If I have a function that needs to work with a shared_ptr, wouldn't it be more efficient to pass it a reference to it (so to avoid copying the shared_ptr object)?
What are the possible bad side effects?
I envision two possible cases:
1) inside the function a copy is made of the argument, like in
ClassA::take_copy_of_sp(boost::shared_ptr<foo> &sp)
{
...
m_sp_member=sp; //This will copy the object, incrementing refcount
...
}
2) inside the function the argument is only used, like in
Class::only_work_with_sp(boost::shared_ptr<foo> &sp) //Again, no copy here
{
...
sp->do_something();
...
}
I can't see in both cases a good reason to pass the boost::shared_ptr<foo> by value instead of by reference. Passing by value would only "temporarily" increment the reference count due to the copying, and then decrement it when exiting the function scope.
Am I overlooking something?
Just to clarify, after reading several answers: I perfectly agree on the premature-optimization concerns, and I always try to first-profile-then-work-on-the-hotspots. My question was more from a purely technical code-point-of-view, if you know what I mean.
I found myself disagreeing with the highest-voted answer, so I went looking for expert opinons and here they are.
From http://channel9.msdn.com/Shows/Going+Deep/C-and-Beyond-2011-Scott-Andrei-and-Herb-Ask-Us-Anything
Herb Sutter: "when you pass shared_ptrs, copies are expensive"
Scott Meyers: "There's nothing special about shared_ptr when it comes to whether you pass it by value, or pass it by reference. Use exactly the same analysis you use for any other user defined type. People seem to have this perception that shared_ptr somehow solves all management problems, and that because it's small, it's necessarily inexpensive to pass by value. It has to be copied, and there is a cost associated with that... it's expensive to pass it by value, so if I can get away with it with proper semantics in my program, I'm gonna pass it by reference to const or reference instead"
Herb Sutter: "always pass them by reference to const, and very occasionally maybe because you know what you called might modify the thing you got a reference from, maybe then you might pass by value... if you copy them as parameters, oh my goodness you almost never need to bump that reference count because it's being held alive anyway, and you should be passing it by reference, so please do that"
Update: Herb has expanded on this here: http://herbsutter.com/2013/06/05/gotw-91-solution-smart-pointer-parameters/, although the moral of the story is that you shouldn't be passing shared_ptrs at all "unless you want to use or manipulate the smart pointer itself, such as to share or transfer ownership."
The point of a distinct shared_ptr instance is to guarantee (as far as possible) that as long as this shared_ptr is in scope, the object it points to will still exist, because its reference count will be at least 1.
Class::only_work_with_sp(boost::shared_ptr<foo> sp)
{
// sp points to an object that cannot be destroyed during this function
}
So by using a reference to a shared_ptr, you disable that guarantee. So in your second case:
Class::only_work_with_sp(boost::shared_ptr<foo> &sp) //Again, no copy here
{
...
sp->do_something();
...
}
How do you know that sp->do_something() will not blow up due to a null pointer?
It all depends what is in those '...' sections of the code. What if you call something during the first '...' that has the side-effect (somewhere in another part of the code) of clearing a shared_ptr to that same object? And what if it happens to be the only remaining distinct shared_ptr to that object? Bye bye object, just where you're about to try and use it.
So there are two ways to answer that question:
Examine the source of your entire program very carefully until you are sure the object won't die during the function body.
Change the parameter back to be a distinct object instead of a reference.
General bit of advice that applies here: don't bother making risky changes to your code for the sake of performance until you've timed your product in a realistic situation in a profiler and conclusively measured that the change you want to make will make a significant difference to performance.
Update for commenter JQ
Here's a contrived example. It's deliberately simple, so the mistake will be obvious. In real examples, the mistake is not so obvious because it is hidden in layers of real detail.
We have a function that will send a message somewhere. It may be a large message so rather than using a std::string that likely gets copied as it is passed around to multiple places, we use a shared_ptr to a string:
void send_message(std::shared_ptr<std::string> msg)
{
std::cout << (*msg.get()) << std::endl;
}
(We just "send" it to the console for this example).
Now we want to add a facility to remember the previous message. We want the following behaviour: a variable must exist that contains the most recently sent message, but while a message is currently being sent then there must be no previous message (the variable should be reset before sending). So we declare the new variable:
std::shared_ptr<std::string> previous_message;
Then we amend our function according to the rules we specified:
void send_message(std::shared_ptr<std::string> msg)
{
previous_message = 0;
std::cout << *msg << std::endl;
previous_message = msg;
}
So, before we start sending we discard the current previous message, and then after the send is complete we can store the new previous message. All good. Here's some test code:
send_message(std::shared_ptr<std::string>(new std::string("Hi")));
send_message(previous_message);
And as expected, this prints Hi! twice.
Now along comes Mr Maintainer, who looks at the code and thinks: Hey, that parameter to send_message is a shared_ptr:
void send_message(std::shared_ptr<std::string> msg)
Obviously that can be changed to:
void send_message(const std::shared_ptr<std::string> &msg)
Think of the performance enhancement this will bring! (Never mind that we're about to send a typically large message over some channel, so the performance enhancement will be so small as to be unmeasureable).
But the real problem is that now the test code will exhibit undefined behaviour (in Visual C++ 2010 debug builds, it crashes).
Mr Maintainer is surprised by this, but adds a defensive check to send_message in an attempt to stop the problem happening:
void send_message(const std::shared_ptr<std::string> &msg)
{
if (msg == 0)
return;
But of course it still goes ahead and crashes, because msg is never null when send_message is called.
As I say, with all the code so close together in a trivial example, it's easy to find the mistake. But in real programs, with more complex relationships between mutable objects that hold pointers to each other, it is easy to make the mistake, and hard to construct the necessary test cases to detect the mistake.
The easy solution, where you want a function to be able to rely on a shared_ptr continuing to be non-null throughout, is for the function to allocate its own true shared_ptr, rather than relying on a reference to an existing shared_ptr.
