I was trying to write a method which set values in a binary search tree. I have implemented a simple technique of recursion to add nodes in the tree. But when I input the values and ran the code I got segmentation fault:
struct Node
{
int data;
Node* leftN;
Node* rightN;
};
typedef Node* Node_ptr;
Node_ptr head;
//INSERT_VALUE FUNCTION
Node* new_node(int key)
{
Node* leaf = new Node;
leaf->data = key;
leaf->leftN = NULL;
leaf->rightN = NULL;
}
Node* insert_value(Node_ptr leaf, int key)
{
if(leaf == NULL)
return(new_node(key));
else
{
if(key <= leaf->data)
leaf->leftN = insert_value(leaf->leftN, key);
else
leaf->rightN = insert_value(leaf->rightN, key);
return(leaf);
}
}
//PRINT FUNCTION
void printTree(Node_ptr leaf)
{
if(leaf == NULL)
return;
printTree(leaf->leftN);
cout << "Data element: " << leaf->data << endl;
printTree(leaf->rightN);
}
//MAIN
int main()
{
Node_ptr root = NULL;
Node_ptr tail;
int i;
int x;
//initialize values
for(i = 0; i < 20; i++)
{
x = rand() % 1000 + 1;
tail = insert_value(root, x);
root = head;
}
root = head;
printTree(root);
root = head;
cout << "Head Node: " << root->data << endl;
return 0;
}
You are getting a segmentation fault because you never set the head, there for when you get to the line
cout << "Head Node: " << root->data << endl;
Your root value will be NULL, (since it was set to by head, which is NULL).
A "root" (or "head") node is typically a special case scenario, you should check to see if that node has been constructed at the top of insert_value, and if not, then you assign the node node to it.
Also, your code has in error in it as new_node does not return a value.
Related
I don't know where I'm going wrong. Output shows 1 upon inputting 1 2 3 -1 (-1 to terminate insertion of nodes). Help is appreciated!
I can't seem to find the error in my code that is resulting in wrong output upon different test cases.
Other approaches to the same problem are also welcome.
Any tips so that i won't commit such errors in the future, along with some fundamentals(generally tips) of linked lists
#include <iostream>
using namespace std;
class Node
{
public:
int data;
Node *next;
Node(int data)
{
this->data = data;
next = NULL;
}
};
Node *insert()
{
int data;
cin >> data;
Node *head = NULL;
Node *tail = NULL;
while (data != -1)
{
Node *n = new Node(data);
if (head == NULL)
{
head = n;
tail = n;
}
else
{
tail->next = n;
tail = tail->next;
}
cin >> data;
}
return head;
}
void print(Node *head)
{
Node *temp = head;
while (temp != NULL)
{
cout << temp->data << " ";
temp = temp->next;
}
}
Node *rev_LL(Node *head)
{
if (head == NULL || head->next == NULL)
{
return head;
}
Node *smallAns = rev_LL(head->next);
Node *temp = smallAns;
while (temp->next != NULL)
{
temp = temp->next;
}
temp->next = head;
head->next = NULL;
return smallAns;
}
int main()
{
Node *head = insert();
print(head);
cout << endl;
cout << "After reversing the Linked list : " << endl;
rev_LL(head);
print(head);
cout << endl;
return 0;
}
You have to assign the return value of rev_LL to head instead of just ignoring that.
int main()
{
Node *head = insert();
print(head);
cout << endl;
cout << "After reversing the Linked list : " << endl;
//rev_LL(head);
head = rev_LL(head); // assign the result
print(head);
cout << endl;
return 0;
}
I have a program in which I'm supposed to build functions using linked lists to perform a variety of tasks. Currently, I am having an issue finding the min and max value of the linked list. For some reason when both come out to be the highest which digit which is 9, and when I try to find the average of the list, it still comes out as 9.
additionally, I think it's interfering with my pop function which is supposed to delete the last item, but when I try to work it by sections one part wont work until he previous section is running for whatever reason.
