Say I have a map of this form:
(def m {:a "A" :b "B"})
and I want to do something if :a and :b are both not nil, I can do:
(if-let [a (:a m)]
(if-let [b (:b m)]
... etc ))
or
(if (and (:a m) (:b m))
(let [{a :a b :b} m]
... etc ))
or even
(if (every? m [:a :b])
(let [{a :a b :b} m]
... etc ))
Is there a neater (ie one-line) way to achieve this?
I think a macro may be necessary here to create the behavior you want. I have never written one (yet) but the following representation suggests to me that this might be fairly straightforward:
(let [{:keys [a b]} m]
(when (every? identity [a b])
(println (str "Processing " a " and " b))))
Using the :keys form of destructuring binding and every? enables a single specification of a vector of keys to destructure and check, and the bound locals are available in a following code block.
This could be used to make a macro such as (when-every? [keys coll] code-with-bindings)
I may update this answer with the macro code if I can take the time to work out how to do it.
You could use map destructuring -- a useful feature of Clojure. This also exploits the facts that and is short-circuiting, and any key in the first map not found in the second map gets nil, a falsy value:
(let [{a :a b :b} {:a 1 :b "blah"}]
(and a b (op a b)))
Okay, so it's two lines instead of one .... also this doesn't distinguish between nil and other falsy values.
not-any? is a nice shortcut for this:
user> (not-any? nil? [(m :a) (m :b)])
true
user> (not-any? nil? [(m :a) (m :b) (m :d)])
false
user>
I am not quite sure what you want to do if the keys have non-nil values or whether you want non-nil keys or values returned. So, I just solved it for non-nil keys being returned.
You'd use the following as an intermediate step as part of a final solution.
I'm showing all the steps I used, not to be pedantic, but to provide a complete answer. The namespace is repl-test. It has a main associated with it.
repl-test.core=> (def m {:a "A" :b "B" :c nil})
#'repl-test.core/m
repl-test.core=> (keys m)
(:a :c :b)
and then finally:
; Check key's value to determine what is filtered through.
repl-test.core=> (filter #(if-not (nil? (%1 m)) (%1 m)) (keys m) )
(:a :b)
By the way I found an ugly one-liner, which works because and returns the last thing in its argument list if they're all true:
(if-let [[a b] (and (:a m) (:b m) [(:a m)(:b m)])]
(println "neither " a " nor " b " is falsey")
(println "at least one of " a " or " b " is falsey"))
Related
I am totally new to clojure.
I have a JSON like: { "1": true, "2": false, "3": true, "4": false }
I want to create an array of keys for which the value is true in clojure. In this example the array should be ["1", "3"].
Please help me. Any help would be appreciated.
there are also couple of short and simple snippets for that:
user> (filter m (keys m))
;;=> ("1" "3")
user> (keep (fn [[k v]] (when v k)) m)
;;=> ("1" "3")
user> (for [[k v] m :when v] k)
;;=> ("1" "3")
If you're fine with using a vector instead of an array (since you're usually using vectors in Clojure anyway), you can do something like.
(defn keys-for-truthy-vals [m]
(->> m (filter val) (mapv key)))
Note The mapv is only so the map call returns a vector. If you want a seq, just use map.
The same as already provided, just staying in maps.
(keys (filter val m))
If your map is a Something like (->> (filter (fn [[k v]] v) a) (map (fn [[k v]] k))) will work. You can't do it with just a map because you need to drop certain values, so there will need to be some reducing or filtering.
There is built-in function in the Tupelo library for this:
(submap-by-vals map-arg keep-vals & opts)
Returns a new map containing entries with the specified vals. Throws for missing vals,
unless `:missing-ok` is specified. Usage:
(submap-by-vals {:a 1 :b 2 :A 1} #{1 } ) => {:a 1 :A 1}
(submap-by-vals {:a 1 :b 2 :A 1} #{1 9} :missing-ok ) => {:a 1 :A 1}
You could then just use the keys function on the resulting map.
Maybe this?
(->> foo (filter second) keys)
where foo is a map.
Is there a convenient way in ClojureScript to pretty print a nested hash-map in the way that the whole tree-structure becomes immediately visible.
For instance a map like this
(def my-map {:a {:b 1 :c 9} :b {:d 8 :e {:f 2 :g 3 :h 4}} :c 10})
should be printed like this:
{:a {:b 1
:c 9}
:b {:d 8
:e {:f 2
:g 3
:h 4}}
:c 10}
EDIT: There might also be vectors in the map. The usecase is just to inspect larger data structures during development.
There is no built-in way to do it. You might come close to what you want by using cljs.pprint and setting cljs.pprint/*print-right-margin* to a low value.