The downside is that copied a shared_ptr is not free: even "lock-free" implementations have to use an interlocked operation to honour threading guarantees. So there may be situations where a program can be significantly sped up by changing a shared_ptr into a shared_ptr &. But it this is not a change that can be safely made to all programs. It changes the logical meaning of the program.
Note that a similar bug would occur if we used std::string throughout instead of std::shared_ptr<std::string>, and instead of:
previous_message = 0;
to clear the message, we said:
previous_message.clear();
Then the symptom would be the accidental sending of an empty message, instead of undefined behaviour. The cost of an extra copy of a very large string may be a lot more significant than the cost of copying a shared_ptr, so the trade-off may be different.
I would advise against this practice unless you and the other programmers you work with really, really know what you are all doing.
First, you have no idea how the interface to your class might evolve and you want to prevent other programmers from doing bad things. Passing a shared_ptr by reference isn't something a programmer should expect to see, because it isn't idiomatic, and that makes it easy to use it incorrectly. Program defensively: make the interface hard to use incorrectly. Passing by reference is just going to invite problems later on.
Second, don't optimize until you know this particular class is going to be a problem. Profile first, and then if your program really needs the boost given by passing by reference, then maybe. Otherwise, don't sweat the small stuff (i.e. the extra N instructions it takes to pass by value) instead worry about design, data structures, algorithms, and long-term maintainability.
Yes, taking a reference is fine there. You don't intend to give the method shared ownership; it only wants to work with it. You could take a reference for the first case too, since you copy it anyway. But for first case, it takes ownership. There is this trick to still copy it only once:
void ClassA::take_copy_of_sp(boost::shared_ptr<foo> sp) {
m_sp_member.swap(sp);
}
You should also copy when you return it (i.e not return a reference). Because your class doesn't know what the client is doing with it (it could store a pointer to it and then big bang happens). If it later turns out it's a bottleneck (first profile!), then you can still return a reference.
Edit: Of course, as others point out, this only is true if you know your code and know that you don't reset the passed shared pointer in some way. If in doubt, just pass by value.
It is sensible to pass shared_ptrs by const&. It will not likely cause trouble (except in the unlikely case that the referenced shared_ptr is deleted during the function call, as detailed by Earwicker) and it will likely be faster if you pass a lot of these around. Remember; the default boost::shared_ptr is thread safe, so copying it includes a thread safe increment.
Try to use const& rather than just &, because temporary objects may not be passed by non-const reference. (Even though a language extension in MSVC allows you to do it anyway)
In the second case, doing this is simpler:
Class::only_work_with_sp(foo &sp)
{
...
sp.do_something();
...
}
You can call it as
only_work_with_sp(*sp);
I would avoid a "plain" reference unless the function explicitely may modify the pointer.
A const & may be a sensible micro-optimization when calling small functions - e.g. to enable further optimizations, like inlining away some conditions. Also, the increment/decrement - since it's thread safe - is a synchronization point. I would not expect this to make a big difference in most scenarios, though.
Generally, you should use the simpler style unless you have reason not to. Then, either use the const & consistently, or add a comment as to why if you use it just in a few places.
I would advocate passing shared pointer by const reference - a semantics that the function being passed with the pointer does NOT own the pointer, which is a clean idiom for developers.
The only pitfall is in multiple thread programs the object being pointed by the shared pointer gets destroyed in another thread. So it is safe to say using const reference of shared pointer is safe in single threaded program.
Passing shared pointer by non-const reference is sometimes dangerous - the reason is the swap and reset functions the function may invoke inside so as to destroy the object which is still considered valid after the function returns.
It is not about premature optimization, I guess - it is about avoiding unnecessary waste of CPU cycles when you are clear what you want to do and the coding idiom has firmly been adopted by your fellow developers.
Just my 2 cents :-)
It seems that all the pros and cons here can actually be generalised to ANY type passed by reference not just shared_ptr. In my opinion, you should know the semantic of passing by reference, const reference and value and use it correctly. But there is absolutely nothing inherently wrong with passing shared_ptr by reference, unless you think that all references are bad...
To go back to the example:
Class::only_work_with_sp( foo &sp ) //Again, no copy here
{
...
sp.do_something();
...
}
How do you know that sp.do_something() will not blow up due to a dangling pointer?
The truth is that, shared_ptr or not, const or not, this could happen if you have a design flaw, like directly or indirectly sharing the ownership of sp between threads, missusing an object that do delete this, you have a circular ownership or other ownership errors.
One thing that I haven't seen mentioned yet is that when you pass shared pointers by reference, you lose the implicit conversion that you get if you want to pass a derived class shared pointer through a reference to a base class shared pointer.
For example, this code will produce an error, but it will work if you change test() so that the shared pointer is not passed by reference.
#include <boost/shared_ptr.hpp>
class Base { };
class Derived: public Base { };
// ONLY instances of Base can be passed by reference. If you have a shared_ptr
// to a derived type, you have to cast it manually. If you remove the reference
// and pass the shared_ptr by value, then the cast is implicit so you don't have
// to worry about it.
void test(boost::shared_ptr<Base>& b)
{
return;
}
int main(void)
{
boost::shared_ptr<Derived> d(new Derived);
test(d);
// If you want the above call to work with references, you will have to manually cast
// pointers like this, EVERY time you call the function. Since you are creating a new
// shared pointer, you lose the benefit of passing by reference.
boost::shared_ptr<Base> b = boost::dynamic_pointer_cast<Base>(d);
test(b);
return 0;
}
I'll assume that you are familiar with premature optimization and are asking this either for academic purposes or because you have isolated some pre-existing code that is under-performing.
Passing by reference is okay
Passing by const reference is better, and can usually be used, as it does not force const-ness on the object pointed to.
You are not at risk of losing the pointer due to using a reference. That reference is evidence that you have a copy of the smart pointer earlier in the stack and only one thread owns a call stack, so that pre-existing copy isn't going away.
Using references is often more efficient for the reasons you mention, but not guaranteed. Remember that dereferencing an object can take work too. Your ideal reference-usage scenario would be if your coding style involves many small functions, where the pointer would get passed from function to function to function before being used.
