Exposing Service to Clients - c++

We have internal services in our application, which are basically developed as Thrift RPC services. Now, I need to expose these services to the client applications, which are outside of the core system.
Now, the question is:
should I expose these Thrift services directly to the client? Advantages of doing so would be least amount of work required. Disadvantage would be that the clients need to connect to these Thrift APIs as well as another interface, which already exists, so actually the client applications need to open more than one socket to make connection to the core system.
An alternate option would be to wrap these Thrift services in another layer, which will be ultimately delivered to the end clients. Disadvantage of doing this: doing marshalling/unmarshalling the data twice, once with Thrift and next time with another interface.
What should be the preferred way of handling this situation?

We would not expose these services directly to outside clients. We would build or use an application to configure a proxy that the external clients could connect to.
The advantages to this are:
No need to punch a hole in your firewall
Possibility to do an extra security check
Possibility to throttle access to the internal service
Less chance of a hacker being able to exploit service

Related

Establish connection form CloudFoundry-Service to CloudFoundry-App

Is there a common way to establish a network connection from a CloudFoundry-Service to a CloudFoundry App which the service is bound to.
In typical fashion apps receive their bind credentials and establish network connections to provisioned service for example databases.
It would be very handy to establish a connection from a service to an app, so the service could scrape endpoints that are provided by the app.
Any thoughts on this, why is it / or isn't it possible, why could it be a bad idea.
Normally, you have your service and the application receives credentials from the service through the service binding (i.e. VCAP_SERVICES).
You want to reverse this arrangement, which is fine, but the service will need to have some way to know how to reach the applications. The way to do this would be through routes bound to your application.
I have seen something like this done before, this is roughly the process. I'm sure you can adapt it to your requirements.
Create a service broker. The broker is responsible for managing service instances and service credentials. The broker is notified when an instance is created and when a binding occurs. Your broker will need to handle these requests.
The broker, in addition to its normal responsibilities, is going to need to maintain state indicating which applications have instances & bindings. In addition, the broker is going to need to use the org/space/app guids it's provided through the service broker API and talk to the CloudFoundry API to fetch the routes for the applications that are bound to it. You don't usually get these through the service broker API, but since you want to talk to the applications from the service, you need this information. It gives the service a way to communicate with the application.
Your broker may also provide the service in question (i.e. talking to applications), or it can delegate to some other process/container/VM to provide the service. If your service does the latter, then you need a way to a.) create the process/container/VM and b.) pass along the information it requires to talk to your application.
Obviously, you need to code the logic that will take the routes for applications that have created instances and bindings and communicate with them.
There can be some limitations with using the routes. First, not all routes are public. For internal routes, it would be kind of complicated to allow the broker/service to talk to the app. The broker/service would need to be an application on CF and you would need to specifically allow that communication (would require more API calls). Second, some apps just don't have routes. Perhaps this won't happen in your case, but it's worth considering. Lastly, not all routes are HTTP, some can be TCP as well. Your broker/service would need to handle both of those.
A variation on the above process, instead of using routes or talking to the API, you could have your broker/service provide some mechanism through the credentials to the application such that it registers itself with the broker/service. Thus when your applications start, they'll read the service info, register with the service and then go about their business. In this way, the application would have some additional flexibility about what information it provides when it registers with the broker/service. The downside is that the app has to do some work to be compatible.

How to decide between using messaging (e.g. RabbitMQ) versus a web service for backend component interactions/communication?

