Increase Program Speed By Avoiding Functions? (C++) - c++

When it comes to procedural programming, functional decomposition is ideal for maintaining complicated code. However, functions are expensive- adding to the call stack, passing parameters, storing return addresses. all of this takes extra time! When speed is crucial, how can I get the best of both worlds? I want a highly decomposed program without any necessary overhead introduced by function calls. I'm familiar with the keyword: "inline" but that seems to be only be a suggestion to the compiler, and if used incorrectly by the programmer it will yield an even slower program. I'm using g++, so will the -03 flag optimize away my functions that call functions that call functions..
I just wanted to know, if my concerns are valid and if there are any methods to combat this issue.

First, as always when dealing with performance issues, you should try and measure what are your bottlenecks with a profiler. The first thing coming out is usually not function calls and by a large margin. If you did this, then please read on.
Then, you can anticipate a bit what functions you want inlined by using the inline keyword. The compiler is usually smart enough to know what to inline and what not to inline (it can inline functions you forgot and may not inline some you mentionned if he thinks it won't help).
If (really) you still want to improve performance on function calls and want to force inlining, some compilers allow you to do so (see this question). Please consider that massive inlining may actually decrease performance: your code will use a lot of memory and you may get more cache misses on the code than before (which is not good).

If it's a specific piece of code you're worried about you can measure the time yourself. Just run it in a loop a large number of times and get the system time before and after. Use the difference to find the average time of each call.
As always the numbers you get are subjective, since they will vary depending on your system and compiler. You can compare the times you get from different methods to see which is generally faster, such as replacing the function with a macro. My guess is however you won't notice much difference, or at the very least it will be inconsequential.
If you don't know where the slowdown is follow J.N's advice and use a code profiler and optimise where it's needed. As a rule of thumb always pass large objects to functions by reference or const reference to avoid copy times.

I highly doubt speed is that curcial, but my suggestion would be to use preprocessor macros.
For example
#define max(a,b) ( a > b ? a : b )
This would seem obvious to me, but I don't consider myself an expect in C++, so I may have misunderstood the question.

