boost::bind with overloaded functions? - c++

I have two overloaded member functions with the following signatures:
class MyClass
{
void f(int, int, int);
void f(int, int, int, double);
};
I am using boost::bind as follows:
boost::bind(&MyClass::f, _1, 1, 2, 3); // _1 is a placeholder for the implicit parameter
My problem is actually that there is no problem. According to boost::bind documentation (at http://www.boost.org/doc/libs/1_49_0/libs/bind/bind.html#err_overloaded) this should "usually" result in an error, and I should need to cast to the function pointer type. However my code compiles without error, and appears to run as expected.
The example given in the documentation is one where the only difference in the overloaded functions is that one is const while the other is not. My guess therefore is that I do not have a problem because the compiler can tell the difference between the two overloaded functions due to the fact that the number (and types) of arguments is different, whereas in the documentation's example there is no way for the compiler to tell which version you intend simply from the arguments passed to boost::bind. On the other hand, I am skeptical of my guess because I question how the compiler knows that the last 3 arguments passed to boost::bind in my example are linked to the function pointer in the first argument (and therefore form part of its signature) - it seems to me that that is an internal matter for boost::bind which the compiler should have no knowledge of.
Neither the documentation nor any other advice I can find upon googling this issue specify that there is only an issue with overloaded functions which have the same argument types. So, I would be grateful if anyone could confirm that my guess is correct (and by implication, why my skepticism is wrong), before I begin relying on my code under the (possibly false) assumption that it is valid. My concern is that the compiler is simply choosing which function to bind based on reasoning which I did not intend e.g. picking the first one it comes across.

If there is only one choose that is semantically correct, then you are fine (like in your example). If there are more, don't guess what it will pick, pick for it (like in boost's example).
Since bind, like everything else in c++, is strongly typed, the compiler can't just shrink the function or something so it will not make impossible chooses like picking the first in your example.

Related

deducing types of would-be-called overloaded constructor

Given a type, say A and some arguments, say 1, 4.2, I want to find the constructor of A that can be called with these types. Due to conversions, the types may be different. I.e. instead of the passed int, double, the signature may be unsigned int, float and this is what I'm after. As an extra twist: the constructor will be overloaded, i.e. there's not just one to consider.
For some context: The reason is that I want to store the arguments in a std::tuple and then store that in a std::any. Later on to get the tuple out of the any, I must know the type that was stored. At that point (within A e.g.), I only know the types unsigned int, float.
Here is an example on godbolt that shows this issue above in A. Additionally, a class B takes a std::shared_ptr<Base> but I want to create the tuple/any from a std::shared_ptr<Child>...
https://godbolt.org/z/RB8UCR
So far, we only came across https://gist.githubusercontent.com/deni64k/c5728d0596f8f1640318b357701f43e6/raw/87ea05a8f7b3f6add5b3775fecf089e0aa421492/reflection.hxx which goes into the right direction. But it's not possible to compile this code on Windows: https://godbolt.org/z/TAk7Dy
Has anyone come across this problem before and knows a C++17 cross-platform solution to it?

Error with std::bind and templated member functions

I am currently writing a gameboy emulator for practicing C++. I have gotten to the part where I implement CPU instructions and decided a vector of std::function was a good choice.
Please note: u8 is an alias for uint8_t.
In my code, there is a vector of std::function<u8()> with three types of members:
A lambda expression that returns u8.
Pointer to a member function.
Pointer to a templated member function.
I tried to use an initalizer list at first, but it didn't work. I later found out that is because I needed a call to std::bind(/*function ptr*/, this); on the pointers, but when calling this on the templated function pointers, I get the following error: no matching function for call to 'bind'. I would like to have an initalizer list, as right now it is a function with successive calls to emplace_back.
Here is the erroring line:
instruction_set.emplace_back(bind(&CPU::OPLoadDualRegister8<B, B>, this)); // 0x40 LD B, B
One interesting thing is that when B is replaced with a literal (e.g. 0x00) it works perfectly. B is a u8 and that is what the template accepts.
So:
Is there any way I can do this less convoluted? (e.g. init lists, std::function with member function ptrs, etc.)
If this is the best way, what do I do about the templated ptrs?
Would it better if I took the template params as args and used std::bind to resolve them (all params are either u8 or u8&.
Any optimization suggestions?
Thanks, Zach.
Okay, there is a lot going on here between your question and the comments. Here are some things I notice right off the bat:
If you are going to index into a vector to decode op codes, you probably shouldn't just emplace_back into the vector in order. Instead grow the vector to its final size, filling it with null values and use the subscript operator to put the functions in. instruction_set[0x40] = ...
Using a switch statement and just calling the functions directly is likely a way better choice. Obviously, don't know the ins and outs of your project, so this may not be possible.
When you say B is u8 do you mean B is variable of type u8? Plain 'ol variables can't be used to instantiate templates. B would have to be a macro, template parameter on the calling function, constexpr variable, or static const (basically known at compile time).
std::bind is never any fun for anyone to use, so you are not alone. I don't think it is the root cause of your issue here, but you should probably prefer binding things using capturing lambdas.
Funnily enough C++'s new hearthrob Matt Godbolt (author of Compiler Explorer) gave a talk on emulating a 6502 in JavaScript last year. It's not exactly an authoritative reference on the subject, but it may be worth a watch if you are interested in emulating old microprocessors.