You should always avoid storing your smart pointer as a reference. Your Class::take_copy_of_sp(&sp) example shows correct usage for that.
Assuming we are not concerned with const correctness (or more, you mean to allow the functions to be able to modify or share ownership of the data being passed in), passing a boost::shared_ptr by value is safer than passing it by reference as we allow the original boost::shared_ptr to control it's own lifetime. Consider the results of the following code...
void FooTakesReference( boost::shared_ptr< int > & ptr )
{
ptr.reset(); // We reset, and so does sharedA, memory is deleted.
}
void FooTakesValue( boost::shared_ptr< int > ptr )
{
ptr.reset(); // Our temporary is reset, however sharedB hasn't.
}
void main()
{
boost::shared_ptr< int > sharedA( new int( 13 ) );
boost::shared_ptr< int > sharedB( new int( 14 ) );
FooTakesReference( sharedA );
FooTakesValue( sharedB );
}
From the example above we see that passing sharedA by reference allows FooTakesReference to reset the original pointer, which reduces it's use count to 0, destroying it's data. FooTakesValue, however, can't reset the original pointer, guaranteeing sharedB's data is still usable. When another developer inevitably comes along and attempts to piggyback on sharedA's fragile existence, chaos ensues. The lucky sharedB developer, however, goes home early as all is right in his world.
The code safety, in this case, far outweighs any speed improvement copying creates. At the same time, the boost::shared_ptr is meant to improve code safety. It will be far easier to go from a copy to a reference, if something requires this kind of niche optimization.
Sandy wrote: "It seems that all the pros and cons here can actually be generalised to ANY type passed by reference not just shared_ptr."
True to some extent, but the point of using shared_ptr is to eliminate concerns regarding object lifetimes and to let the compiler handle that for you. If you're going to pass a shared pointer by reference and allow clients of your reference-counted-object call non-const methods that might free the object data, then using a shared pointer is almost pointless.
I wrote "almost" in that previous sentence because performance can be a concern, and it 'might' be justified in rare cases, but I would also avoid this scenario myself and look for all possible other optimization solutions myself, such as to seriously look at adding another level of indirection, lazy evaluation, etc..
Code that exists past it's author, or even post it's author's memory, that requires implicit assumptions about behavior, in particular behavior about object lifetimes, requires clear, concise, readable documentation, and then many clients won't read it anyway! Simplicity almost always trumps efficiency, and there are almost always other ways to be efficient. If you really need to pass values by reference to avoid deep copying by copy constructors of your reference-counted-objects (and the equals operator), then perhaps you should consider ways to make the deep-copied data be reference counted pointers that can be copied quickly. (Of course, that's just one design scenario that might not apply to your situation).
I used to work in a project that the principle was very strong about passing smart pointers by value. When I was asked to do some performance analysis - I found that for increment and decrement of the reference counters of the smart pointers the application spends between 4-6% of the utilized processor time.
If you want to pass the smart pointers by value just to avoid having issues in weird cases as described from Daniel Earwicker make sure you understand the price you paying for it.
If you decide to go with a reference the main reason to use const reference is to make it possible to have implicit upcasting when you need to pass shared pointer to object from class that inherits the class you use in the interface.
In addition to what litb said, I'd like to point out that it's probably to pass by const reference in the second example, that way you are sure you don't accidentally modify it.
struct A {
shared_ptr<Message> msg;
shared_ptr<Message> * ptr_msg;
}
pass by value:
void set(shared_ptr<Message> msg) {
this->msg = msg; /// create a new shared_ptr, reference count will be added;
} /// out of method, new created shared_ptr will be deleted, of course, reference count also be reduced;
pass by reference:
void set(shared_ptr<Message>& msg) {
this->msg = msg; /// reference count will be added, because reference is just an alias.
}
pass by pointer:
void set(shared_ptr<Message>* msg) {
this->ptr_msg = msg; /// reference count will not be added;
}
Every code piece must carry some sense. If you pass a shared pointer by value everywhere in the application, this means "I am unsure about what's going on elsewhere, hence I favour raw safety". This is not what I call a good confidence sign to other programmers who could consult the code.
Anyway, even if a function gets a const reference and you are "unsure", you can still create a copy of the shared pointer at the head of the function, to add a strong reference to the pointer. This could also be seen as a hint about the design ("the pointer could be modified elsewhere").
So yes, IMO, the default should be "pass by const reference".
Related
The system programming language Rust uses the ownership paradigm to ensure at compile time with zero cost for the runtime when a resource has to be freed.
In C++ we commonly use smart pointers to achieve the same goal of hiding the complexity of managing resource allocation. There are a couple of differences though:
In Rust there is always only one owner, whereas C++ shared_ptr can easily leak ownership.
In Rust we can borrow references we do not own, whereas C++ unique_ptr cannot be shared in a safe way via weak_ptr and lock().
Reference counting of shared_ptr is costly.
My question is: How can we emulate the ownership paradigm in C++ within the following constraints:
Only one owner at any time
Possibility to borrow a pointer and use it temporarily without fear of the resource going out of scope (observer_ptr is useless for this)
As much compile-time checks as possible.
Edit: Given the comments so far, we can conclude:
No compile-time support for this (I was hoping for some decltype/template magic unknown to me) in the compilers. Might be possible using static analysis elsewhere (taint?)
No way to get this without reference counting.
No standard implementation to distinguish shared_ptrs with owning or borrowing semantic
Could roll your own by creating wrapper types around shared_ptr and weak_ptr:
owned_ptr: non-copyable, move-semantics, encapsulates shared_ptr, access to borrowed_ptr
borrowed_ptr: copyable, encapsulates weak_ptr, lock method
locked_ptr: non-copyable, move-semantics, encapsulates shared_ptr from locking weak_ptr
You can't do this with compile-time checks at all. The C++ type system is lacking any way to reason about when an object goes out of scope, is moved, or is destroyed — much less turn this into a type constraint.
What you could do is have a variant of unique_ptr that keeps a counter of how many "borrows" are active at run time. Instead of get() returning a raw pointer, it would return a smart pointer that increments this counter on construction and decrements it on destruction. If the unique_ptr is destroyed while the count is non-zero, at least you know someone somewhere did something wrong.