Related

Does C++ code run faster if there is no structure in program

I know it helps a lot if we structure our programs using classes, structs etc. but does it help in terms of running speed that we avoid these structures and write code plain in terms of basic C++ syntax?
For example, I am trying to write a program that works on vectors. Now it sounds tempting to write a class vector and define its methods like set_at_index(int i) that sets the value of specific row i of this vector. Furthermore I can check whether i<=N where N is the length of the vector in question.
My confusion is that with these routine every set_at_index method that is used a lot will require one 'if' statement. So if I want my code to run faster should I avoid it and go with declaring an array and manually take care that there is no memory leak?
Is there any way I can check for the memory leaks without putting burden on the code speed?
Yes, bounds checking will take slightly more time. But it will take so little extra time that it will only matter if the code is being run 28894389375 times and then it might add up to a millisecond. Note that std::vector only performs bounds checking if you use the at member function, not if you use operator[]. Also, if you are doing anything like writing to a file or printing text to the console, doing that one time will likely take more time than ten million bounds-checked array accesses, because I/O is relatively very very slow.
Typically, without bounds checking code using classes will run at the same speed as code using plain arrays. The problem with manually managing memory like you suggest is that it's easy to forget to clean it up, or to clean it up only through one path of execution through the program, or to fail to clean it up in the event of an exception. It's really hardly ever worth it. Also, it'll be just as fast to use a vector class without bounds checking as it will be to use a dynamic array without bounds checking. You pay for it either way.
I also suggest using std::vector instead of writing your own vector class since they do pretty much every optimisation you could do yourself, and they usually have the advantage of being able to write the code for their specific compiler and perhaps be able to take advantage of things that only that compiler does because they know more of its implementation. The STL classes are also rigorously tested and written by experts (usually).
You should write your code first, then measure with a profiler to see the bottlenecks in your code if it is not fast enough already, then optimise the bottlenecks. I will bet that bounds checking on arrays is probably not going to be one of those bottlenecks.
Checking for memory leaks can be done with a tool like valgrind. You don't do it in the code itself.
Don't try to over optimize before you even start writing. Go ahead and write code that is easily maintainable, readable, and as bug free as possible. Once you have things working, you can start profiling to see the real bottlenecks.
"Premature optimization is root of all evils" - Donald Knuth. (this is true 97% of the time).
Unless you profile your application and see that your class encapsulation is a bottleneck that does slow your application in a significant amount, don't hesitate to have high level structures. It will brings you plenty of benefits like readability, maintainance, and understanding what you do. That's what brings OOP: Big scale programs.
Some good answers have already been posted, and premature optimization is indeed inadvisable as others have said. However, let me put your question in slightly another light.
I know it helps a lot if we structure our programs using classes,
structs etc. but does it help in terms of running speed that we avoid
these structures and write code plain in terms of basic C++ syntax?
Theoretically, most properly written C++ code should run just as fast with fully developed classes as without, but
there are exceptions to the rule;
the effort required to write the C++ code theoretically properly may be too great; and
the same features of the C++ compiler that make it hard to write incorrect code can make it all too easy to write grossly inefficient code.
Point-by-point remarks follow.
Consider a complex three-dimensional vector type, of which each instance consists of six doubles (three real parts and three imaginary parts). If there were not so many doubles, your compiler might load them directly into your microprocessor's registers, but with six they are likely to remain on the stack when the complex three-dimensional vector is loaded. Some operations however on a complex three-dimensional vector do not require all six doubles, but only one, two or three of them. If so, then it might be preferable to store the six floating-point components separately. Thus, rather than an array of 1000 vectors, you'd keep six arrays of 1000 doubles each. Of course, one can (and probably should) bind the arrays together in a class of some kind, but -- for efficiency reasons only -- a good design might never explicitly associate individual elements from one array to another.
Sometimes, you know where your data is and what you want to do with it, and C++'s elaborate organizational and access-control facilities only get in your way. In this case, you might skip the high-level C++ and just do what you want in primitive, hackworthy, brutish, machete-wielding C-style code. Indeed, C++ explicitly supports this style of coding by making it possible -- nay, easy -- to wrap the primitive C code safely within a module and thus to hide its horror from the rest of your beautiful C++ program. Of course, if you hand your code a machete, so to speak, then you take a risk, don't you, because your code may hack up data you never wanted it to, and your compiler will stand aside and let it do it; but sometimes the risk is worth the gain, and sometimes the risk is even fun (and character-building) for a programmer's change of pace.
This point is the most subtle of the three. Where a user-defined type consists partly of other user-defined types, multiple layers of constructors will be called and implicitly invoked. This is great, and usually it is what you want, especially if you have a good unit-testing regime at each layer. The rose however has a thorn, as it were. A properly written constructor is careful never to lose anything it needs. So, unless the programmer is most careful, a constructor may quietly make a lot of strictly unnecessary copies of very large objects. Sometimes, the programmer will mentally lose track of all the levels of implicit invocation, which he never would have done if he had had to handle each invocation explicitly. Also, your data in an object of one type may lack access to a member function to which it can easily gain access, so long is it temporarily copies itself to an object of another type (you can avoid the copy with the use of handle types, reference counting and so forth, but this is not free: it's quite a bit of work). Even if the programmer is conscious of the implicit copy, the implicit copy is so much easier to code in the moment that the temptation to do so is sometimes too great -- especially when a deadline looms! Several hidden inefficiencies can arise in these ways. One can, and should, work around such inefficiencies, of course, but it can take a lot of coding effort to do so and, even then, your compiler is so busy helping you to avoid logical errors that it tends to cause you to create inadvertent inefficiencies that you would never purposely have created. The unnecessary, hidden copying of data is a much bigger problem in C++ than it ever was in C.
All in all, I would say that the C++ trade-off is worth it 80 percent of the time. C++'s organizational and access-control facilities merit the effort it takes to apply them properly. If your question regards the 20 percent, well, there is more than one valid approach to programming, in my view. Sometimes it really does help "that we avoid these structures and write code plain in terms of basic C++ syntax," as you have said.
Usually, no. Sometimes, yes. I think that the earlier answers are right, though, that the particular example you have posed is probably better treated in boring, neat, orderly C++, without tricks.
Two things:
DO NOT do any kind of premature optimization, CPUs are fast nowadays, compilers are smart and able to figure out optimizations that you wouldn't think of in months of looking at your code.
you can easily check things like memory leaks by profiling your code and/or using conditional compilation. Leaks shouldn't occur on release versions so you should just skip that checks.

