it's fine. Such provisos and caveats are common in older C++ programs and frameworks.
Even current libraries have to do this for historical reasons. e.g. std::string::c_str, which returns a pointer to an internal buffer in the string, which becomes unusable when the string destructs.
Of course, that is difficult to ensure in a large or complex program. In modern C++ the preferred approach is to give everything simple "value semantics" as far as possible, so that every object's life time is controlled by the code that uses it in a trivial way. So there are no naked pointers, no explicit new or delete calls scattered around your code, etc., and so no need to require programmers to manually ensure they are following the rules.
(And then you can resort to smart pointers in cases where you are totally unable to avoid shared responsibility for object lifetimes.)
Two unrelated issues here:
1) How would you like your instance of SomeObject to manage the instance of BigObject that it needs? If each instance of SomeObject needs its own BigObject, then a BigObject data member is totally reasonable. There are situations where you'd want to do something different, but unless that situation arises stick with the simple solution.
2) Do you want to give users of SomeObject direct access to its BigObject? By default the answer here would be "no", on the basis of good encapsulation. But if you do want to, then that doesn't change the assessment of (1). Also if you do want to, you don't necessarily need to do so via a pointer -- it could be via a reference or even a public data member.
A third possible issue might arise that does change the assessment of (1):
3) Do you want to give users of SomeObject direct access to an instance of BigObject that they continue using beyond the lifetime of the instance of SomeObject that they got it from? If so then of course a data member is no good. The proper solution might be shared_ptr, or for SomeObject::getFooBar to be a factory that returns a different BigObject each time it's called.
In summary:
Other than the fact it doesn't compile (getFooBar() needs to return const BigObject*), there is no reason so far to suppose that this code is wrong. Other issues could arise that make it wrong.
It might be better style to return const & rather than const *. Which you return has no bearing on whether foobar should be a BigObject data member.
There is certainly no "just" about making foobar a pointer or a smart pointer -- either one would necessitate extra code to create an instance of BigObject to point to.

Code Review question - should I allow this passing of an auto_ptr as parameter?

Consider the following example code which I have recently seen in our code base:
void ClassA::ExportAnimation(auto_ptr<CAnimation> animation)
{
... does something
}
// calling method:
void classB::someMethod()
{
auto_ptr<CAnimation> animation (new CAnimation(1,2));
ClassA classAInstance;
classAInstance.ExportAnimation(animation)
... do some more stuff
}
I don't like this - and would rather write it so:
void ClassA::ExportAnimation(CAnimation* animation)
{
... does something
}
// calling method:
void classB::someMethod()
{
auto_ptr<CAnimation> animation (new CAnimation(1,2));
ClassA classAInstance;
classAInstance.ExportAnimation(animation.get())
... do some more stuff
}
but it is really a problem?
It all depends on what ExportAnimation is and how it is implemented.
Does it only use the object for the duration of the call and then leaves it?
Then convert to a reference and pass a real reference. There is no need to pass membership and the argument is not optional, so void ExportAnimation( CAnimation const & ) suffices. The advantage is that it is clear from the interface that there is no memory management issues with the method, it will just use the passed object and leave it as such. In this case, passing a raw pointer (as in your proposed code) is much worse than passing a reference in that it is not clear whether ExportAnimation is or not responsible for deletion of the passed in object.
Does it keep the object for later use?
This could be the case if the function starts a thread to export the animation in the background. In this case, it has to be clear that the lifetime of the argument must extend beyond the duration of the call. This can be solved by using shared_ptr --both in the function and outside of it-- as they convey the object is shared and will be kept alive as much as required meaning. Or else you can actually transfer ownership.
In the later case, if transfer of ownership is performed, then the initial code is fine --the signature is explicit in the ownership transfer. Else you can opt to document the behavior, change to a raw pointer and make the transfer explicit by calling ExportAnimation( myAnimation.release() ).
You have added some concerns as a comment to another answer:
can I really see that object no longer exists after the method call?
The caller auto_ptr is reset to 0 in the call, so any dereference will kill be an error and will be flagged in the first test you try.
I would need to look at the header file to see that the parameter type is an auto_ptr and not a normal pointer.
You do not need to look at the header... just try passing a raw pointer and the compiler will tell you that it requires an auto_ptr<> --There is no implicit conversion from raw pointer to auto_ptr.
I would expect the object to exist until the auto_ptr goes out of scope.