here is my header
#include <iostream>
using std::cout;
using std::endl;
#ifndef LINKEDLIST_H
#define LINKEDLIST_H
class LinkedList
{
private:
struct Node
{
int data;
Node *next;
};
int size;
Node *head, *tail;
public:
LinkedList();
~LinkedList();
// misc
void display();
// sorting and searching
// reverse --> sorting in descending
int linearSearch(int key);
void sort();
void reverse();
// various math
int min();
int max();
int mean();
// adding
void append(int num);
void insert(int num, int pos);
// removing
void pop();
void remove(int pos);
};
#endif // LINKEDLIST_H
the header's source file
#include "linkedlist.h"
LinkedList::LinkedList()
{
head = nullptr;
tail = nullptr;
size = 0;
}
LinkedList::~LinkedList()
{
if(head != nullptr)
{
Node *temp;
while(head != nullptr)
{
temp = head->next;
// deletes head
delete head;
// goes to next element
head = temp;
}
}
}
void LinkedList::display()
{
Node *temp = head;
for(int i = 0; i < size; i++)
{
cout << temp->data << "\t";
temp = temp->next;
}
cout << endl;
}
void LinkedList::append(int num)
{
// list is empty
if(head == nullptr)
{
head = new Node;
head->data = num;
head->next = nullptr;
// sets tail to head
tail = head;
}
else
{
// creates new node
Node *temp = new Node;
// sets new node data
temp->data = num;
temp->next = nullptr;
// sets previous tail link to new node
tail->next = temp;
// sets this node to new tail
tail = temp;
}
// increments size
size++;
}
void LinkedList::pop()
{
if(size > 1)
{
Node *temp = head;
// loops to node before tail
while(temp->next->next != nullptr)
{
temp = temp->next;
}
// deletes tail
delete tail;
// sets new tail
tail = temp;
tail->next = nullptr;
}
// if there's only one item
else if(size == 1)
{
Node *temp = tail;
// head and tail are now null
head = nullptr;
tail = nullptr;
// deletes node
delete temp;
}
size--;
}
void LinkedList::insert(int num, int pos)
{
if(pos ==0)
{
Node *temp=new Node;
temp->data=num;
temp->next=head;
head=temp;
}
if(pos>1)
{
Node *pre=new Node;
Node *cur=new Node;
Node *temp=new Node;
cur=head;
for(int i=1;i<pos+1;i++)
{
pre=cur;
cur=cur->next;
}
temp->data=num;
pre->next=temp;
temp->next=cur;
}
size++;
}
int LinkedList::linearSearch(int key)
{
Node *temp = head;
for(int i = 0; i < size; i++)
{
if(temp->data == key)
{
return i;
}
temp = temp->next;
}
return -1;
}
int LinkedList::max()
{
int max = INT_MIN;
for(int i = 0; i < size; i++)
{
while (head != NULL)
{
if (head->data < max)
max = head->data;
head = head->next;
}
}
}
int LinkedList::min()
{
int min = INT_MAX;
for(int i = 0; i < size; i++)
{
while (head != NULL)
{
if (head->data < min)
min = head->data;
head = head->next;
}
}
}
void LinkedList::reverse()
{
Node* temp = head;
// Traverse the List
while (temp) {
Node* min = temp;
Node* r = temp->next;
// Traverse the unsorted sublist
while (r)
{
if (min->data < r->data)
min = r;
r = r->next;
}
// Swap Data
int x = temp->data;
temp->data = min->data;
min->data = x;
temp = temp->next;
}
}
void LinkedList::remove(int pos)
{
Node *temp = head;
if(pos ==0)
{
head = temp->next;
free(temp);
}
if(pos>1)
{
for(int i=0; temp!=NULL && i<pos-1;i++)
{
temp=temp->next;
}
temp->next = temp->next->next;
free(temp->next);
temp->next = temp->next;
}
size--;
}
int LinkedList::mean()
{
int sum = 0;
float avg = 0.0;
Node *temp = head;
while (head != NULL)
{
sum += temp->data;
temp = temp->next;
}
// calculate average
avg = (double)sum / size;
}
void LinkedList::sort()
{
Node* temp = head;
// Traverse the List
while (temp) {
Node* min = temp;
Node* r = temp->next;
// Traverse the unsorted sublist
while (r) {
if (min->data > r->data)
min = r;
r = r->next;
}
// Swap Data
int x = temp->data;
temp->data = min->data;
min->data = x;
temp = temp->next;
}
}
And the main
#include <iostream>
#include "linkedlist.h"
using namespace std;
int main()
{
LinkedList nums;
// adding through append
nums.append(8);
nums.append(6);
nums.append(7);
nums.append(8);
nums.append(0);
nums.append(9);
// displays list
