What is the origin of move semantics in C++? - c++

I am wondering what is the origin of move semantics in C++? In particular was it invented specifically for this language or there was something similar in other language(s)? In the latter case could you give some references.

There doesn't appear to be any kind of specific ancestor to the concept. The origin of C++'s move semantics, as noted in the original proposal, was discussion in newsgroups:
Move semantics in various forms has been discussed in C++ forums (most
notably comp.lang.c++.moderated) for years.
To my mind, they are tightly coupled with C++'s notion of lvalues and rvalues which, if I'm not mistaken, is purely a C++ concept. A language that doesn't have lvalues, rvalues and their new C++11 friends doesn't need move semantics in the way that C++ implements them.
More generally, though, the concept of moving stuff around rather than copying is just a fundamental concept. Whenever you write a linked list and you "swap elements" by actually just swapping pointers to them, you're doing a "move". Basically.

You can read "A Proposal to Add Move Semantics Support to the C++ Language" to get more information on the motivation behind the concept, as well as why this needs to have direct language support rather than being implemented using library facilities.

Related

Why isn't => an overloadable operator in C++?

=> isn't overloadable in C++. I have always wondered whether this is just a pure coincidence or whether there is a specific reason this sequence of two characters cannot be overloaded. The emergence of the comparison operator <=> leads me to believe the former.
I think it's a prime candidate for overloading because it looks like an arrow, which is very common in functional programming syntax and mathematics. Granted -> exists already but having another arrow could be useful to disambiguate between the two. I also don't see how it could break backwards compatibility.
C++ only allows you to overload operators that are already operators in the base language.
The base language defined operators, each with its associated precedence and associativity. In an operator overload, you can supply the meaning of that operator (the code that will be executed) for types for a user-defined type (or sometimes, for a combination of two user-defined types).
You cannot, however, just choose an arbitrary set of symbols, and treat it as an operator (no matter how attractive that might be).
There are languages that do allow this--for example, ML (and many of its descendants) allow you to define an operator with an entirely new name that's not part of the base language at all. When you do this, you define the precedence and associativity you want that operator to have. I think that's great, and provides a useful capability--but (at least as the capability is defined in ML) it also has some weaknesses that probably wouldn't fit nearly so well with how things work in C++. I wouldn't expect to see it as part of C++ any time soon (or, probably, ever).
In C++, “overloading” is a mechanism for providing a custom definition for existing operators so they can be used in custom types, not a mechanism for adding new operators to the language. You can’t change the meaning of a “=>” operator because C++ (as of this writing at least) doesn’t have a “=>” operator.
As a supplement to Jerry’s great answer, I want to point out that this was not an oversight by any stretch, but a very conscious design decision. Bjarne Stroustrup, the original creator of the C++ language, describes his thoughts on this in his fabulous book “The Design and Evolution of C++”, as I quote here:
I [Stroustrup] considered it important to provide overloading as a mechanism for extending the language and not for mutating it; that is, it is possible to define operators to work on user-defined types (classes), but not to change the meaning of operators on built-in types. In addition, I didn’t want to allow programmers to introduce new operators. I feared cryptic notation and having to adopt complicated parsing strategies like those needed for Algol68.”
(bold emphasis mine, italics in the original)
Source: Stroustrup, Bjarne: “The Design and Evolution of C++”, Addison-Wesley, 1994. §3.6.5
PS: Although a bit dated as a reference for modern C++ design, this is an excellent and fascinating source to explore the history and the reasoning that led to the design of the original C++ language. The language further design has long been under the purview of an ISO Standards committee but its continuous evolution has continued to be driven by many of the same principles described in the book and Dr. Stroustrup continues to be an important voice in that evolution process.

Are there practical uses of C++11's Garbage Collection ABI?