calling a function without knowing the number of parameters in advance

Suppose I have a dll with 2 functions.name of dll="dll1"
f1(int a, int b, int c);
f2(int a);
My program would take the function name ,the dll name and a "list" of parameters as input.
how would i call the appropriate function with its appropriate parameters.
i.e,
if input is
dll1
f1
list(5,8,9)
this would require me to call f1 with 3 parameters
if input was
dll1
f2
list(8)
it would require me to call f2 with one parameter
how would i call the function without knowing the number of parameters in advance.
further clarification:
how do I write code that will call any
function with all its arguments by building the argument list dynamically
using some other source of information
Since the generated code differs based on the number of parameters, you have two choices: you can write some code in assembly language to do the job (basically walk through the parameter list and push each on the stack before calling the function), or you can create something like an array of pointers to functions, one for each number of parameters you care about (e.g., 0 through 10). Most people find the latter a lot simpler to deal with (if only because it avoids using assembly language at all).
To solve the problem in general you need to know:
The calling conventions (those stdcall, cdecl, fastcall, thiscall (btw, the latter two can be combined in MSVC++), etc things) that govern how the functions receive their parameters (e.g. in special registers, on the stack, both), how they return values (same) and what they are allowed to trash (e.g. some registers).
Exact function prototypes.
You can find all this only in the symbol/debug information produced by the compiler and (likely to a lesser extent) the header file containing the prototypes for the functions in the DLL. There's one problem with the header file. If it doesn't specify the calling convention and the functions have been compiled with non-default calling conventions (via a compiler option), you have ambiguity to deal with. In either case you'll need to parse something.
If you don't have this information, the only option left is reverse engineering of the DLL and/or its user(s).
In order to correctly invoke an arbitrary function only knowing its prototype and calling convention at run time you need to construct code analogous to that produced by the compiler when calling this function when it's known at compile time. If you're solving the general problem, you'll need some assembly code here, not necessarily hand-written, run-time generated machine code is a good option.
Last but not least, you need some code to generate parameter values. This is most trivial with numeric types (ints, floats and the like) and arrays of them and most difficult with structures, unions and classes. Creating the latter on the fly may be at least as difficult as properly invoking functions. Don't forget that they may refer to other objects using pointers and references.
The general problem is solvable, but not cheaply. It's far easier to solve a few simple specific cases and maybe avoid the entire problem altogether by rewriting the functions to have less-variable parameters and only one calling convention OR by writing wrapper functions to do that.
You might want to check out the Named Parameter Idiom.
It uses method chaining to basically accomplish what you want.
It solves the problem where you know what a default set of arguments look like, but you only need to customize a few of them and not necessarily in the order they are declared.
If your clients know at compile-time, then can wrap it this way:
template<class Args...>
void CallFunctionPointer(void* pf, Args&&... args)
{
typedef void(*FunctionType)(Args...);
FunctionType* pf2 = (FunctionType*) pf;
(*pf2)(forward<Args>(args)...);
}
Note, if you pass the wrong number of paramters or the wrong type(s) of parameters behaviour is undefined.
Background:
In C/C++ you can cast a function pointer to any signature you want, however if you get it wrong behavior is undefined.
In your case there are two signatures you have mentioned:
void (*)(int)
and
void (*)(int, int, int)
When you load the function from the DLL it is your responsibility to make sure you cast it to the correct signature, with the correct number and types of parameters before you call it.
If you have control over the design of these functions, I would modify them to take a variable number of arguments. It the base type is always int, than just change the signature of all the functions to:
void (*)(int* begin, size_t n);
// begin points to an array of int of n elements
so that you can safely bind any of the functions to any number of arguments.

boost::bind accessors?