cout << "List after append: " << endl;
nums.display();
cout << endl;
// adding through insert
nums.insert(1, 0);
nums.insert(5, 4);
nums.insert(3, 8);
// displays list
cout << "List after inserting: " << endl;
nums.display();
cout << endl;
// testing searching
cout << "Testing linear search:" << endl;
int pres = nums.linearSearch(7);
if(pres < 0)
{
cout << "7 is not present in the list." << endl;
}
else
{
cout << "7 can be found at location " << pres << endl;
}
pres = nums.linearSearch(5);
if(pres < 0)
{
cout << "5 is not present in the list." << endl;
}
else
{
cout << "5 can be found at location " << pres << endl;
}
cout << endl;
// does math
cout << "Minimum, maximum, and average before removing any items: " << endl;
cout << "Min: " << nums.min() << endl;
cout << "Max: " << nums.max() << endl;
cout << "Mean: " << nums.mean() << endl << endl;
// displays items reversed
cout << "Items reversed: " << endl;
nums.reverse();
nums.display();
cout << endl;
// removing through pop
nums.pop();
nums.pop();
// displays list
cout << "List after popping: " << endl;
nums.display();
cout << endl;
// removing through remove
nums.remove(0);
nums.remove(2);
nums.remove(4);
// displays list
cout << "List after removing: " << endl;
nums.display();
cout << endl;
// displays items sorted
cout << "Items sorted: " << endl;
nums.sort();
nums.display();
cout << endl;
// does math
cout << "Minimum, maximum, and average after removing items: " << endl;
cout << "Min: " << nums.min() << endl;
cout << "Max: " << nums.max() << endl;
cout << "Mean: " << nums.mean() << endl << endl;
// testing searching
cout << "Testing linear search:" << endl;
pres = nums.linearSearch(7);
if(pres < 0)
{
cout << "7 is not present in the list." << endl;
}
else
{
cout << "7 can be found at location " << pres << endl;
}
pres = nums.linearSearch(5);
if(pres < 0)
{
cout << "5 is not present in the list." << endl;
}
else
{
cout << "5 can be found at location " << pres << endl;
}
return 0;
}
the only parts I'm really struggling with is the max, min, and mean along with getting my pop function to actually initiate. I know that the pop function is written correctly but ever since I made the max and min it wont work now.
There are several bugs that I have found in the code, and I have several remarks about it:
You should use spaces, and more consistently. There are places without enough spacing, and places with too many blank lines!
If you have two functions such as insert and append or pop and remove, they should use each other, meaning, append is just insert(0) (notice how I changed it in the code).
You are using double loops where it doesn't make sense (it isn't an error, but it is a bug!).
In the function max, you were doing the wrong comparison, asking if max is bigger than the current value...
You never return a value from min and max, which should at least create a warning in the compilation process!
You were creating empty nodes, and then you just put different values in their pointers, meaning that this new memory was still allocated (since there was no delete), but there was no way to access these anymore (this is a memory leak).
The biggest bug of all - When you loop in the min and max functions, you change the head of the list, which is a major bug (and that is why you got bugs after using this function). The solution is a simple but important lesson in C++ - Const Correctness.
What is const correctness, and why is it important?
When you have a function, that does not change the state of your object, it should be declared const. This is our way to tell the compiler (and other programmers) that it mustn't change the state of our object. For example, min, max and average are classic const functions - they simply make a calculation that does not change the list, and return. If you had written const in the declaration of those, the compilation would have failed, since you actually changed the list (changing the head), although you shouldn't!