C++11 introduced an interface to garbage collectors. From what I see, it provides a standardized way to communicate with the GC (e.g. declare_no_pointers), and to get information about how disguised pointers are handled (e.g., get_pointer_safety).
However, there is no standardized way in C++11 yet to allocate a raw block of memory, which you don't have to free manually. There are use cases where that would help, even if destructors are not called. One example is to implement efficient concurrent data structures (as mentioned by Herb Sutter) without having to deal with complicated cleanup protocols.
So far, so good. My question (from the perspective of an ordinary develper, not a GC library developer):
Is there a real-world example where the new C++11 GC interface has helped you?
At least from my perspective the world has not changed. If you need GC, you still have to find a non-standard library, for example Boehm GC, and learn how to integrate and use it. The new standardized interface won't help very much in that respect. It will also not solve portability issues.
(In the long term, the common interface defined by the C++11 standard hopefully pays off. However, my question targets only the immediate future.)
No, there is no currently practical usage of C++11 GC interface as there is no compiler which fully supports this API in the meantime. Also, C++11 standard declares this API as optional and there is no movement seen to implement it in the major compilers (but as Jesse Good notes MSVC already does support it).
Also you should look this post, it has related information: Why garbage collection when RAII is available?
std::shared_ptr provides what is called reference-counted garbage collection. It is simple to implement but has some drawbacks. Specifically it is less efficient than alternative forms of garbage collection in many applications, and more importantly it cannot handle cyclic references.
Java and C# are called "managed languages" as opposed to C++ which is called an "unmanaged language" mostly because they implement mark-and-sweep garbage collection. Mark-and-sweep garbage collection handles cyclic references. It does this by logically searching the graph of reachable objects, then periodically deleting those that are unreachable. There are more sophisticated algorithms that are optimizations of this (one is called "generational"), but the underlying structure is just mark-and-sweep.
The problem with implementing mark-and-sweep in C++ is that there are a lot of operations that make it difficult to track the object graph. The "safely-derived pointer" concept seeks to separate out and define these issues so that we can say which features you can use to maintain the integrity of the GCs view of the object graph. It should then be possible for a compiler to statically identify and diagnose constructs that violate these (reinterpret casts, pointer arithmetic, and so on).
Those that claim "why would you want garbage collection when you have RAII" are confused. RAII is one possible memory model which uses an ownership concept. Each object must be owned by exactly one other object, and that owner is in charge of its lifetime. For many object models this simply is not natural or conveniant, as one object is referenced by several others, and there is no clear owner. For many applications you want an objects lifetime to end automatically once it becomes unreferenced, and this is how Java and C# work "by default".
It is my impression that the new memory model and "safely-derived object" concept should lead to a real optional mark-and-sweep garbage collector to be made available in the standard library. Such a feature would be extremely welcome - but I don't think it is there yet. The "safely-derived object" stuff is a foundation for things to come.

Why were concepts (generic programming) conceived when we already had classes and interfaces?

Also on programmers.stackexchange.com:
I understand that STL concepts had to exist, and that it would be silly to call them "classes" or "interfaces" when in fact they're only documented (human) concepts and couldn't be translated into C++ code at the time, but when given the opportunity to extend the language to accomodate concepts, why didn't they simply modify the capabilities of classes and/or introduced interfaces?
Isn't a concept very similar to an interface (100% abstract class with no data)? By looking at it, it seems to me interfaces only lack support for axioms, but maybe axioms could be introduced into C++'s interfaces (considering an hypothetical adoption of interfaces in C++ to take over concepts), couldn't them? I think even auto concepts could easily be added to such a C++ interface (auto interface LessThanComparable, anyone?).
Isn't a concept_map very similar to the Adapter pattern? If all the methods are inline, the adapter essentially doesn't exist beyond compile time; the compiler simply replaces calls to the interface with the inlined versions, calling the target object directly during runtime.
I've heard of something called Static Object-Oriented Programming, which essentially means effectively reusing the concepts of object-orientation in generic programming, thus permitting usage of most of OOP's power without incurring execution overhead. Why wasn't this idea further considered?
I hope this is clear enough. I can rewrite this if you think I was not; just let me know.
There is a big difference between OOP and Generic Programming, Predestination.
In OOP, when you design the class, you had the interfaces you think will be useful. And it's done.
In Generic Programming, on the other hand, as long as the class conforms to a given set of requirements (mainly methods, but also inner constants or types), then it fits the bill and may be used. The Concept proposal is about formalizing this, so that detection may occur directly when checking the method signature, rather than when instantiating the method body. It also makes checking template methods more easily, since some methods can be rejected without any instantiation if the concepts do not match.
The advantage of Concepts is that you do not suffer from Predestination, you can pick a class from Library1, pick a method from Library2, and if it fits, you're gold (if it does not, you may be able to use a concept map). In OO, you are required to write a full-fledged Adapter, every time.
You are right that both seem similar. The difference is mainly about the time of binding (and the fact that Concept still have static dispatch instead of dynamic dispatch like with interfaces). Concepts are more open, thus easier to use.
Classes are a form of named conformance. You indicate that class Foo conforms with interface I by inheriting from I.
Concepts are a form of structural and/or runtime conformance. A class Foo does not need to state up front which concepts it conforms to.
The result is that named conformance reduces the ability to reuse classes in places that were not expected up front, even though they would be usable.
The concepts are in fact not part of C++, they are just concepts! In C++ there is no way to "define a concept". All you have is, templates and classes (STL being all template classes, as the name says: S tandard T emplate L ibrary).
If you mean C++0x and not C++ (in which case I suggest you change the tag), please read here:
http://en.wikipedia.org/wiki/Concepts_(C++)
Some parts I am going to copy-paste for you:
In the pending C++0x revision of the C++ programming language, concepts and the related notion of axioms were a proposed extension to C++'s template system, designed to improve compiler diagnostics and to allow programmers to codify in the program some formal properties of templates that they write. Incorporating these limited formal specifications into the program (in addition to improving code clarity) can guide some compiler optimizations, and can potentially help improve program reliability through the use of formal verification tools to check that the implementation and specification actually match.
In July 2009, the C++0x committee decided to remove concepts from the draft standard, as they are considered "not ready" for C++0x.
The primary motivation of the introduction of concepts is to improve the quality of compiler error messages.
So as you can see, concepts are not there to replace interfaces etc, they are just there to help the compiler optimize better and produce better errors.
While I agree with all the posted answers, they seem to have missed one point which is performance. Unlike interfaces, concepts are checked in compile-time and therefore don't require virtual function calls.