Suppose I have the following code:
int f(int, int);
int main()
{
SomeFunc(boost::bind(f, 1, 2));
}
From the SomeFunc() function, is it possible to access the arguments held by the bound type? Something like this (pseudo code):
// Obvious syntax issues...
void SomeFunc(boost::bind& functor)
{
if(functor.function == &f)
{
if(functor.argument1 == 1)
DoSomething();
}
}
Can I pull this information out of the boost::bind type?
boost::bind is a templated function, not a type. The real type returned by that function is some kind of functor of an unspecified type. As a matter of fact, it probably returns many different unspecified types depending on what the arguments to the boost::bind function are.
As the type is unspecified and the library only states that is CopyConstructible, that implements operator() with the appropriate number and type of arguments (one for each placeholder, types deduced from the bound method/function) and that it offers an inner type result_type that is the same as the return type of that operator().
The interface of those unspecified classes is, well, unspecified. It will probably not offer accessors to the arguments, and even if it does, and you get inside knowledge from studying the internals of the library, you risk having your code break with upgrades to the library (the implementor is free to change the type and all the interface that is not publicly documented).
The whole library is built around the fact that you do not really care about what the arguments are or even if any argument is defined or only placeholders are used, you only care that the resulting object will be callable with a given interface.
So no, you cannot.
The real question is why would you want to do that?
I suspect you can't but the fact that you are trying is a bit worrying.
No, you cannot do that with boost::bind.
boost::bind just generates a sort of functor object where all details are hidden. Than you construct boost::function or boost::signal with it and the only thing you can do: execute. You even cannot compare boost::function objects.
Anyway, it is not clear that the problem you are solving. Such approach looks awkward to me. Are you sure you really need that?

(Obj) C++: Instantiate (reference to) class from template, access its members?

I'm trying to fix something in some Objective C++ (?!) code. I don't know either of those languages, or any of the relevant APIs or the codebase, so I'm getting stymied left and right.
Say I have:
Vector<char, sizeof 'a'>& sourceData();
sourceData->append('f');
When i try to compile that, I get:
error: request for member 'append' in 'WebCore::sourceData', which is of non-class type 'WTF::Vector<char, 1ul >& ()();
In this case, Vector is WTF::Vector (from WebKit or KDE or something), not STD::Vector. append() very much is supposed to be a member of class generated from this template, as seen in this documentation. It's a Vector. It takes the type the template is templated on.
Now, because I never write programs in Real Man's programming languages, I'm hella confused about the notations for references and pointers and dereferences and where we need them.
I ultimately want a Vector reference, because I want to pass it to another function with the signature:
void foobar(const Vector<char>& in, Vector<char>& out)
I'm guessing the const in the foobar() sig is something I can ignore, meaning 'dont worry, this won't be mangled if you pass it in here'.
I've also tried using .append rather than -> because isn't one of the things of C++ references that you can treat them more like they aren't pointers? Either way, its the same error.
I can't quite follow the error message: it makes it sound like sourceData is of type WTF:Vector<char, 1ul>&, which is what I want. It also looks from the those docs of WTF::Vector that when you make a Vector of something, you get an .append(). But I'm not familiar with templates, either, so I can't really tell i I'm reading that right.
EDIT:
(This is a long followup to Pavel Minaev)
WOW THANKS PROBLEM SOLVED!
I was actually just writing an edit to this post that I semi-figured out your first point after coming across a reference on the web that that line tells the compiler your forward declaring a func called sourceData() that takes no params and returns a Vector of chars. so a "non-class type" in this case means a type that is not an instance of a class. I interpreted that as meaning that the type was not a 'klass', i.e. the type of thing you would expect you could call like .addMethod(functionPointer).
Thanks though! Doing what you suggest makes this work I think. Somehow, I'd gotten it into my head (idk from where) that because the func sig was vector&, I needed to declare those as &'s. Like a stack vs. heap pass issue.
Anyway, that was my REAL problem, because I tried what you'd suggested about but that doesn't initialize the reference. You need to explicitly call the constructor, but then when I put anything in the constructor's args to disambiguate from being a forward decl, it failed with some other error about 'temporary's.
So in a sense, I still don't understand what is going on here fully, but I thank you heartily for fixing my problem. if anyone wants to supply some additional elucidation for the benefit of me and future google people, that would be great.
This:
Vector<char, sizeof 'a'>& sourceData();
has declared a global function which takes no arguments and returns a reference to Vector. The name sourceData is therefore of function type. When you try to access a member of that, it rightfully complains that it's not a class/struct/union, and operator-> is simply inapplicable.
To create an object instead, you should omit the parentheses (they are only required when you have any arguments to pass to the constructor, and must be omitted if there are none):
Vector<char, sizeof 'a'> sourceData;
Then you can call append:
sourceData.append('f');
Note that dot is used rather than -> because you have an object, not a pointer to object.
You do not need to do anything special to pass sourceData to a function that wants a Vector&. Just pass the variable - it will be passed by reference automatically:
foobar(sourceData, targetData);
Dipping your toes in C++ is never much fun. In this case, you've run into a couple of classic mistakes. First, you want to create an instance of Vector on the stack. In this case the empty () is interpreted instead as a declaratiton of a function called sourceData that takes no agruments and returns a reference to a Vector. The compiler is complaining that the resulting function is not a class (it's not). To create an instance of Vector instead, declare the instance without the () and remove the &. The parentheses are only required if you are passing arguments to the instance constructor and must be omitted if there are no arguments.
You want
Vector<char, sizeof 'a'> sourceData;
sourceData.append('f');
Vector<char, sizeof 'a'> outData; //if outData is not instantiated already
foobar(sourceData, outData);
This Wikipedia article gives a decent introduction to C++ references.