However, this is not a fool-proof solution. Regardless of how hard you try to prevent it, there will always be ways to get a raw pointer to the underlying object, and then it's game over, since that raw pointer can easily outlive the smart pointer and the unique_ptr. It will even sometimes be necessary to get a raw pointer, to interact with an API that requires raw pointers.
Moreover, ownership is not about pointers. Box/unique_ptr allows you to heap allocate an object, but it changes nothing about ownership, life time, etc. compared to putting the same object on the stack (or inside another object, or anywhere else really). To get the same mileage out of such a system in C++, you'd have to make such "borrow counting" wrappers for all objects everywhere, not just for unique_ptrs. And that is pretty impractical.
So let's revisit the compile time option. The C++ compiler can't help us, but maybe lints can? Theoretically, if you implement the whole life time part of the type system and add annotations to all APIs you use (in addition to your own code), that may work.
But it requires annotations for all functions used in the whole program. Including private helper function of third party libraries. And those for which no source code is available. And for those whose implementation that are too complicated for the linter to understand (from Rust experience, sometimes the reason something is safe are too subtle to express in the static model of lifetimes and it has to be written slightly differently to help the compiler). For the last two, the linter can't verify that the annotation is indeed correct, so you're back to trusting the programmer. Additionally, some APIs (or rather, the conditions for when they are safe) can't really be expressed very well in the lifetime system as Rust uses it.
In other words, a complete and practically useful linter for this this would be substantial original research with the associated risk of failure.
Maybe there is a middle ground that gets 80% of the benefits with 20% of the cost, but since you want a hard guarantee (and honestly, I'd like that too), tough luck. Existing "good practices" in C++ already go a long way to minimizing the risks, by essentially thinking (and documenting) the way a Rust programmer does, just without compiler aid. I'm not sure if there is much improvement over that to be had considering the state of C++ and its ecosystem.
tl;dr Just use Rust ;-)
What follows are some examples of ways people have tried to emulate parts of Rust's ownership paradigm in C++, with limited success:
Lifetime safety: Preventing common dangling. The most thorough and rigorous approach, involving several additions to the language to support the necessary annotations. If the effort is still alive (last commit was in 2019), getting this analysis added to a mainstream compiler is probably the most likely route to "borrow checked" C++. Discussed on IRLO.
Borrowing Trouble: The Difficulties Of A C++ Borrow-Checker
Is it possible to achieve Rust's ownership model with a generic C++ wrapper?
C++Now 2017: Jonathan Müller “Emulating Rust's borrow checker in C++" (video) and associated code, about which the author says, "You're not actually supposed to use that, if you need such a feature, you should use Rust."
Emulating the Rust borrow checker with C++ move-only types and part II (which is actually more like emulating RefCell than the borrow checker, per se)
I believe you can get some of the benefits of Rust by enforcing some strict coding conventions (which is after all what you'd have to do anyway, since there's no way with "template magic" to tell the compiler not to compile code that doesn't use said "magic"). Off the top of my head, the following could get you...well...kind of close, but only for single-threaded applications:
Never use new directly; instead, use make_unique. This goes partway toward ensuring that heap-allocated objects are "owned" in a Rust-like manner.
"Borrowing" should always be represented via reference parameters to function calls. Functions that take a reference should never create any sort of pointer to the refered-to object. (It may in some cases be necessary to use a raw pointer as a paramter instead of a reference, but the same rule should apply.)
Note that this works for objects on the stack or on the heap; the function shouldn't care.
Transfer of ownership is, of course, represented via R-value references (&&) and/or R-value references to unique_ptrs.
Unfortunately, I can't think of any way to enforce Rust's rule that mutable references can only exist anywhere in the system when there are no other extant references.
Also, for any kind of parallelism, you would need to start dealing with lifetimes, and the only way I can think of to permit cross-thread lifetime management (or cross-process lifetime management using shared memory) would be to implement your own "ptr-with-lifetime" wrapper. This could be implemented using shared_ptr, because here, reference-counting would actually be important; it's still a bit of unnecessary overhead, though, because reference-count blocks actually have two reference counters (one for all the shared_ptrs pointing to the object, another for all the weak_ptrs). It's also a little... odd, because in a shared_ptr scenario, everybody with a shared_ptr has "equal" ownership, whereas in a "borrowing with lifetime" scenario, only one thread/process should actually "own" the memory.
I think one could add a degree of compile-time introspection and custom sanitisation by introducing custom wrapper classes that track ownership and borrowing.
The code below is a hypothetical sketch, and not a production solution which would need a lot more tooling, e.g. #def out the checks when not sanitising. It uses a very naive lifetime checker to 'count' borrow errors in ints, in this instance during compilation. static_asserts are not possible as the ints are not constexpr, but the values are there and can be interrogated before runtime. I believe this answers your 3 constraints, regardless of whether these are heap allocations, so I'm using a simple int type to demo the idea, rather than a smart pointer.
Try uncommenting the use cases in main() below (run in compiler explorer with -O3 to see boilerplate optimise away), and you'll see the warning counters change.
https://godbolt.org/z/Pj4WMr
// Hypothetical Rust-like owner / borrow wrappers in C++
// This wraps types with data which is compiled away in release
// It is not possible to static_assert, so this uses static ints to count errors.
#include <utility>
// Statics to track errors. Ideally these would be static_asserts
// but they depen on Owner::has_been_moved which changes during compilation.
static int owner_already_moved = 0;
static int owner_use_after_move = 0;
static int owner_already_borrowed = 0;
// This method exists to ensure static errors are reported in compiler explorer
int get_fault_count() {
return owner_already_moved + owner_use_after_move + owner_already_borrowed;
}
// Storage for ownership of a type T.