Moreover, when receiving objects into a function, whenever possible, you should make the const T& where T is a type. They will enforce that you are using only const functions of this type.
Also, I suggest compiling (at least on g++) with the flags -Wpedantic -Werror'. The first adds some warnings about ISO C++ standards and the second makes all warnings into errors (and thus, yourmin,maxandmean` should not compile, since they don't return a value).
Here is the code:
class LinkedList
{
private:
struct Node
{
int data;
Node *next;
Node(int data_, Node* next_ = nullptr) :
data(data_),
next(next_)
{
}
};
int size;
Node *head, *tail;
public:
LinkedList();
~LinkedList();
void clear();
// various math
int min() const;
int max() const;
int average() const;
// adding
void append(int data);
void insert(int data, int pos);
// removing
void pop();
void remove(int pos);
};
LinkedList::LinkedList()
{
head = nullptr;
tail = nullptr;
size = 0;
}
LinkedList::~LinkedList()
{
clear();
}
void LinkedList::clear()
{
if (head != nullptr)
{
Node *temp;
while(head != nullptr)
{
temp = head->next;
delete head;
head = temp;
}
}
head = nullptr;
tail = nullptr;
size = 0;
}
void LinkedList::display()
{
Node *temp = head;
for(int i = 0; i < size; i++)
{
std::cout << temp->data << "\t";
temp = temp->next;
}
std::cout << std::endl;
}
void LinkedList::insert(int data, int pos)
{
if (pos == 0)
{
Node* prev_head = head;
head = new Node(data, prev_head);
if (size == 0)
{
tail = head;
}
}
else
{
Node *pre=nullptr;
Node *cur = head;
for(int i = 0 ; i < pos + 1; ++i)
{
pre = cur;
cur = cur->next;
}
Node *temp = new Node(data, cur);
pre->next = temp;
}
++size;
}
void LinkedList::append(int data)
{
insert(data, 0);
}
void LinkedList::pop()
{
if (size == 1)
{
Node *temp = tail;
head = nullptr;
tail = nullptr;
delete temp;
}
else
{
Node *temp = head;
while(temp->next != tail)
{
temp = temp->next;
}
Node* node_to_pop = tail;
tail = temp;
tail->next = nullptr;
delete node_to_pop;
}
--size;
}
int LinkedList::max() const
{
int max = INT_MIN;
for (Node* temp = head; temp != nullptr; temp = temp->next)
{
if (temp->data > max)
{
max = temp->data;
}
}
return max;
}
int LinkedList::min() const
{
int min = INT_MAX;
for(Node* temp = head; temp != nullptr; temp = temp->next)
{
if (head->data < min)
{
min = temp->data;
}
}
return min;
}
int LinkedList::average() const
{
int sum = 0;
for(Node* temp = head; temp != nullptr; temp = temp->next)
{
sum += temp->data;
temp = temp->next;
}
return (double)sum / size;
}
I'm attempting to build a priority queue using a singly linked list. The idea is that I always store the minimum int x inside my Node* head. When the deleteMin() method is called. It should return the minimum value (head->x), and also update the head to the next lowest value in the list.
The problem that I seem to be having is updating the links once a new lowestNode has been found.
SLList.hpp
const int deleteMin() {
int returnVal = this->head->x;
// we need to find the next lowest in the list and update our head, then relink the list.