I would recommend to take a look at a small library shodan which provides a very useful inspect function:
(require '[shodan.inspection :refer [inspect]])
(inspect {:aaaaaa 1
:bbbbbb {:ccc 2
:dddddd [1 2 3 4 5]}})
It won't print anything in your CLJS REPL but will provide a handy view in your browser's console:
You can collapse and expand nested datastructures - it basically does what you asked for.
As a personal challenge I wrote the following code:
(enable-console-print!)
(def atomic? (complement coll?))
(def padding #(apply str (repeat % " ")))
(def tabulate #(apply str (repeat % "\t")))
(def strcat #(->> (apply concat %&) (apply str)))
(defn my-max-key [x] (if (empty? x) [""] (apply (partial max-key count) x)))
(defn longest-key [m] (->> m keys (filter atomic?) (map str) my-max-key))
(def length (comp count str))
(def not-map? (complement map?))
(def nested? #(some coll? %))
(def join #(apply str (interpose % %2)))
(def join-lines (partial join "\n"))
(defn has-atomic? [coll] (some atomic? coll))
(defn diff-key-lengths [key1 key2] (- (length key1) (length key2)))
(defn convert
([thing] (convert -1 thing))
([depth thing]
(defn convert-items []
(defn convert-seq []
(conj []
(map (partial convert (inc depth)) thing)
""))
(defn string-horizontally [[key value]]
(str (tabulate (inc depth))
key
(padding (diff-key-lengths (longest-key thing) key))
" → "
value))
(defn string-vertically [[key value]]
(str (convert (inc depth) key) "\n"
(convert (+ 2 depth) "↓") "\n"
(convert (inc depth) value) "\n"))
(defn convert-kv [[key value]]
(if (nested? [key value])
(string-vertically [key value])
(string-horizontally [key value])))
(cond (atomic? thing)
[(str (tabulate depth) thing)]
(not-map? thing)
(convert-seq)
(map? thing)
(map convert-kv thing)))
(->> (convert-items) flatten join-lines)))
(def sample-input [["the first thing in this nested vector"]
{{"this is a key in a nested map"
"that points to me!!!"}
{"and that entire map points to this map!!!"
"cool!!!"
"but it gets cooler cause..."
"the value's line up!!!"}}])
(->> sample-input convert println)
The terminal output is (psst... the values in a map do line up but I don't think that chrome uses a monospaced font!):
Given a collection"
[{:key "key_1" :value "value_1"}, {:key "key_2" :value "value_2"}]
I would like to convert this to:
{"key_1" "value_1" "key_2" "value_2"}
An function to do this would be:
(defn long->wide [xs]
(apply hash-map (flatten (map vals xs))))
I might simplify this using the threading macro:
(defn long->wide [xs]
(->> xs
(map vals)
(flatten)
(apply hash-map)))
This still requires explicit definition of the function argument which I am not doing anything with other than passing to the first function. I might then rewrite this using comp to remove this:
(def long->wide
(comp (partial apply hash-map) flatten (partial map vals)))
This however requires repeated use of partial which to me is a lot of noise in the function.
Is there a some function in clojure that combines comp and ->> so I can create a higher order function without repeated use of partial, and also which out having to create a new function?
Since many of the answers here already don't answer the original question, but
suggest different approaches, I put that one back up too.
I'd go with reduce and destructuring:
(reduce
(fn [m {:keys [key value]}]
(assoc m key value))
{}
[{:key "key_1" :value "value_1"}, {:key "key_2" :value "value_2"}])
Note, that this will also work with string keys (which you mentioned in the comments) (note :strs):
(reduce
(fn [m {:strs [key value]}]
(assoc m key value))
{}
[{"key" "key_1" "value" "value_1"}, {"key" "key_2" "value" "value_2"}])
Another (point-free) version, when using keywords:
(partial (into {} (map (juxt :key :value))))
Since you mentioned in the comments, that you are using values from a DB, there might also be the chance, that you can switch to just return value tuples. Then the whole operation is just:
(into {} [["key_1" "value_1"]["key_2" "value_2"]])
Also note, that the use of vals on a map and expecting "insertion order" is
dangerous. Small maps are ordered only by accident:
user=> (take 3 (zipmap (range 3) (range 3)))
([0 0] [1 1] [2 2])
user=> (take 3 (zipmap (range 100) (range 100)))
([0 0] [65 65] [70 70])
An other alternative to the nice answers is also:
(apply hash-map (mapcat vals [{:key "key_1" :value "value_1"}, {:key "key_2" :value "value_2"}]))
or:
((comp #(apply hash-map %) #(mapcat vals %)) [{:key "key_1" :value "value_1"}, {:key "key_2" :value "value_2"}])
which are exactly the same.
As with clojure, so many ways to solve most problems.