// Equivalent to mut usage in Rust
// Disallows move by value, instead ownership must be explicitly moved.
template <typename T>
struct Owner {
Owner(T v) : value(v) {}
Owner(Owner<T>& ov) = delete;
Owner(Owner<T>&& ov) {
if (ov.has_been_moved) {
owner_already_moved++;
}
value = std::move(ov.value);
ov.has_been_moved = true;
}
T& operator*() {
if (has_been_moved) {
owner_use_after_move++;
}
return value;
}
T value;
bool has_been_moved{false};
};
// Safely borrow a value of type T
// Implicit constuction from Owner of same type to check borrow is safe
template <typename T>
struct Borrower {
Borrower(Owner<T>& v) : value(v.value) {
if (v.has_been_moved) {
owner_already_borrowed++;
}
}
const T& operator*() const {
return value;
}
T value;
};
// Example of function borrowing a value, can only read const ref
static void use(Borrower<int> v) {
(void)*v;
}
// Example of function taking ownership of value, can mutate via owner ref
static void use_mut(Owner<int> v) {
*v = 5;
}
int main() {
// Rather than just 'int', Owner<int> tracks the lifetime of the value
Owner<int> x{3};
// Borrowing value before mutating causes no problems
use(x);
// Mutating value passes ownership, has_been_moved set on original x
use_mut(std::move(x));
// Uncomment for owner_already_borrowed = 1
//use(x);
// Uncomment for owner_already_moved = 1
//use_mut(std::move(x));
// Uncomment for another owner_already_borrowed++
//Borrower<int> y = x;
// Uncomment for owner_use_after_move = 1;
//return *x;
}
The use of static counters is obviously not desirable, but it is not possible to use static_assert as owner_already_moved is non-const. The idea is these statics give hints to errors appearing, and in final production code they could be #defed out.
You can use an enhanced version of a unique_ptr (to enforce a unique owner) together with an enhanced version of observer_ptr (to get a nice runtime exception for dangling pointers, i.e. if the original object maintained through unique_ptr went out of scope). The Trilinos package implements this enhanced observer_ptr, they call it Ptr. I have implemented the enhanced version of unique_ptr here (I call it UniquePtr): https://github.com/certik/trilinos/pull/1
Finally, if you want the object to be stack allocated, but still be able to pass safe references around, you need to use the Viewable class, see my initial implementation here: https://github.com/certik/trilinos/pull/2
This should allow you to use C++ just like Rust for pointers, except that in Rust you get a compile time error, while in C++ you get a runtime exception. Also, it should be noted, that you only get a runtime exception in Debug mode. In Release mode, the classes do not do these checks, so they are as fast as in Rust (essentially as fast as raw pointers), but then they can segfault. So one has to make sure the whole test suite runs in Debug mode.
I recently came across some C++ code that looked like this:
class SomeObject
{
private:
// NOT a pointer
BigObject foobar;
public:
BigObject * getFoobar() const
{
return &foobar;
}
};
I asked the programmer why he didn't just make foobar a pointer, and he said that this way he didn't have to worry about allocating/deallocating memory. I asked if he considered using some smart pointer, he said this worked just as well.
Is this bad practice? It seems very hackish.
That's perfectly reasonable, and not "hackish" in any way; although it might be considered better to return a reference to indicate that the object definitely exists. A pointer might be null, and might lead some to think that they should delete it after use.
The object has to exist somewhere, and existing as a member of an object is usually as good as existing anywhere else. Adding an extra level of indirection by dynamically allocating it separately from the object that owns it makes the code less efficient, and adds the burden of making sure it's correctly deallocated.
Of course, the member function can't be const if it returns a non-const reference or pointer to a member. That's another advantage of making it a member: a const qualifier on SomeObject applies to its members too, but doesn't apply to any objects it merely has a pointer to.
The only danger is that the object might be destroyed while someone still has a pointer or reference to it; but that danger is still present however you manage it. Smart pointers can help here, if the object lifetimes are too complex to manage otherwise.
You are returning a pointer to a member variable not a reference. This is bad design.
Your class manages the lifetime of foobar object and by returning a pointer to its members you enable the consumers of your class to keep using the pointer beyond the lifetime of SomeObject object. And also it enables the users to change the state of SomeObject object as they wish.
Instead you should refactor your class to include the operations that would be done on the foobar in SomeObject class as methods.
ps. Consider naming your classes properly. When you define it is a class. When you instantiate, then you have an object of that class.
It's generally considered less than ideal to return pointers to internal data at all; it prevents the class from managing access to its own data. But if you want to do that anyway I see no great problem here; it simplifies the management of memory.
Is this bad practice? It seems very hackish.
It is. If the class goes out of scope before the pointer does, the member variable will no longer exist, yet a pointer to it still exists. Any attempt to dereference that pointer post class destruction will result in undefined behaviour - this could result in a crash, or it could result in hard to find bugs where arbitrary memory is read and treated as a BigObject.
if he considered using some smart pointer
Using smart pointers, specifically std::shared_ptr<T> or the boost version, would technically work here and avoid the potential crash (if you allocate via the shared pointer constructor) - however, it also confuses who owns that pointer - the class, or the caller? Furthermore, I'm not sure you can just add a pointer to an object to a smart pointer.
Both of these two points deal with the technical issue of getting a pointer out of a class, but the real question should be "why?" as in "why are you returning a pointer from a class?" There are cases where this is the only way, but more often than not you don't need to return a pointer. For example, suppose that variable needs to be passed to a C API which takes a pointer to that type. In this case, you would probably be better encapsulating that C call in the class.
As long as the caller knows that the pointer returned from getFoobar() becomes invalid when the SomeObject object destructs, it's fine. Such provisos and caveats are common in older C++ programs and frameworks.
Even current libraries have to do this for historical reasons. e.g. std::string::c_str, which returns a pointer to an internal buffer in the string, which becomes unusable when the string destructs.
Of course, that is difficult to ensure in a large or complex program. In modern C++ the preferred approach is to give everything simple "value semantics" as far as possible, so that every object's life time is controlled by the code that uses it in a trivial way. So there are no naked pointers, no explicit new or delete calls scattered around your code, etc., and so no need to require programmers to manually ensure they are following the rules.
(And then you can resort to smart pointers in cases where you are totally unable to avoid shared responsibility for object lifetimes.)