// first update our head to the next of the current head
this->head = this->head->next;
cout << "head now: " << this->head->x << endl;
// iterate through our nodes searching for a smaller value
Node* currentNode = this->head;
Node* nextNode = NULL;
Node* lowestNode = NULL;
Node* prevNode = NULL;
// Node* prevHead = NULL;
// Node* nextHead = NULL;
while(currentNode != NULL) {
if (currentNode->next->x < this->head->x) {
nextNode = currentNode->next->next;
cout << "nextNode: " << nextNode->x << endl;
lowestNode = currentNode->next;
cout << "lowestNode: " << lowestNode->x << endl;
prevNode = currentNode;
cout << "prevNode: " << prevNode->x << endl;
// prevHead = this->head;
// cout << "prevHead: " << prevHead->x << endl;
// nextHead = this->head->next;
// cout << "nextHead: " << nextHead->x << endl;
// update links
lowestNode->next = this->head->next;
currentNode = this->head;
currentNode->next = nextNode;
this->head = lowestNode;
} else {
currentNode = currentNode->next;
}
}
// decrement the size
this->_size--;
// return the minVal
return returnVal;
}
while(currentNode != NULL && currentNode->next!=NULL) //here you need check for currectNode->next also for NULL condition
{
if (currentNode->next->x < this->head->x) {
nextNode = currentNode->next->next;
cout << "nextNode: " << nextNode->x << endl;
lowestNode = currentNode->next;
cout << "lowestNode: " << lowestNode->x << endl;
//here storing previous node is of no use except for debugging
prevNode = currentNode;
cout << "prevNode: " << prevNode->x << endl;
// update links- here you need to first remove the lowest node from its postion
currentNode->next=nextNode;
//and then add lowest node a the front
lowestNode->next = this->head->next;
this->head = lowestNode;
} else {
currentNode = currentNode->next;
}
}
One problem that I realized was that depending on where the node that contains the lowest int x. If head is directly linked a lower node, then the relinking needed to be a little different than if a lower node was found in the middle of the list.
#ifndef SLLIST_H
#define SLLIST_H
using namespace std;
class SLList
{
struct Node {
int x;
Node *next;
};
private:
int _size;
public:
Node* head; // used to store minimum value of a Node's x
Node* tail;
SLList() :
_size(0),
head(NULL),
tail(NULL) {
}
int size() const {
return this->_size;
}
const int add (const int x) {
// create new node
Node* newNode = new Node();
newNode->x = x;
if (this->_size == 0) {
this->head = newNode;
this->tail = newNode;
} else {
if (newNode->x < this->head->x) {
// update head to new lowest and relink nodes
newNode->next = this->head;
this->head = newNode;
} else {
this->tail->next = newNode;
this->tail = newNode;
}
}
// update list size
this->_size++;
return x;
}
const int deleteMin() {
if (this->_size == 0) return -1;
int returnVal = this->head->x;
cout << "removing min val: " << returnVal << endl;
// we need to find the next lowest in the list and update our head, then relink the list.
// first update our head to the next of the current head
this->head = this->head->next;
// iterate through our nodes searching for a smaller value
Node* currentNode = this->head;
Node* lowestNode = NULL;
for(int i = 0; i < this->_size - 1; i++) {
if (currentNode->next->x < this->head->x) {
lowestNode = currentNode->next;
if (currentNode == this->head) {
cout << "current->next is next to head" << endl;
// only need to update 2 nodes
this->head->next = currentNode->next->next;
lowestNode->next = this->head;
this->head = lowestNode;
currentNode = currentNode->next;
} else {
// update three nodes
cout << "current->next has neighbours" << endl;
// Example scenario
// 3 // nextTo5
// 5 // nextTo4
// 4 // nextTo2
// 2 // nextToNull
// == turns into ==
// 2 // nextTo5
// 5 // nextTo4
// 4 // nextTo3
// 3 // nextToNull
lowestNode->next = this->head->next;
currentNode->next = this->head;
this->head = lowestNode;
currentNode = currentNode->next;
}
} else {
currentNode = currentNode->next;
}
}
// decrement the size
this->_size--;
// return the minVal
return returnVal;
}
const void printList() const {
Node* tmp = this->head;
cout << "printing list... " << endl;
for(int i = 0; i < this->_size; i++) {
cout << tmp->x << endl;
tmp = tmp->next;
}
}
};
#endif // SLLIST_H
Perhaps I should actually use the tail somehow, but currently, I don't really use it for much.
I keep getting a Segmentation fault (core dumped) error every time I try to run my code with g++ on Linux. It compiles fine, but then that happens ... All the functions (remove, add and print) seem to have the same problem, I can't seem to figure out what's wrong... Please heeeelppp.