Do inline functions make it harder to reverse-engineer the compiled binary?

So basically, besides possible performance effects, does inlining functions have any considerable effect on how difficult it is to reverse-engineer the program from its compiled and linked binary?
I mean, it should be, since 1) the cracker just sees more machine instructions, instead of nice understandable "call XXXXX", which he may already have discovered to do a certain thing. and 2) inlining provides more possibilities for the compiler to optimize code, and that is even more obfuscation, right?
Also, considering the inline keyword is just a suggestion to the compiler, how much effect can this really have? Should we bother? I mean, of course they will crack it eventually, but if by such simple measures we can make the cracker's life harder, why not?
The choice to inline methods or not should not be based on how easy it is to reverse engineer. The difference between inlining and not will be negligible.
The exception is if you have any anti-piracy code, inlining that, or even using macros to ensure it's "inlined" can help remove a single point of failure.
If you're concerned about this, I suggest looking into obfuscation tools that operate on the binary.
It will decrease the similarity between your input and his output. It generally won't have much effect on his efforts in general though.

Why not mark everything inline?

First off, I am not looking for a way to force the compiler to inline the implementation of every function.
To reduce the level of misguided answers make sure you understand what the inline keyword actually means. Here is good description, inline vs static vs extern.
So my question, why not mark every function definition inline? ie Ideally, the only compilation unit would be main.cpp. Or possibly a few more for the functions that cannot be defined in a header file (pimpl idiom, etc).
The theory behind this odd request is it would give the optimizer maximum information to work with. It could inline function implementations of course, but it could also do "cross-module" optimization as there is only one module. Are there other advantages?
Has any one tried this in with a real application? Did the performance increase? decrease?!?
What are the disadvantages of marking all function definitions inline?
Compilation might be slower and will consume much more memory.
Iterative builds are broken, the entire application will need to be rebuilt after every change.
Link times might be astronomical
All of these disadvantage only effect the developer. What are the runtime disadvantages?
Did you really mean #include everything? That would give you only a single module and let the optimizer see the entire program at once.
Actually, Microsoft's Visual C++ does exactly this when you use the /GL (Whole Program Optimization) switch, it doesn't actually compile anything until the linker runs and has access to all code. Other compilers have similar options.
sqlite uses this idea. During development it uses a traditional source structure. But for actual use there is one huge c file (112k lines). They do this for maximum optimization. Claim about 5-10% performance improvement
http://www.sqlite.org/amalgamation.html
We (and some other game companies) did try it via making one uber-.CPP that #includeed all others; it's a known technique. In our case, it didn't seem to affect runtime much, but the compile-time disadvantages you mention turned out to be utterly crippling. With a half an hour compile after every single change, it becomes impossible to iterate effectively. (And this is with the app divvied up into over a dozen different libraries.)
We tried making a different configuration such that we would have multiple .objs while debugging and then have the uber-CPP only in release-opt builds, but then ran into the problem of the compiler simply running out of memory. For a sufficiently large app, the tools simply are not up to compiling a multimillion line cpp file.
We tried LTCG as well, and that provided a small but nice runtime boost, in the rare cases where it didn't simply crash during the link phase.
Interesting question! You are certainly right that all of the listed disadvantages are specific to the developer. I would suggest, however, that a disadvantaged developer is far less likely to produce a quality product. There may be no runtime disadvantages, but imagine how reluctant a developer will be to make small changes if each compile takes hours (or even days) to complete.
I would look at this from a "premature optimization" angle: modular code in multiple files makes life easier for the programmer, so there is an obvious benefit to doing things this way. Only if a specific application turns out to run too slow, and it can be shown that inlining everything makes a measured improvement, would I even consider inconveniencing the developers. Even then, it would be after a majority of the development has been done (so that it can be measured) and would probably only be done for production builds.
This is semi-related, but note that Visual C++ does have the ability to do cross-module optimization, including inline across modules. See http://msdn.microsoft.com/en-us/library/0zza0de8%28VS.80%29.aspx for info.
To add an answer to your original question, I don't think there would be a downside at run time, assuming the optimizer was smart enough (hence why it was added as an optimization option in Visual Studio). Just use a compiler smart enough to do it automatically, without creating all the problems you mention. :)
Little benefit
On a good compiler for a modern platform, inline will affect only a very few functions. It is just a hint to the compiler, modern compilers are fairly good at making this decision themselves, and the the overhead of a function call has become rather small (often, the main benefit of inlining is not to reduce call overhead, but opening up further optimizations).
Compile time