The standard auto_ptr, unlike boost::scope_ptr, do not have that semantics. The ownership of the object can be released or passed to other auto_ptr, so the assumption that an object held in an auto_ptr lives for the whole scope of the auto_ptr is bad in itself.
The auto_ptr unambiguously declares that the ownership of the pointer is passed on. The plain pointer isn't self-documenting.
What is the point of an auto-ptr if you only use its internals as a storage location?
Yes, pass it to the function. Or do away with it entirely, if you really don't want it. Presumably the function needs it to pass along ownership to something else.
It sounds like maybe the alternative you're looking for is much simpler:
void ClassA::ExportAnimation(CAnimation &animation) // no pointer
// calling method:
void classB::someMethod()
{
CAnimation animation(1,2); // no pointer
ClassA classAInstance;
classAInstance.ExportAnimation(animation) // no ownership tranfer
... do some more stuff
// object dies here, no earlier, no later
}
Passing the smart pointer to ExportAnimation clearly documents, and enforces, that ownership has been passed to the function, and there is no need for the caller to delete the animation. The function will also not need to explicitly delete the object, just let the pointer go out of scope.
Your suggestion leaves that ambigious; should ExportAnimation delete the object you've passed via raw pointer? You'd need to check the function's documentation to know what the caller should do, and also check the implementation to make sure it's actually implemented as documented.
I would always recommend using smart pointers (and other RAII idioms) to make object lifetime explicit and automatic.

C++ - passing references to std::shared_ptr or boost::shared_ptr

If I have a function that needs to work with a shared_ptr, wouldn't it be more efficient to pass it a reference to it (so to avoid copying the shared_ptr object)?
What are the possible bad side effects?
I envision two possible cases:
1) inside the function a copy is made of the argument, like in
ClassA::take_copy_of_sp(boost::shared_ptr<foo> &sp)
{
...
m_sp_member=sp; //This will copy the object, incrementing refcount
...
}
2) inside the function the argument is only used, like in
Class::only_work_with_sp(boost::shared_ptr<foo> &sp) //Again, no copy here
{
...
sp->do_something();
...
}
I can't see in both cases a good reason to pass the boost::shared_ptr<foo> by value instead of by reference. Passing by value would only "temporarily" increment the reference count due to the copying, and then decrement it when exiting the function scope.
Am I overlooking something?
Just to clarify, after reading several answers: I perfectly agree on the premature-optimization concerns, and I always try to first-profile-then-work-on-the-hotspots. My question was more from a purely technical code-point-of-view, if you know what I mean.
I found myself disagreeing with the highest-voted answer, so I went looking for expert opinons and here they are.
From http://channel9.msdn.com/Shows/Going+Deep/C-and-Beyond-2011-Scott-Andrei-and-Herb-Ask-Us-Anything
Herb Sutter: "when you pass shared_ptrs, copies are expensive"
Scott Meyers: "There's nothing special about shared_ptr when it comes to whether you pass it by value, or pass it by reference. Use exactly the same analysis you use for any other user defined type. People seem to have this perception that shared_ptr somehow solves all management problems, and that because it's small, it's necessarily inexpensive to pass by value. It has to be copied, and there is a cost associated with that... it's expensive to pass it by value, so if I can get away with it with proper semantics in my program, I'm gonna pass it by reference to const or reference instead"
Herb Sutter: "always pass them by reference to const, and very occasionally maybe because you know what you called might modify the thing you got a reference from, maybe then you might pass by value... if you copy them as parameters, oh my goodness you almost never need to bump that reference count because it's being held alive anyway, and you should be passing it by reference, so please do that"
Update: Herb has expanded on this here: http://herbsutter.com/2013/06/05/gotw-91-solution-smart-pointer-parameters/, although the moral of the story is that you shouldn't be passing shared_ptrs at all "unless you want to use or manipulate the smart pointer itself, such as to share or transfer ownership."
The point of a distinct shared_ptr instance is to guarantee (as far as possible) that as long as this shared_ptr is in scope, the object it points to will still exist, because its reference count will be at least 1.
Class::only_work_with_sp(boost::shared_ptr<foo> sp)
{
// sp points to an object that cannot be destroyed during this function
}
So by using a reference to a shared_ptr, you disable that guarantee. So in your second case:
Class::only_work_with_sp(boost::shared_ptr<foo> &sp) //Again, no copy here
{
...
sp->do_something();
...
}
How do you know that sp->do_something() will not blow up due to a null pointer?