Two unrelated issues here:
1) How would you like your instance of SomeObject to manage the instance of BigObject that it needs? If each instance of SomeObject needs its own BigObject, then a BigObject data member is totally reasonable. There are situations where you'd want to do something different, but unless that situation arises stick with the simple solution.
2) Do you want to give users of SomeObject direct access to its BigObject? By default the answer here would be "no", on the basis of good encapsulation. But if you do want to, then that doesn't change the assessment of (1). Also if you do want to, you don't necessarily need to do so via a pointer -- it could be via a reference or even a public data member.
A third possible issue might arise that does change the assessment of (1):
3) Do you want to give users of SomeObject direct access to an instance of BigObject that they continue using beyond the lifetime of the instance of SomeObject that they got it from? If so then of course a data member is no good. The proper solution might be shared_ptr, or for SomeObject::getFooBar to be a factory that returns a different BigObject each time it's called.
In summary:
Other than the fact it doesn't compile (getFooBar() needs to return const BigObject*), there is no reason so far to suppose that this code is wrong. Other issues could arise that make it wrong.
It might be better style to return const & rather than const *. Which you return has no bearing on whether foobar should be a BigObject data member.
There is certainly no "just" about making foobar a pointer or a smart pointer -- either one would necessitate extra code to create an instance of BigObject to point to.
I am having my first attempt at using C++11 unique_ptr; I am replacing a polymorphic raw pointer inside a project of mine, which is owned by one class, but passed around quite frequently.
I used to have functions like:
bool func(BaseClass* ptr, int other_arg) {
bool val;
// plain ordinary function that does something...
return val;
}
But I soon realized that I wouldn't be able to switch to:
bool func(std::unique_ptr<BaseClass> ptr, int other_arg);
Because the caller would have to handle the pointer ownership to the function, what I don't want to. So, what is the best solution to my problem?
I though of passing the pointer as reference, like this:
bool func(const std::unique_ptr<BaseClass>& ptr, int other_arg);
But I feel very uncomfortable in doing so, firstly because it seems non instinctive to pass something already typed as _ptr as reference, what would be a reference of a reference. Secondly because the function signature gets even bigger. Thirdly, because in the generated code, it would be necessary two consecutive pointer indirections to reach my variable.
If you want the function to use the pointee, pass a reference to it. There's no reason to tie the function to work only with some kind of smart pointer:
bool func(BaseClass& base, int other_arg);
And at the call site use operator*:
func(*some_unique_ptr, 42);
Alternatively, if the base argument is allowed to be null, keep the signature as is, and use the get() member function:
bool func(BaseClass* base, int other_arg);
func(some_unique_ptr.get(), 42);
The advantage of using std::unique_ptr<T> (aside from not having to remember to call delete or delete[] explicitly) is that it guarantees that a pointer is either nullptr or it points to a valid instance of the (base) object. I will come back to this after I answer your question, but the first message is DO use smart pointers to manage the lifetime of dynamically allocated objects.
Now, your problem is actually how to use this with your old code.
My suggestion is that if you don't want to transfer or share ownership, you should always pass references to the object. Declare your function like this (with or without const qualifiers, as needed):
bool func(BaseClass& ref, int other_arg) { ... }
Then the caller, which has a std::shared_ptr<BaseClass> ptr will either handle the nullptr case or it will ask bool func(...) to compute the result:
if (ptr) {
result = func(*ptr, some_int);
} else {
/* the object was, for some reason, either not created or destroyed */
}
This means that any caller has to promise that the reference is valid and that it will continue to be valid throughout the execution of the function body.
Here is the reason why I strongly believe you should not pass raw pointers or references to smart pointers.
A raw pointer is only a memory address. Can have one of (at least) 4 meanings:
The address of a block of memory where your desired object is located. (the good)
The address 0x0 which you can be certain is not dereferencable and might have the semantics of "nothing" or "no object". (the bad)
The address of a block of memory which is outside of the addressable space of your process (dereferencing it will hopefully cause your program to crash). (the ugly)
The address of a block of memory which can be dereferenced but which doesn't contain what you expect. Maybe the pointer was accidentally modified and now it points to another writable address (of a completely other variable within your process). Writing to this memory location will cause lots of fun to happen, at times, during the execution, because the OS will not complain as long as you are allowed to write there. (Zoinks!)
Correctly using smart pointers alleviates the rather scary cases 3 and 4, which are usually not detectable at compile time and which you generally only experience at runtime when your program crashes or does unexpected things.
Passing smart pointers as arguments has two disadvantages: you cannot change the const-ness of the pointed object without making a copy (which adds overhead for shared_ptr and is not possible for unique_ptr), and you are still left with the second (nullptr) meaning.
I marked the second case as (the bad) from a design perspective. This is a more subtle argument about responsibility.
Imagine what it means when a function receives a nullptr as its parameter. It first has to decide what to do with it: use a "magical" value in place of the missing object? change behavior completely and compute something else (which doesn't require the object)? panic and throw an exception? Moreover, what happens when the function takes 2, or 3 or even more arguments by raw pointer? It has to check each of them and adapt its behavior accordingly. This adds a whole new level on top of input validation for no real reason.
The caller should be the one with enough contextual information to make these decisions, or, in other words, the bad is less frightening the more you know. The function, on the other hand, should just take the caller's promise that the memory it is pointed to is safe to work with as intended. (References are still memory addresses, but conceptually represent a promise of validity.)
I agree with Martinho, but I think it is important to point out the ownership semantics of a pass-by-reference. I think the correct solution is to use a simple pass-by-reference here:
bool func(BaseClass& base, int other_arg);
The commonly accepted meaning of a pass-by-reference in C++ is like as if the caller of the function tells the function "here, you can borrow this object, use it, and modify it (if not const), but only for the duration of the function body." This is, in no way, in conflict with the ownership rules of the unique_ptr because the object is merely being borrowed for a short period of time, there is no actual ownership transfer happening (if you lend your car to someone, do you sign the title over to him?).