In developing backend components, I need to decide how these components will interact and communicate with each other. In particular, I need to decide whether it is better to use (RESTful, micro) web services versus a message broker (e.g. RabbitMQ). Are there certain criteria to help decide between using web services for each component versus messaging?
Eranda covered some of this in his answer, but I think three of the key drivers are:
Are you modeling a Request-Response type interaction?
Can your interaction be asynchronous?
How much knowledge does the sender of the information need to have about the recipients?
It is possible to do Request-Response type interactions with an asynchronous messaging infrastructure but it adds significantly to the complexity, so generally Request-Response type interactions (i.e. does the sender need some data returned from the recipient) are more easily modeled as RPC/REST interactions.
If your interaction can be asynchronous then it is possible to implement this using a REST interaction but it may scale better if you use a fire and forget messaging type interaction.
An asynchronous messaging interaction will also be much more appropriate if the provider of the information doesn't care who is consuming the information. An information provider could be publishing information and new consumers of that information could be added to the system later without having to change the provider.
Web server and message broker have their own use cases. Web server used to host web services and the message broker are use to exchange messages between two points. If you need to deploy a web service then you have to use a web server, where you can process that message and send back a response. Now let's think that you need to have publisher/subscriber pattern or/and reliable messaging between any two nodes, between two servers, between client and server, or server and client, that's where the message broker comes into the picture where you can use a message broker in the middle of two nodes to achieve it. Using message broker gives you the reliability but you have to pay it with the performance. So the components you should use depends on your use case though there are multiple options available.

Can a service call another service inside its code?

Following is a point mentioned in a presentation slide related to SOA, and it confuses me with the concepts of service orchestration and service choreography. To enable service choreography, shouldn't a web service be able to call another web service?
SOA builds applications out of software services. Services comprise intrinsically
unassociated, loosely coupled units of functionality that have no calls to
each other embedded in them.
In theory, a service can do anything it needs to do to accomplish its job. So there doesn't seem to be a good reason to forbid using a second service to do your work. Why reinvent the wheel?
In practice, the issue is more complicated. If you start calling other services on your own web server, then you'll eventually starve it of resources. At best, "real" clients will have to wait a bit longer for their answers while your web service server plays with itself.
Another issue is recursive loops: Service A calls B calls C calls A calls B ... you get the idea. A small change in one service can introduce such a loop without anyone noticing and it can sit there for a long time until it suddenly kills your server.
That is why you should build micro services in a hierarchy inside the server (i.e. below the web service layer - this is not exposed to clients). Those micro services can use each other in a top-down manner (to avoid the loops). Unit tests then make sure they behave properly.
Lastly, such reuse is very slow. Each HTTP request takes a lot of resources to create, send, parse and process. Calling an internal method directly can be 10 - 10000 times faster.
These are the main reasons why the services exposed by a single server shouldn't reuse each other via the "public client API".
Note: There are web services which build new services by using existing ones. IFTTT - "If This Then That" is one such beast.
You could adopt every concept according to your needs. In my current project we have a separate module that is responsible for the Orchestration. This is required since in real life usage, scenarios can be very complicated. So in order to be close to the actual management of your system, you need to have such one.
Another advantage of this approach is that the Separation_of_concerns is kept. Also aligns the business request with the applications, data, and infrastructure that you have. It defines policies and service levels through automated workflows, provisioning etc.
Orchestration is critical in the delivery of Cloud services too. As they are networked to allow sharing of data-processing tasks, centralized data storage, and online access to services or resources.