It all depends what is in those '...' sections of the code. What if you call something during the first '...' that has the side-effect (somewhere in another part of the code) of clearing a shared_ptr to that same object? And what if it happens to be the only remaining distinct shared_ptr to that object? Bye bye object, just where you're about to try and use it.
So there are two ways to answer that question:
Examine the source of your entire program very carefully until you are sure the object won't die during the function body.
Change the parameter back to be a distinct object instead of a reference.
General bit of advice that applies here: don't bother making risky changes to your code for the sake of performance until you've timed your product in a realistic situation in a profiler and conclusively measured that the change you want to make will make a significant difference to performance.
Update for commenter JQ
Here's a contrived example. It's deliberately simple, so the mistake will be obvious. In real examples, the mistake is not so obvious because it is hidden in layers of real detail.
We have a function that will send a message somewhere. It may be a large message so rather than using a std::string that likely gets copied as it is passed around to multiple places, we use a shared_ptr to a string:
void send_message(std::shared_ptr<std::string> msg)
{
std::cout << (*msg.get()) << std::endl;
}
(We just "send" it to the console for this example).
Now we want to add a facility to remember the previous message. We want the following behaviour: a variable must exist that contains the most recently sent message, but while a message is currently being sent then there must be no previous message (the variable should be reset before sending). So we declare the new variable:
std::shared_ptr<std::string> previous_message;
Then we amend our function according to the rules we specified:
void send_message(std::shared_ptr<std::string> msg)
{
previous_message = 0;
std::cout << *msg << std::endl;
previous_message = msg;
}
So, before we start sending we discard the current previous message, and then after the send is complete we can store the new previous message. All good. Here's some test code:
send_message(std::shared_ptr<std::string>(new std::string("Hi")));
send_message(previous_message);
And as expected, this prints Hi! twice.
Now along comes Mr Maintainer, who looks at the code and thinks: Hey, that parameter to send_message is a shared_ptr:
void send_message(std::shared_ptr<std::string> msg)
Obviously that can be changed to:
void send_message(const std::shared_ptr<std::string> &msg)
Think of the performance enhancement this will bring! (Never mind that we're about to send a typically large message over some channel, so the performance enhancement will be so small as to be unmeasureable).
But the real problem is that now the test code will exhibit undefined behaviour (in Visual C++ 2010 debug builds, it crashes).
Mr Maintainer is surprised by this, but adds a defensive check to send_message in an attempt to stop the problem happening:
void send_message(const std::shared_ptr<std::string> &msg)
{
if (msg == 0)
return;
But of course it still goes ahead and crashes, because msg is never null when send_message is called.
As I say, with all the code so close together in a trivial example, it's easy to find the mistake. But in real programs, with more complex relationships between mutable objects that hold pointers to each other, it is easy to make the mistake, and hard to construct the necessary test cases to detect the mistake.
The easy solution, where you want a function to be able to rely on a shared_ptr continuing to be non-null throughout, is for the function to allocate its own true shared_ptr, rather than relying on a reference to an existing shared_ptr.
The downside is that copied a shared_ptr is not free: even "lock-free" implementations have to use an interlocked operation to honour threading guarantees. So there may be situations where a program can be significantly sped up by changing a shared_ptr into a shared_ptr &. But it this is not a change that can be safely made to all programs. It changes the logical meaning of the program.
Note that a similar bug would occur if we used std::string throughout instead of std::shared_ptr<std::string>, and instead of:
previous_message = 0;
to clear the message, we said:
previous_message.clear();
Then the symptom would be the accidental sending of an empty message, instead of undefined behaviour. The cost of an extra copy of a very large string may be a lot more significant than the cost of copying a shared_ptr, so the trade-off may be different.
I would advise against this practice unless you and the other programmers you work with really, really know what you are all doing.
First, you have no idea how the interface to your class might evolve and you want to prevent other programmers from doing bad things. Passing a shared_ptr by reference isn't something a programmer should expect to see, because it isn't idiomatic, and that makes it easy to use it incorrectly. Program defensively: make the interface hard to use incorrectly. Passing by reference is just going to invite problems later on.
Second, don't optimize until you know this particular class is going to be a problem. Profile first, and then if your program really needs the boost given by passing by reference, then maybe. Otherwise, don't sweat the small stuff (i.e. the extra N instructions it takes to pass by value) instead worry about design, data structures, algorithms, and long-term maintainability.