However, since inline also changes semantics, you will have to #include everything into one huge compile unit. This usually increases compile time significantly, which is a killer on large projects.
Code Size
if you move away from current desktop platforms and its high performance compilers, things change a lot. In this case, the increased code size generated by a less clever compiler will be a problem - so much that it makes the code significantly slower. On embedded platforms, code size is usually the first restriction.
Still, some projects can and do profit from "inline everything". It gives you the same effect as link time optimization, at least if your compiler doesn't blindly follow the inline.
That's pretty much the philosophy behind Whole Program Optimization and Link Time Code Generation (LTCG) : optimization opportunities are best with global knowledge.
From a practical point of view it's sort of a pain because now every single change you make will require a recompilation of your entire source tree. Generally speaking you need an optimized build less frequently than you need to make arbitrary changes.
I tried this in the Metrowerks era (it's pretty easy to setup with a "Unity" style build) and the compilation never finished. I mention it only to point out that it's a workflow setup that's likely to tax the toolchain in ways they weren't anticipating.
It is done already in some cases. It is very similar to the idea of unity builds, and the advantages and disadvantages are not fa from what you descibe:
more potential for the compiler to optimize
link time basically goes away (if everything is in a single translation unit, there is nothing to link, really)
compile time goes, well, one way or the other. Incremental builds become impossible, as you mentioned. On the other hand, a complete build is going to be faster than it would be otherwise (as every line of code is compiled exactly once. In a regular build, code in headers ends up being compiled in every translation unit where the header is included)
But in cases where you already have a lot of header-only code (for example if you use a lot of Boost), it might be a very worthwhile optimization, both in terms of build time and executable performance.
As always though, when performance is involved, it depends. It's not a bad idea, but it's not universally applicable either.
As far as buld time goes, you have basically two ways to optimize it:
minimize the number of translation units (so your headers are included in fewer places), or
minimize the amount of code in headers (so that the cost of including a header in multiple translation units decreases)
C code typically takes the second option, pretty much to its extreme: almost nothing apart from forward declarations and macros are kept in headers.
C++ often lies around the middle, which is where you get the worst possible total build time (but PCH's and/or incremental builds may shave some time off it again), but going further in the other direction, minimizing the number of translation units can really do wonders for the total build time.
The assumption here is that the compiler cannot optimize across functions. That is a limitation of specific compilers and not a general problem. Using this as a general solution for a specific problem might be bad. The compiler may very well just bloat your program with what could have been reusable functions at the same memory address (getting to use the cache) being compiled elsewhere (and losing performance because of the cache).
Big functions in general cost on optimization, there is a balance between the overhead of local variables and the amount of code in the function. Keeping the number of variables in the function (both passed in, local, and global) to within the number of disposable variables for the platform results in most everything being able to stay in registers and not have to be evicted to ram, also a stack frame is not required (depends on the target) so function calling overhead is noticeably reduced. Hard to do in real world applications all the time, but the alternative a small number of big functions with lots of local variables the code is going to spend a significant amount of time evicting and loading registers with variables to/from ram (depends on the target).
Try llvm it can optimize across the entire program not just function by function. Release 27 had caught up to gcc's optimizer, at least for a test or two, I didnt do exhaustive performance testing. And 28 is out so I assume it is better. Even with a few files the number of tuning knob combinations are too many to mess with. I find it best to not optimize at all until you have the whole program into one file, then perform your optimization, giving the optimizer the whole program to work with, basically what you are trying to do with inlining, but without the baggage.
Suppose foo() and bar() both call some helper(). If everything is in one compilation unit, the compiler might choose not to inline helper(), in order to reduce total instruction size. This causes foo() to make a non-inlined function call to helper().
The compiler doesn't know that a nanosecond improvement to the running time of foo() adds $100/day to your bottom line in expectation. It doesn't know that a performance improvement or degradation of anything outside of foo() has no impact on your bottom line.
Only you as the programmer know these things (after careful profiling and analysis of course). The decision not to inline bar() is a way of telling the compiler what you know.
The problem with inlining is that you want high performance functions to fit in cache. You might think function call overhead is the big performance hit, but in many architectures a cache miss will blow the couple pushes and pops out of the water. For example, if you have a large (maybe deep) function that needs to be called very rarely from your main high performance path, it could cause your main high performance loop to grow to the point where it doesn't fit in L1 icache. That will slow your code down way, way more than the occasional function call.