implementing server for licencing management

I would like to implement the server side of a licence management software. I use C++ in LINUX OS.
When the software starts it must connect to a server that checks privileges and allows/disallow running of some features.
My question is about the implementation of the communication between client and server across internet:
The server will have a static IP on internet so is it enough to use a simple TCP/IP socket client that will connect to a TCP/IP socket server ( providing IP/PORT) ?
I am familiar with socket communication , but less with communication across internet so my question is whether this is the right approach or do I need to use a different mechanism like a http client server or other.
Regards
AFG
Here are some benefits to using HTTP as a transport:
easier to get right, more likely to work in production: Yes, you will probably have to add additional dependencies to deal with HTTP (client and server side), but it's still preferable to yet another homegrown protocol, which you have to implement, maintain, care about backwards compatibility, deal with multiplatform issues (eg. endianness), etc. In terms of implementation ease, using an HTTP based solution should be far easier in the common case (especially true if you build a REST style service API for license checking).
More help available: HTTP as the foundation of the web is one of the most widely used technologies today. Most (all?) problems you will run into are probably publicly documented with solutions/workarounds.
Encryption 'for free': Encryption is already a solved problem (HTTPS/SSL), both with regard to transport as well as with regard to what you have to implement on your end, and it's just a matter of setting it up.
Server Authentication 'for free': HTTPS/SSL doesn't only solve encryption but also server authentication, so that the client can verify whether it's actually talking to the right service.
Guaranteed to work on the internet: HTTP/HTTPS traffic is common on the internet, so you won't run into routing problems or firewalls which are hard to traverse. This might be a problem when using your own protocol.
Flexibility out of the box: You also put less constraints on clients communicating with your server, as it's very simple to build a client in many different environments, as long as they can talk HTTP (and maybe SSL), and they know how to issue the request to your server (ie. what your service API looks like).
Easy to integrate with administrative webapp: If you want to allow users to manage their accounts associated with licenses in some way (update contact info etc.), then you might even combine the license server with that application. You can also build the license administration UI part into the same app if that's useful.
And as a last remark (this puts additional constraints on your client side HTTPS/SSL implementation): you can even use client side SSL certificates, which essentially allow authenticating the client to the server. Depending on how you use them, client side certificates are harder to manage, but they can be eg. expired, or revoked, so to some extent they actually are licenses (to connect to the server).
HTTP is not a different mechanism. It is a protocol operated over TCP/IP connections.
Internet uses IP transport exclusively. You can use UDP, TCP or SCTP session (well, UDP is not much of a session) layer on top of it. TCP is the general choice.
Sockets are operating system interface. They are the only interface to network in most systems, but some systems have different interface. Nothing to do with the transport itself.
IP addresses are in practice tied to network topology, so I strongly discourage hardcoding the IP address into the server. If you have to change network provider for any reason, you won't be getting the same IP address. Use DNS, it's just one gethostbyname call.
And don't forget to authenticate the server; even with hardcoded IP it's too easy to redirect it.

Which one can I choose? SSH or AMQP?

My application runs in Windows and is implemented using C++/Qt.
The application will invoke another application deployed in the Linux server which in turn will invoke some third party tools. The Linux server application will send some status updates based on the running of third party tools. Usually the third party application will run for hours and the updates will be sent at various stages. The Linux server may also has to send some files in addition to the status updates and the Windows client will also send some files required for the running of those third party tools.
I planned to implement this in libssh2 since file transfers can be done and applications can be executed as well using libssh2_channel_exec(). Updates can be sent and received through non-blocking socket transfers. Also the transfers must be secured and they are password authenticated, so I thought SSH will conform my requirements.
I also looked into Qpid of apache which implements the AMQP. The messaging seems to be a more appropriate one for my status updates since the updates are less frequent. But I am not so sure about the secured connection, password authentication and also the application invocation.
So, which one can I choose between these two? Or is there any other better option available? I am not quite used to network programming so any pointers, links regarding this are welcome..
Have you considered some web-based solutions like XML-RPC, REST, SOAP or other? Note that you can either have constant network connection and stream updates or just make your client ask for update as often as it needs.
Also, I think that building solution based on some of these protocols will give you easier coding - no need for some low-level solutions when you have great libraries. As for security part, I would consider SSL that is part of HTTPS protocol to be secure enough. Of course you can also do it hybrid style, for example SSH tunel to secure server and use SSH key authorization.
But if you are sure youwant SSH or AMQP then use first one - I think it has better security. Also, try not using username/passowrd. Instead use mentioned above keys.
Start with SSH, and then consider layering other protocols on top. You can use SSH port forwarding to create a VPN connection to a server, and maybe that will make it easier to use something like AMQP or 0MQ.