Yes, taking a reference is fine there. You don't intend to give the method shared ownership; it only wants to work with it. You could take a reference for the first case too, since you copy it anyway. But for first case, it takes ownership. There is this trick to still copy it only once:
void ClassA::take_copy_of_sp(boost::shared_ptr<foo> sp) {
m_sp_member.swap(sp);
}
You should also copy when you return it (i.e not return a reference). Because your class doesn't know what the client is doing with it (it could store a pointer to it and then big bang happens). If it later turns out it's a bottleneck (first profile!), then you can still return a reference.
Edit: Of course, as others point out, this only is true if you know your code and know that you don't reset the passed shared pointer in some way. If in doubt, just pass by value.
It is sensible to pass shared_ptrs by const&. It will not likely cause trouble (except in the unlikely case that the referenced shared_ptr is deleted during the function call, as detailed by Earwicker) and it will likely be faster if you pass a lot of these around. Remember; the default boost::shared_ptr is thread safe, so copying it includes a thread safe increment.
Try to use const& rather than just &, because temporary objects may not be passed by non-const reference. (Even though a language extension in MSVC allows you to do it anyway)
In the second case, doing this is simpler:
Class::only_work_with_sp(foo &sp)
{
...
sp.do_something();
...
}
You can call it as
only_work_with_sp(*sp);
I would avoid a "plain" reference unless the function explicitely may modify the pointer.
A const & may be a sensible micro-optimization when calling small functions - e.g. to enable further optimizations, like inlining away some conditions. Also, the increment/decrement - since it's thread safe - is a synchronization point. I would not expect this to make a big difference in most scenarios, though.
Generally, you should use the simpler style unless you have reason not to. Then, either use the const & consistently, or add a comment as to why if you use it just in a few places.
I would advocate passing shared pointer by const reference - a semantics that the function being passed with the pointer does NOT own the pointer, which is a clean idiom for developers.
The only pitfall is in multiple thread programs the object being pointed by the shared pointer gets destroyed in another thread. So it is safe to say using const reference of shared pointer is safe in single threaded program.
Passing shared pointer by non-const reference is sometimes dangerous - the reason is the swap and reset functions the function may invoke inside so as to destroy the object which is still considered valid after the function returns.
It is not about premature optimization, I guess - it is about avoiding unnecessary waste of CPU cycles when you are clear what you want to do and the coding idiom has firmly been adopted by your fellow developers.
Just my 2 cents :-)
It seems that all the pros and cons here can actually be generalised to ANY type passed by reference not just shared_ptr. In my opinion, you should know the semantic of passing by reference, const reference and value and use it correctly. But there is absolutely nothing inherently wrong with passing shared_ptr by reference, unless you think that all references are bad...
To go back to the example:
Class::only_work_with_sp( foo &sp ) //Again, no copy here
{
...
sp.do_something();
...
}
How do you know that sp.do_something() will not blow up due to a dangling pointer?
The truth is that, shared_ptr or not, const or not, this could happen if you have a design flaw, like directly or indirectly sharing the ownership of sp between threads, missusing an object that do delete this, you have a circular ownership or other ownership errors.
One thing that I haven't seen mentioned yet is that when you pass shared pointers by reference, you lose the implicit conversion that you get if you want to pass a derived class shared pointer through a reference to a base class shared pointer.
For example, this code will produce an error, but it will work if you change test() so that the shared pointer is not passed by reference.
#include <boost/shared_ptr.hpp>
class Base { };
class Derived: public Base { };
// ONLY instances of Base can be passed by reference. If you have a shared_ptr
// to a derived type, you have to cast it manually. If you remove the reference
// and pass the shared_ptr by value, then the cast is implicit so you don't have
// to worry about it.
void test(boost::shared_ptr<Base>& b)
{
return;
}
int main(void)
{
boost::shared_ptr<Derived> d(new Derived);
test(d);
// If you want the above call to work with references, you will have to manually cast
// pointers like this, EVERY time you call the function. Since you are creating a new
// shared pointer, you lose the benefit of passing by reference.
boost::shared_ptr<Base> b = boost::dynamic_pointer_cast<Base>(d);
test(b);
return 0;
}
I'll assume that you are familiar with premature optimization and are asking this either for academic purposes or because you have isolated some pre-existing code that is under-performing.
Passing by reference is okay
Passing by const reference is better, and can usually be used, as it does not force const-ness on the object pointed to.
You are not at risk of losing the pointer due to using a reference. That reference is evidence that you have a copy of the smart pointer earlier in the stack and only one thread owns a call stack, so that pre-existing copy isn't going away.
Using references is often more efficient for the reasons you mention, but not guaranteed. Remember that dereferencing an object can take work too. Your ideal reference-usage scenario would be if your coding style involves many small functions, where the pointer would get passed from function to function to function before being used.