#include <iostream>
#include <string>
using namespace std;
//Create a node struct
struct Node {
int data;
Node *next;
Node *prev;
};
class Queue {
private:
Node *head;
Node *tail;
int size;
public:
Queue();
~Queue();
void add(int d);
int remove();
bool isEmpty();
void printQueue(bool o);
};
//set to NULL
Queue::Queue() {
head = tail = NULL;
size = 0;
}
//destructor
//call remove until empty
Queue::~Queue() {
while (!isEmpty())
remove();
}
//adds a node with the given data at the back of the queue
void Queue::add(int d) {
Node *temp = new Node();
temp->data = d;
temp->next = NULL;
if (isEmpty()) {
//add to head
head = temp;
} else {
//append
tail->next = temp;
tail = temp;
cout << "Added: " << tail->data << endl;
}
size++;
}
//removes the node at the head of the queue and returns its data
int Queue::remove() {
if (isEmpty()) {
cout << "The queue is empty." << endl;
} else {
Node *temp = new Node;
temp = head;
int value = head->data;
//moves pointer to next node
head = head->next;
cout << "Removed: " << head->data << endl;
size--;
delete temp;
return value;
}
}
//determines if the queue is empty
bool Queue::isEmpty() {
return (size == 0);
}
//prints the contents of the queue from front to back, or front
//to back, depending on the value of the parameter
void Queue::printQueue(bool o) {
if (isEmpty()) {
cout << "The queue is empty." << endl;
} else {
Node *p = new Node;
if (o == true) {
cout << "Printing in front to back:" << endl;
//print front to back
while(p != NULL) {
p = head;
cout << p->data << " ";
p = p->next;
}
} else if (o == false) {
cout << "Printing in back to front:" << endl;
//print back to front
while (p != NULL) {
p = tail;
cout << p->data << " ";
p = p->prev;
}
}
}
}
int main() {
Queue q;
q.add(8);
return 0;
}
EDIT: I've made some changes to the code... But I'm still getting the same error. I assume I'm not updating the head and the tail and/or the next and prev nodes correctly... I don't know why it's wrong or what I'm missing, though.
#include <iostream>
#include <string>
using namespace std;
struct Node {
int data;
Node *next;
Node *prev;
};
class Queue {
private:
Node *head;
Node *tail;
int size;
public:
Queue();
~Queue();
void add(int d);
int remove();
bool isEmpty();
void printQueue(bool o);
};
Queue::Queue() {
head = tail = NULL;
size = 0;
}
Queue::~Queue() {
while (!isEmpty())
remove();
}
void Queue::add(int d) {
Node *temp = new Node;
temp->data = d;
temp->next = NULL;
temp->prev = tail;
if (isEmpty()) {
//add to head
head = temp;
} else {
//append
tail->next = temp;
tail = temp;
cout << "Added: " << tail->data << endl;
}
size++;
}
int Queue::remove() {
if (isEmpty()) {
cout << "The queue is empty." << endl;
return 0;
} else {
Node *temp = head;
int value = head->data;
cout << "Removed: " << head->data << endl;
//moves pointer to next node
head = head->next;
head->prev = NULL;
size--;
delete temp;
return value;
}
}
bool Queue::isEmpty() {
return (size == 0);
}
void Queue::printQueue(bool o) {
if (isEmpty()) {
cout << "The queue is empty." << endl;
} else {
Node *p;
if (o == true) {
p = head;
cout << "Printing in front to back:" << endl;
//print front to back
while(p != NULL) {
cout << p->data << " ";
p = p->next;
}
} else if (o == false) {
p = tail;
cout << "Printing in back to front:" << endl;
//print back to front
while (p != NULL) {
cout << p->data << " ";
p = p->prev;
}
}
}
}
int main() {
Queue q;
q.add(9);
q.add(10);
q.add(11);
q.add(12);
q.add(13);
q.add(14);
q.add(15);
q.add(16);
q.remove();
q.remove();
q.printQueue(true);
q.printQueue(false);
return 0;
}
Lots of problems:
You have a double-linked Node but never update its prev member in the add/remove methods.
You are keeping track of both the Queue head/tail but don't properly update them when you add/remove nodes.