Do global variables mean faster code?

I read recently, in an article on game programming written in 1996, that using global variables is faster than passing parameters.
Was this ever true, and if so, is this still true today?
Short answer - No, good programmers make code go faster by knowing and using the appropriate tools for the job, and then optimizing in a methodical way where their code does not meet their requirements.
Longer answer - This article, which in my opinion is not especially well-written, is not in any case general advice on program speedup but '15 ways to do faster blits'. Extrapolating this to the general case is missing the writer's point, whatever you think of the merits of the article.
If I was looking for performance advice, I would place zero credence in an article that does not identify or show a single concrete code change to support the assertions in the sample code, and without suggesting that measuring the code might be a good idea. If you are not going to show how to make the code better, why include it?
Some of the advice is years out of date - FAR pointers stopped being an issue on the PC a long time ago.
A serious game developer (or any other professional programmer, for that matter) would have a good laugh about advice like this:
You can either take out the assert's
completely, or you can just add a
#define NDEBUG when you compile the final version.
My advice to you, if you really wish to evaluate the merit of any of these 15 tips, and since the article is 14 years old, would be to compile the code in a modern compiler (Visual C++ 10 say) and try to identify any area where using a global variable (or any of the other tips) would make it faster.
[Just joking - my real advice would be to ignore this article completely and ask specific performance questions on Stack Overflow as you hit issues in your work that you cannot resolve. That way the answers you get will be peer reviewed, supported by example code or good external evidence, and current.]
When you switch from parameters to global variables, one of three things can happen:
it runs faster
it runs the same
it runs slower
You will have to measure performance to see what's faster in a non-trivial concrete case. This was true in 1996, is true today and is true tomorrow.
Leaving the performance aside for a moment, global variables in a large project introduce dependencies which almost always make maintenance and testing much harder.
When trying to find legitimate uses of globals variables for performance reasons today I very much agree with the examples in Preet's answer: very often needed variables in microcontroller programs or device drivers. The extreme case is a processor register which is exclusively dedicated to the global variable.
When reasoning about the performance of global variables versus parameter passing, the way the compiler implements them is relevant. Global variables typically are stored at fixed locations. Sometimes the compiler generates direct addressing to access the globals. Sometimes however, the compiler uses one more indirection and uses a kind of symbol table for globals. IIRC gcc for AIX did this 15 years ago. In this environment, globals of small types were always slower than locals and parameter passing.
On the other hand, a compiler can pass parameters by pushing them on the stack, by passing them in registers or a mixture of both.
Everyone has already given the appropriate caveat answers about this being platform and program specific, needing to actually measure timings, etc. So, with that all said already, let me answer your question directly for the specific case of game programming on x86 and PowerPC.
In 1996, there were certain cases where pushing parameters onto the stack took extra instructions and could cause a brief stall inside the Intel CPU pipeline. In those cases there could be a very small speedup from avoiding parameter passing altogether and reading data from literal addresses.
This isn't true any more on the x86 or on the PowerPC used in most game consoles. Using globals is usually slower than passing parameters for two reasons:
Parameter passing is implemented better now. Modern CPUs pass their parameters in registers, so reading a value from a function's parameter list is faster than a memory load operation. The x86 uses register shadowing and store forwarding, so what looks like shuffling data onto the stack and back can actually be a simple register move.
Data cache latency far outweighs CPU clock speed in most performance considerations. The stack, being heavily used, is almost always in cache. Loading from an arbitrary global address can cause a cache miss, which is a huge penalty as the memory controller has to go and fetch the data from main RAM. ("Huge" here is 600 cycles or more.)
What do you mean, "faster"?
I know for a fact, that understanding a program with global variables takes me a whole lot more time than one without.
If the extra time it takes the programmer(s) is less than the time gained by the users when they run the program with globals, then I'd say using global is faster.
But consider that the program is going to be run by 10 people once a day for 2 years. And that it takes 2.84632 secs without globals and 2.84217 secs with globals (a 0.00415 sec increase). That's 727 seconds less of TOTAL runtime. Gaining 10 minutes of run time is not worth the introduction of a global as regards programmer time.