(partial #(reduce (fn [r m] (assoc r (m :key) (m :value)))
{}
%)))
Not sure if the creation of anonymous functions violates your condition or not but this isn't adding functions to the namespace so I thought I'd throw it out there. This also has the benefit of not requiring the keys in the input maps to be keywords as :key and :value can be replaced with values of any type since the map is in the function position. For example:
(partial #(reduce (fn [r m] (assoc r (m "key") (m "value")))
{}
%)))
An idiomatic way to set default values in clojure is with merge:
;; `merge` can be used to support the setting of default values
(merge {:foo "foo-default" :bar "bar-default"}
{:foo "custom-value"})
;;=> {:foo "custom-value" :bar "bar-default"}
In reality however, often the default values are not simple constants but function calls. Obviously, I'd like to avoid calling the function if it's not going to be used.
So far I'm doing something like:
(defn ensure-uuid [msg]
(if (:uuid msg)
msg
(assoc msg :uuid (random-uuid))))
and apply my ensure-* functions like (-> msg ensure-uuid ensure-xyz).
What would be a more idiomatic way to do this? I'm thinking something like:
(merge-macro {:foo {:bar (expensive-func)} :xyz (other-fn)} my-map)
(associf my-map
[:foo :bar] (expensive-func)
:xyz (other-fn))
You can use delay combined with force.
You can then merge your defaults like
(merge {:foo "foo-default" :bar "bar-default" :uuid (delay (random-uuid))}
{:foo "custom-value" :uuid "abc"})
and access values using
(force (:foo ...))
or
(force (:uuid ...))
random-uuid will then only be called when you actually need the value (and only the first time).
You can wrap the call to force in a get-value function, or something like that.
I just adapted the condp macros and wrote the following:
(defmacro assoc-if-nil
"Takes a map as the first argument and a succession of key value pairs that
are used to set the key to value if the key of the map is nil. The value part
is only evaluated if the key is nil (thus different semantics to (merge)).
Example:
(assoc-if-nil {:a {:b :set}}
[:a :b] :non-def
[:a :c] :non-def
:d :non-def)
;; =>{:a {:b :set, :c :non-def}, :d :non-def}"
[m & clauses]
(assert (even? (count clauses)))
(let [g (gensym)
get-fn (fn[kork] (if (vector? kork) `get-in `get))
assoc-fn (fn[kork] (if (vector? kork) `assoc-in `assoc))
pstep (fn [[kork v]] `(if-not (~(get-fn kork) ~g ~kork)
(~(assoc-fn kork) ~g ~kork ~v)
~g))]
`(let [~g ~m ;; avoid double evaluation
~#(interleave (repeat g) (map pstep (partition 2 clauses)))]
~g)))
Which expands to:
(macroexpand-1 '
(assoc-if-nil m
[:a :b] :nested
:d :just-key))
(clojure.core/let
[G__15391 m
G__15391
(clojure.core/if-not
(clojure.core/get-in G__15391 [:a :b])
(clojure.core/assoc-in G__15391 [:a :b] :nested)
G__15391)
G__15391
(clojure.core/if-not
(clojure.core/get G__15391 :d)
(clojure.core/assoc G__15391 :d :just-key)
G__15391)]
G__15391)
Is there a way to destructure a key value pair ? I have a function which take a map as a parameter, I would like to extract the value of both the key and the value in the params itself. How do I do that ?
I can do the following with a vector -
((fn [[a b]] (str a b)) [a b])
How do I do the same / similar with map -
((fn[{k v}] (str k v)) {k v})
Thanks,
Murtaza
map destructuring in functions arg lists is designed for extracting certain keys from a map and giving them names like so:
core> (defn foo [{my-a :a my-b :b}] {my-a my-b})
core/foo
core> (foo {:a 1 :b 2})
{1 2}
i recommend this tutorial. It is a little hard to give a direct equivalent to ((fn[{k v}] (str k v)) {k v}) because the map could have many keys and many values so the destructuring code would be unable to tell which key and value you where looking for. Destructuring by key is easier to reason about.
If you want to arbitrarily choose the first entry in the map you can extract it and use the list destructuring form on a single map entry:
core> (defn foo [[k v]] {v k})
#'core/foo
core> (foo (first {1 2}))
{2 1}
in this example the list destructuring form [k v] is used because first returns the first map entry as a vector.
There are shortcuts available for destructuring maps. For example, if you're looking for specific keys, then you don't have to type out name1 :key1 name1 :key2...
e.g.
main=> (defn fbb [{:keys [foo bar baz]}] (+ foo bar baz))
#'main/fbb
main=> (fbb {:foo 2 :bar 3 :baz 4})
9
instead of...
(defn fbb [{foo :foo bar :bar baz :baz}] (+ foo bar baz))
If your map keys are strings, you can say :strs instead of :keys and if they are symbols you can use :syms.
user=> (for [x (hash-map :a 1 :b 2 :c 3)] (str (first x) " " (second x)))
(":a 1" ":c 3" ":b 2")