Both your forward and reverse loops in printQueue() are wrong and result in an infinite loop for any queue with 2 or more elements. Queue output should be just something like:
Node *p = head;
while (p != NULL)
{
cout << p->data << " ";
p = p->next;
}
Possible null pointer deference in remove() at cout << "Removed: " << head->data << endl; since you've already moved the head pointer by this time. Move the head after the cout.
Memory leak in Queue::remove() at Node *temp = new Node;. Just do Node* temp = head;.
Memory leak in Queue::printQueue() at Node *p = new Node;. You don't need to allocate a node here.
No return value in remove() for an empty queue.
Edit
Don't forget to initialize the tail when adding a node to an empty list:
if (isEmpty()) {
head = temp;
tail = temp;
}
To remove a node from the head of a non-empty list it should be something like:
Node *temp = head;
head = head->next;
if (head) head->prev = NULL;
size--;
delete temp;
if (isEmpty()) tail = NULL;
I was trying to implement a simple Binary Search Tree for practice. I tried to just add values and print the values in the nodes. However, I am not getting the proper ascending order of values in the nodes. Here is what I have:
struct Node
{
int data;
Node* leftN;
Node* rightN;
};
typedef Node* Node_ptr;
Node_ptr head;
//INSERT_VALUE FUNCTION
Node* insert_value(Node_ptr leaf, int key)
{
//Root case when there is no set value yet
if(leaf == NULL)
{
leaf = new Node;
head = leaf;
cout << "Make the first node" << endl;
leaf->data = key;
leaf->leftN = NULL;
leaf->rightN = NULL;
return leaf;
}
//Left child Node
if(key < leaf->data)
{
//Search for a spot in the tree to add a Node (left value < root value < right value)
//This is only true for the left child Node
if(leaf->leftN != NULL)
insert_value(leaf, key);
//We have found a spot in the tree to add a new Node and add the value of key
else
{
cout << "Insert-left" << endl;
leaf->leftN = new Node;
leaf = leaf->leftN;
leaf->data = key;
leaf->leftN = NULL;
leaf->rightN = NULL;
return leaf;
}
}
//Right child Node
else if(key >= leaf->data)
{
//Search for a spot to add a new Node in the tree (only amongst the right child Nodes)
if(leaf->rightN != NULL)
insert_value(leaf, key);
//Once we have found a spot to add a new Node, append the new Node
else
{
cout << "Insert-right" << endl;
leaf->rightN = new Node;
leaf = leaf->rightN;
leaf->data = key;
leaf->leftN = NULL;
leaf->rightN = NULL;
return leaf;
}
}
}
//PRINT FUNCTION
void printTree(Node_ptr leaf)
{
if(leaf == NULL)
return;
printTree(leaf->leftN);
cout << "Data element: " << leaf->data << endl;
printTree(leaf->rightN);
}
//MAIN
int main()
{
Node_ptr root = NULL;
int i;
//initialize values
for(i = 1; i < 12; i+=2)
root = insert_value(root, i);
root = head;
for(i = 0; i < 11; i+=2)
root = insert_value(root, i);
root = head;
printTree(root);
root = head;
cout << "Head Node: " << root->data << endl;
return 0;
}
When I printed the results, this is what I got:
0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 11 and the value of the head node is 1
Because you are calling the insertion as:
root = insert_value(root, i);
the location at which you insert is always using a subtree starting at the last insertion. Except the time that you re-start to add the odd numbers, when you start inserting at the head.
If you create a class BinarySearchTree that contains a head pointer, and an insert method taking an int value that calls Node::insert( head, value ), then you can just call insert on that class, without passing it a node, and it can always see to it that the insertions use the root of the tree for the start of the recursion.
Just me, but I would have a constructor for Node that takes an int and initializes the pointers to NULL. That way you don't have to do that in the insert method.
In the leaf->node? != NULL case, I think instead of calling
insert_value(leaf, key);
you want to say
leaf->node? = insert_value(leaf->node?, key)
where ? is either L or R, of course.
Something you might consider is adding a comment to the method like so:
// Adds the given key to the (sub-)tree rooted at node* then returns the new root
// of that (sub-)tree.
node *insert_value_and_return_root(node *root, int value) { ... }