To a degree any code that avoids processor instructions (ie shorter code) will be faster. However how much faster? Not very! Also note that compiler optimisation strategies may result in the smaller code anyway.
These days this is only an optimisation on very specific applications usually in ultra time critical drivers or micro-control code.
Putting aside the issues of maintainability and correctness, there are basically two factors that will govern performance with regard to globals vs. parameters.
When you make a global you avoid a copy. That's slightly faster. When you pass a parameter by value, it has to be copied so that a function can work on a local copy of it and not damage the caller's copy of the data. At least in theory. Some modern optimizers do pretty tricky things if they identify that your code is well behaved. A function may get automatically inlined, and the compiler may notice that the function doesn't do anything to the parameters, and just optimise away any copying.
When you make a global, you are lying to the cache. When you have all of your variables neatly contained in your function, and a few parameters, the data will tend to all be in one place. Some of the variables will be in registers, and some will probably be in cache right away because they are right 'next to' each other. Using a lot of global variables is basically pathological behavior for the cache. There is no guarantee that various globals will be used by the same functions. Location has no obvious correlation with usage. Perhaps you have a small enough working set that it makes no difference where anything is, and it all winds up in cache.
All of this just adds up to the point made by a poster above me:
When you switch from parameters to
global variables, one of three things
can happen:
* it runs faster
* it runs the same
* it runs slower
You will have to measure performance
to see what's faster in a non-trivial
concrete case. This was true in 1996,
is true today and is true tomorrow.
Depending on the specific behavior of your exact compiler, and precise details of the hardware that you use to run your code, it's possible that global variables could be a very slight performance win in some cases. That possibility may be worth trying it on some code that runs too slow as an experiment. It's probably not worth dedicating yourself to, as the answer of your experiment could change tomorrow. So, the right answer is almost always to go with "correct" design patterns and avoid the uglier design. Look for better algorithms, more efficient data structures, etc., before intentionally trying to spaghettify your project. Much better payoff in the long run.
And, aside from the dev time vs user time argument, I'll add the dev time vs. Moore's time argument. If you assume Moore's law will make computers something like half again as fast every year, then for the sake of a simple round number, we can assume that progress happens in a steady 1% progress per week. IF you are looking at a microoptimisation that may improve things like 1%, and it will add a week to the project from complicating things, then just taking the week off will have the same effect on average run times for your users.
Perhaps a micro optimisation, and would probably be wiped out by optimisations your compiler could generate without resort to such practices. In fact the use of globals may even inhibit some compiler optimisations. Reliable and maintainable code would generally be of greater value, and globals are not conducive to that.
Using globals to replace function parameters renders all such functions non-reentrant, which may be a problem if multi-threading is used - not a common practice in game development in 1996, but more common with the advent of multi-core processors. It also precludes recursion, although that is probably less of an issue since recursion has its own issues.
In any significant body of code, there is likely to be more mileage in higher-level optimisation of algorithms and data structures. Moreover there are options open to you other than global variables that avoid parameter passing, most especially C++ class-member variables.
If the habitual use of global variables in your code makes a measurable or useful difference to its performance, I would question the design first.
For a discussion of the problems inherent in global variables and some ways to avoid them see A Pox on Globals by Jack Gannsle. The article relates to embedded systems development, but is generally applicable; its just that some embedded systems developers think they have good reason to use globals, probably for all the same misguided reasons used to justify it in game development.
Well, if you are considering using global parameters instead of parameter passing, that could mean that you have a long chain of methods/functions that you have to pass that parameter down. It that is the case, you really WILL save CPU cycles by switching from parameter to global variable.
So, guys that say that it depends, I guess that they are plain wrong. Even with REGISTER parameter passing, there will still be MORE cpu cycles and MORE overhead for pushing the parameters down to the callee.
HOWEVER - I never do that. CPUs are superior now, and at times when there were 12Mhz 8086s that could be the issue. Nowadays, if you don't write embedded or super-turbo-charged performance code, stick to that which looks good in code, which doesn't break code logic, and thrives to be modular.