So, even though it might seem bad (design-wise, coding practices, etc.) to pull the reference (or even the raw pointer) out of the unique_ptr, it actually is not because it is perfectly in accordance with the ownership rules set by the unique_ptr. And then, of course, there are other nice advantages, like clean syntax, no restriction to only objects owned by a unique_ptr, and so.
Personally, I avoid pulling a reference from a pointer/smart pointer. Because what happens if the pointer is nullptr? If you change the signature to this:
bool func(BaseClass& base, int other_arg);
You might have to protect your code from null pointer dereferences:
if (the_unique_ptr)
func(*the_unique_ptr, 10);
If the class is the sole owner of the pointer, the second of Martinho's alternative seems more reasonable:
func(the_unique_ptr.get(), 10);
Alternatively, you can use std::shared_ptr. However, if there's one single entity responsible for delete, the std::shared_ptr overhead does not pay off.
Let's say I have a class with a method that returns a shared_ptr.
What are the possible benefits and drawbacks of returning it by reference or by value?
Two possible clues:
Early object destruction. If I return the shared_ptr by (const) reference, the reference counter is not incremented, so I incur the risk of having the object deleted when it goes out of scope in another context (e.g. another thread). Is this correct? What if the environment is single-threaded, can this situation happen as well?
Cost. Pass-by-value is certainly not free. Is it worth avoiding it whenever possible?
Thanks everybody.
Return smart pointers by value.
As you've said, if you return it by reference, you won't properly increment the reference count, which opens up the risk of deleting something at the improper time. That alone should be enough reason to not return by reference. Interfaces should be robust.
The cost concern is nowadays moot thanks to return value optimization (RVO), so you won't incur a increment-increment-decrement sequence or something like that in modern compilers. So the best way to return a shared_ptr is to simply return by value:
shared_ptr<T> Foo()
{
return shared_ptr<T>(/* acquire something */);
};
This is a dead-obvious RVO opportunity for modern C++ compilers. I know for a fact that Visual C++ compilers implement RVO even when all optimizations are turned off. And with C++11's move semantics, this concern is even less relevant. (But the only way to be sure is to profile and experiment.)
If you're still not convinced, Dave Abrahams has an article that makes an argument for returning by value. I reproduce a snippet here; I highly recommend that you go read the entire article:
Be honest: how does the following code make you feel?
std::vector<std::string> get_names();
...
std::vector<std::string> const names = get_names();
Frankly, even though I should know better, it makes me nervous. In principle, when get_names()
returns, we have to copy a vector of strings. Then, we need to copy it again when we initialize
names, and we need to destroy the first copy. If there are N strings in the vector, each copy
could require as many as N+1 memory allocations and a whole slew of cache-unfriendly data accesses > as the string contents are copied.
Rather than confront that sort of anxiety, I’ve often fallen back on pass-by-reference to avoid
needless copies:
get_names(std::vector<std::string>& out_param );
...
std::vector<std::string> names;
get_names( names );
Unfortunately, this approach is far from ideal.
The code grew by 150%
We’ve had to drop const-ness because we’re mutating names.
As functional programmers like to remind us, mutation makes code more complex to reason about by undermining referential transparency and equational reasoning.
We no longer have strict value semantics for names.
But is it really necessary to mess up our code in this way to gain efficiency? Fortunately, the answer turns out to be no (and especially not if you are using C++0x).
Regarding any smart pointer (not just shared_ptr), I don't think it's ever acceptable to return a reference to one, and I would be very hesitant to pass them around by reference or raw pointer. Why? Because you cannot be certain that it will not be shallow-copied via a reference later. Your first point defines the reason why this should be a concern. This can happen even in a single-threaded environment. You don't need concurrent access to data to put bad copy semantics in your programs. You don't really control what your users do with the pointer once you pass it off, so don't encourage misuse giving your API users enough rope to hang themselves.
Secondly, look at your smart pointer's implementation, if possible. Construction and destruction should be darn close to negligible. If this overhead isn't acceptable, then don't use a smart pointer! But beyond this, you will also need to examine the concurrency architecture that you've got, because mutually exclusive access to the mechanism that tracks the uses of the pointer is going to slow you down more than mere construction of the shared_ptr object.
Edit, 3 years later: with the advent of the more modern features in C++, I would tweak my answer to be more accepting of cases when you've simply written a lambda that never lives outside of the calling function's scope, and isn't copied somewhere else. Here, if you wanted to save the very minimal overhead of copying a shared pointer, it would be fair and safe. Why? Because you can guarantee that the reference will never be mis-used.
Please suppose I have a function that accepts a pointer as a parameter. This function can throw an exception, as it uses std::vector<>::push_back() to manage the lifecycle of this pointer. If I declare it like this:
void manage(T *ptr);
and call it like this:
manage(new T());
if it throws an exception pushing the pointer into the std::vector<>, I effectively have got a memory leak, haven't I?
Would declaring the function like this:
void manage(std::auto_ptr<T> ptr);
solve my problem?
I would expect it to first allocate the std::auto_ptr on the stack (something that I guess couldn't ever throw an exception) and let it acquire ownership over the pointer. Safe.
Then, inside the function, I would push the raw pointer into the std::vector<>, which is also safe: if this fails, the pointer will not be added, but the smart pointer will still be owning the pointer so it will be destroyed. If the pushing succeeds, I would remove the smart pointer's ownership over that pointer and return: this can't throw an exception, so it will always be fine.
Are my theories correct?
-- Edit --
No, I think I can't do that. Doing that would require taking a non-const reference to rvalue (to take away ownership from the smart pointer). I would have to write
std::auto_ptr<T> ptr(new T());
manage(ptr);
for that to work, something that's quite inconvient in my case. I'm writing this so that I can implement RAII without polluting much the code. Doing that thing would not help, then. That would be catch 22.
-- Edit 2 --
Pulling what Jason Orendorff said down there here for quick reference by readers, the ultimate solution seems to be the following:
void manage(T *ptr)
{
std::auto_ptr<T> autoPtr(ptr);
vector.push_back(ptr);
autoPtr.release();
}
This solves the problem of the useless non-const reference to rvalue.