You should always avoid storing your smart pointer as a reference. Your Class::take_copy_of_sp(&sp) example shows correct usage for that.
Assuming we are not concerned with const correctness (or more, you mean to allow the functions to be able to modify or share ownership of the data being passed in), passing a boost::shared_ptr by value is safer than passing it by reference as we allow the original boost::shared_ptr to control it's own lifetime. Consider the results of the following code...
void FooTakesReference( boost::shared_ptr< int > & ptr )
{
ptr.reset(); // We reset, and so does sharedA, memory is deleted.
}
void FooTakesValue( boost::shared_ptr< int > ptr )
{
ptr.reset(); // Our temporary is reset, however sharedB hasn't.
}
void main()
{
boost::shared_ptr< int > sharedA( new int( 13 ) );
boost::shared_ptr< int > sharedB( new int( 14 ) );
FooTakesReference( sharedA );
FooTakesValue( sharedB );
}
From the example above we see that passing sharedA by reference allows FooTakesReference to reset the original pointer, which reduces it's use count to 0, destroying it's data. FooTakesValue, however, can't reset the original pointer, guaranteeing sharedB's data is still usable. When another developer inevitably comes along and attempts to piggyback on sharedA's fragile existence, chaos ensues. The lucky sharedB developer, however, goes home early as all is right in his world.
The code safety, in this case, far outweighs any speed improvement copying creates. At the same time, the boost::shared_ptr is meant to improve code safety. It will be far easier to go from a copy to a reference, if something requires this kind of niche optimization.
Sandy wrote: "It seems that all the pros and cons here can actually be generalised to ANY type passed by reference not just shared_ptr."
True to some extent, but the point of using shared_ptr is to eliminate concerns regarding object lifetimes and to let the compiler handle that for you. If you're going to pass a shared pointer by reference and allow clients of your reference-counted-object call non-const methods that might free the object data, then using a shared pointer is almost pointless.
I wrote "almost" in that previous sentence because performance can be a concern, and it 'might' be justified in rare cases, but I would also avoid this scenario myself and look for all possible other optimization solutions myself, such as to seriously look at adding another level of indirection, lazy evaluation, etc..
Code that exists past it's author, or even post it's author's memory, that requires implicit assumptions about behavior, in particular behavior about object lifetimes, requires clear, concise, readable documentation, and then many clients won't read it anyway! Simplicity almost always trumps efficiency, and there are almost always other ways to be efficient. If you really need to pass values by reference to avoid deep copying by copy constructors of your reference-counted-objects (and the equals operator), then perhaps you should consider ways to make the deep-copied data be reference counted pointers that can be copied quickly. (Of course, that's just one design scenario that might not apply to your situation).
I used to work in a project that the principle was very strong about passing smart pointers by value. When I was asked to do some performance analysis - I found that for increment and decrement of the reference counters of the smart pointers the application spends between 4-6% of the utilized processor time.
If you want to pass the smart pointers by value just to avoid having issues in weird cases as described from Daniel Earwicker make sure you understand the price you paying for it.
If you decide to go with a reference the main reason to use const reference is to make it possible to have implicit upcasting when you need to pass shared pointer to object from class that inherits the class you use in the interface.
In addition to what litb said, I'd like to point out that it's probably to pass by const reference in the second example, that way you are sure you don't accidentally modify it.
struct A {
shared_ptr<Message> msg;
shared_ptr<Message> * ptr_msg;
}
pass by value:
void set(shared_ptr<Message> msg) {
this->msg = msg; /// create a new shared_ptr, reference count will be added;
} /// out of method, new created shared_ptr will be deleted, of course, reference count also be reduced;
pass by reference:
void set(shared_ptr<Message>& msg) {
this->msg = msg; /// reference count will be added, because reference is just an alias.
}
pass by pointer:
void set(shared_ptr<Message>* msg) {
this->ptr_msg = msg; /// reference count will not be added;
}
Every code piece must carry some sense. If you pass a shared pointer by value everywhere in the application, this means "I am unsure about what's going on elsewhere, hence I favour raw safety". This is not what I call a good confidence sign to other programmers who could consult the code.
Anyway, even if a function gets a const reference and you are "unsure", you can still create a copy of the shared pointer at the head of the function, to add a strong reference to the pointer. This could also be seen as a hint about the design ("the pointer could be modified elsewhere").
So yes, IMO, the default should be "pass by const reference".