And lastly, leave machine language code generation to compiler - guys who designed it are best at knowing how their baby performs and will make your code run at its best.
In general (but it may depend greatly on compiler and platform implementation), passing parameters mean writing them onto the stack which you would not need with global variable.
That said, global variable may mean include page refresh in the MMU or memory controller whereas the stack may be located in much faster memory available to the processor...
Sorry, no good answer for a general question like this, just measure it (and try different scenarios too)
It was faster when we had <100mhz processors. Now that that processors are 100x faster this 'problem' is 100x less significant. It wasnt a big deal then, it was a big deal when you did it in assembly and had no (good) optimizer.
Says the guy who programmed on a 3mhz processor. Yes you read that right and 64k was NOT enough.
I see a lot of theoretical answers, but no practical advice for your scenario. What I'm guessing is that you have a large number of parameters to pass down through a number of function calls, and you're worried about accumulated overhead from many levels of call frames and many parameters at each level. Otherwise your concern is completely unfounded.
If this is your scenario, you should probably put all of the parameters in a "context" structure and pass a pointer to that structure. This will ensure data locality, and makes it so you don't have to pass more than one argument (the pointer) at each function call.
Parameters accessed this way are slightly more expensive to access than true function arguments (you need an extra register to hold the pointer to the base of the structure, as opposed to the frame pointer which would serve this purpose with function arguments), and individually (but probably not with cache effects factored in) more expensive to access than global variables in normal, non-PIC code. However, if your code is in a shared library/DLL using position independent code, the cost of accessing parameters passed by pointer to struct is cheaper than accessing a global variable and identical to accessing static variables, due to GOT and GOT-relative addressing. This is another reason never to use global variables for parameter passing: if you may eventually put your code in a shared library/DLL, any possible performance benefits will suddenly backfire!
Like everything else: yes and no. There is no one answer because it depends on context.
Counterpoints:
Imagine programming on Itanium where you have hundreds of registers. You can put quite a few globals into those, which will be faster than the typical way globals are implemented in C (some static address (although they might just hardcode the globals into instructions if they are word length)). Even if the globals are in cache the whole time, registers may still be faster.
In Java, overuse of globals (statics) can decrease performance because of initialization locks that have to be done. If 10 classes want to access some static class, they all have to wait for that class to finish initializing its static fields, which can take anywhere form no time up to forever.
In any case, global state is just bad practice, it raises code complexity. Well designed code is naturally fast enough 99.9% of the time. It seems like newer languages are removing global state all together. E removes global state because it violates their security model. Haskell removes state all together. The fact that Haskell exists and has implementations that outperform most other languages is proof enough for me that I will never use globals again.
Also, in the near future, when we all have hundreds of cores, global state isn't really going to help much.
It might still be true, under some circumstances.
A global variable might be as fast as a pointer to a variable, where its pointer is stored in/passed through registers only. So, it is a question about the count of registers, you can use.
To speed-optimize a function call, you could do several other things, that might perform better with global-variable-hacks:
Minimize the count of local variables in the function to a few (explicit) register variables.
Minimize the count of parameters of the function, i.e. by using pointers to structures instead of using the same parameter-constellations in functions that call each other.
Make the function "naked", that means that it does not use the stack at all.
Use "proper-tail-calls" (does neither work with java/-bytecode nor java-/ecma-script)
If there is no better way, hack yourself sth like TABLES_NEXT_TO_CODE, which locates your global variables next to the function code. In functional languages this is a backend-optimization that uses the function-pointer as data-pointer, too; but as long as you do not program in a functional language, you only need to locate those variables beside those used by the function. Then again, you only want this to remove the stack-handling from your function. If your compiler generates assembler code that handles the stack, then there is no point in doing this, you could use pointers instead.
I've found this "gcc attribute overview":
http://www.ohse.de/uwe/articles/gcc-attributes.html
and I can give you these tags for googling:
- Proper Tail Call (it is mostly relevant to imperative backends of functional languages)
- TABLES_NEXT_TO_CODE (it is mostly relevant to Haskell and LLVM)
But you have 'spaghetti code', when you often use global variables.