When I finish this class I'm coding I'll post it back here in case anyone finds it useful.
-- Edit 3 --
Ok, there has been a lot of discussion here, and there are key points that I should have clarified before. In general, when I post at stackoverflow, I try to explain the reason behind my questions and, in general, that is completely useless. So this time I thought I should go straight to the point. Turns out it didn't work quite well XD
Unfortunately my brain is deadlocking now, so I think I won't even be able to explain correctly what I first thought to accomplish my goals. I am trying to find a good solution for atomic operations and exception-safe code writing that fits lots of cases, but really, I can't handle it XD I think this is the kind of thing I will only master with time.
I am a really new C++ programmer and my focus is game development. When an exception is thrown in a game engine, it is the end of execution. The system will free all the memory for my process, so it doesn't really matter if one or two pointers leak here and there. Now that I am developing a server application, I'm finding it hard to deal with exceptions, because an exception can't crash the server; it must "crash the request".
That is, "Well, client, unfortunately the developers didn't foresee this condition, so you'll have to try it later (up to here, it is basically the same thing as with a game engine, nothing is being repared, only it is isolated to the context of just a request, and not the whole process). But don't panic, as everything was left in a valid state (here is one of the differences, however. The process isn't terminated, so the operating system can't free the resources for you; furthermore, you have to pay attention to undo the operations so far, so that you don't lock completely an user's account, for example, or even a full service provided by the server).".
I will just code more and more and note down my problems so that I can write a better question next time. I wasn't prepared to ask this now, I'm really sorry.
Thanks a lot for your replies, I really like stackoverflow. It is absolutely amazing how fast my questions are answered and how enlightening your answers are. Thanks.
You could do it this way, but you still have to cleanup in the event of an exception not being thrown, which seems a little onerous.
If you use something like boost::shared_ptr (I believe something like this is in TR1 libraries as well - as an example see MS's implementation) you could forget about having to cleanup in the event of things going as planned.
To make this work you would need to make your vector accept boost::shared_ptr < T > instance, then you would just let your original instance be cleaned up and it would leave instance in the vector alive in the case that all goes well. In the case things go wrong all boost::shared_ptr instances would be destroyed and you would still end up with no leak.
With smart pointers it's about picking one that suits the task, and in this case shared ownership (or simple ownership transfer) seems to be a goal so there are better candidates than std::auto_ptr on most platforms.
In general, using std::auto_ptr as a type of function argument unambiguously tells the caller that function will take ownership of the object, and will be responsible for deleting it. If your function fits that description, then by all means use auto_ptr there regardless of any other reason.
I think enough discussion has been generated to warrant yet another answer.
Firstly, to answer the actual question, yes, it is absolutely appropriate (and even necessary!) to pass an argument by smart pointer when ownership transfer occurs. Passing by a smart pointer is a common idiom to accomplish that.
void manage(std::auto_ptr<T> t) {
...
}
...
// The reader of this code clearly sees ownership transfer.
std::auto_ptr<T> t(new T);
manage(t);
Now, there is a very good reason why all smart pointers have explicit constructors. Consider the following function (mentally replace std::auto_ptr with boost::shared_ptr if it tickles your fancy):
void func(std::auto_ptr<Widget> w, const Gizmo& g) {
...
}
If std::auto_ptr had an implicit constructor, suddenly this code would compile:
func(new Widget(), gizmo);
What's wrong with it? Taking almost directly from "Effective C++", Item 17:
func(new Widget(), a_function_that_throws());
Because in C++ order of argument evaluation is undefined, you can very well have arguments evaluated in the following order: new Widget(), a_function_that_throws(), std::auto_ptr constructor. If a function throws, you have a leak.
Therefore all resources that will be released need to be wrapped upon construction in RAII classes before being passed into a function. This means all smart pointer have to be constructed before passing them as an argument to a function. Making smart pointers be copy-constructible with a const reference or implicitly-constructible would encourage unsafe code. Explicit construction enforces safer code.
Now, why shouldn't you do something like this?
void manage(T *ptr)
{
std::auto_ptr<T> autoPtr(ptr);
vector.push_back(ptr);
autoPtr.release();
}
As already mentioned, the interface idioms tell me that I can pass a pointer that I own and I get to delete it. So, nothing stops me from doing this:
T item;
manage(&t);
// or
manage(&t_class_member);
Which is disastrous, of course. But you'd say "of course I know what the interface means, I'd never use it that way". However you may want to add an extra argument to a function later. Or someone (not you, or you 3 years later) comes along this code, they may not see it the same way as you do.
This hypothetical "someone else" may only see a header without a comment and (rightly) presume the lack of ownership transfer.
They may see how this function is used in some other code and replicate the usage without looking at the header.
They may use code auto-completion to invoke a function and not read the comment or the function and presume the lack of ownership transfer.
They may write a function that wraps you manage function and yet someone else will use the wrapper function and will miss the documentation of the original function.
They may try to "extend" you code so that all the old code compiles (and automatically becomes unsafe):
void manage(T *t, const std::string tag = some_function_that_throws());
As you can see, explicit construction of a smart pointer makes it much harder to write unsafe code in the above cases.
Therefore, I would not recommend going against decades of C++ expertise to make perceivably "nicer" and "fun" API.
My 2c.
Yes, that's fine. (See edit below.) (jkp might be seeing something I've missed, but I don't think you "still have to clean up in the event of an exception being thrown" because, as you say, in that case the auto_ptr will delete the object for you.)
But I think it would be better still to hide the auto_ptr shenanigans from the caller:
void manage(T *t) {
std::auto_ptr<T> p(t); // to delete t in case push_back throws
vec.push_back(t);
p.release();
}
EDIT: I initially wrote "Yes, that's fine," referring to the original manage(auto_ptr<T>) plan, but I tried it and found that it doesn't work. The constructor auto_ptr<T>::auto_ptr(T *) is explicit. The compiler wouldn't let you write manage(new T) because it can't implicitly convert that pointer to an auto_ptr. manage(T *) is a friendlier interface anyway!