Should I use a function in a situation where it would be called an extreme number of times?

I have a section of my program that contains a large amount of math with some rather long equations. Its long and unsightly and I wish to replace it with a function. However, chunk of code is used an extreme number of times in my code and also requires a lot of variables to be initialized.
If I'm worried about speed, is the cost of calling the function and initializing the variables negligible here or should i stick to directly coding it in each time?
Thanks,
-Faken
Most compilers are smart about inlining reasonably small functions to avoid the overhead of a function call. For functions big enough that the compiler won't inline them, the overhead for the call is probably a very small fraction of the total execution time.
Check your compiler documentation to understand it's specific approach. Some older compilers required or could benefit from hints that a function is a candidate for inlining.
Either way, stick with functions and keep your code clean.
Are you asking if you should optimize prematurely?
Code it in a maintainable manner first; if you then find that this section is a bottleneck in the overall program, worry about tuning it at that point.
You don't know where your bottlenecks are until you profile your code. Anything you can assume about your code hot spots is likely to be wrong. I remember once I wanted to optimize some computational code. I ran a profiler and it turned out that 70 % of the running time was spent zeroing arrays. Nobody would have guessed it by looking at the code.
So, first code clean, then run a profiler, then optimize the rough spots. Not earlier. If it's still slow, change algorithm.
Modern C++ compilers generally inline small functions to avoid function call overhead. As far as the cost of variable initialization, one of the benefits of inlining is that it allows the compiler to perform additional optimizations at the call site. After performing inlining, if the compiler can prove that you don't need those extra variables, the copying will likely be eliminated. (I assume we're talking about primitives, not things with copy constructors.)
The only way to answer that is to test it. Without knowing more about the proposed function, nobody can really say whether the compiler can/will inline that code or not. This may/will also depend on the compiler and compiler flags you use. Depending on the compiler, if you find that it's really a problem, you may be able to use different flags, a pragma, etc., to force it to be generated inline even if it wouldn't be otherwise.
Without knowing how big the function would be, and/or how long it'll take to execute, it's impossible guess how much effect on speed it'll have if it isn't generated inline.
With both of those being unknown, none of us can really guess at how much effect moving the code into a function will have. There might be none, or little or huge.