C++0X Concepts are gone. Which other features should go too? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
As you may have heard, the last meeting of the C++ standards committee voted to remove concepts from the next C++ standard. Of course, this will affect other features and would seem to throw the standard wide open again. If that is the case, which other features do you think should be stripped away (or added), and why?
Links:
Removal of Concepts -- Danny Kalev (on the decision to remove concepts)
Simplifying the use of Concepts -- Bjarne Stroustrup (on the problems with concepts as they look now)
The Long Pole Gets Longer -- Martin Tasker (on the impact to the schedule for C++0x if concepts have to be fixed)
The C++0x "Remove Concepts" Decision - Stroustrup on the issue on Dr. Dobbs
Trip Report: Exit Concepts, Final ISO C++ Draft in ~18 Months - Herb Sutter
Concepts Get Voted Off The C++0x Island - Jeremy Siek defending the current Concepts spec
What Happened in Frankfurt? - Doug Gregor on C++Next (on the history and removal of Concepts).
Of course, this will affect other
features and would seem to throw the
standard wide open again.
Hardly. They still want to wrap up the standard soon, which is one of the main reasons for removing concepts. Making it "wide open" to unrelated changes would just throw away everything they gained by ditching concepts.
Anyway.... Of the remaining C++0x additions, I can't think of anything else I'd want to remove. I agree with their decision regarding concepts though. Stroustrup's paper really outlined some serious problems, The current specification for concepts would admittedly simplify template error messages, but it would do so by dramatically reducing the usefulness of generic programming -- a price I'm not willing to pay.
When I first read that paper, it scared me, because I assumed it was too late in the process for making serious changes to the spec. Turns out it wasn't, and the committee was willing to take dramatic action.
But apart from this, I think C++0x is in good shape. The remaining new features all look worthwhile.
Of course, there are plenty of existing features I'd love to remove. Primarily the vector<bool> specialization. There are other popular examples of features that didn't work out (the export keyword, exception specifications), but the vector specialization is the only one of them that can't be ignored. As long as we don't try to export templates, it doesn't matter that the keyword exists (and isn't implemented by compilers), and we can just refrain from using exception specs, but every time we need a vector of bools, we're bitten by the stupid premature optimization that slipped into the current standard.
Unfortunately, it seems like they've given up on removing it. (Last I checked, it wasn't even deprecated).
Of course, plenty of old C cruft could be ditched too, but recently, I've discovered that the one change I'd really love to see is...... ditching the Iostreams library. Toss it out, and build a new STL-style I/O library based on generic programming.
The current OOP-styled Iostreams library is ugly, slow, overcomplicated and inflexible. There's too much voodoo involved in defining new streams, too few standard stream types involved, too little flexibility (the problem that made me realize how limited the library is, was that I needed to extract a float from a string. Easy to do with stringstream, but if you need to do it often, you don't want to have to copy the input string every time (as the stringstream does) -- where's the stream that works on an existing iterator range? Or a raw array, even?)
Throw IOstreams out, develop a modern replacement, and C++ will be vastly improved.
And perhaps do something about the string class as well. It works sort of ok'ish as it is now, but really, what's with the huge number of member functions? Most of them would work better, and be more general, as free functions. Too much of the standard library relies specifically on the string class, when it could in principle work with any container, or even an iterator (std::getline, I'm looking at you)
Personally, I want C++ to finally break away from C. No more pre-processor, no more header files. I basically want D, but without all the stuff that D tacks on, using the STL.
None, I think the rest of the draft was great - a large number of very small pieces that can be correctly implemented independently, allowing vendors to evolve toward complete support and allowing users to take a "shopping list" approach.
Quite a different situation with contracts, as they were like a whole new parallel type system and would have been very likely to have led to different compilers ending up with their own backward compatibility problems, very similar to CSS in web browsers.
There are two things I think should be added to C++0x, I've thought of both these myself and then found that others have suggested them before but it doesn't seem like they're going to happen.
1. Defaulting Move Constructors and Move Assignment Operators
Writing a move constructor is a manual and error prone activity, if a member is added it must be added to the move constructor and assignment operators and std::move must be used religiously. That's why I think these functions should be defaultable.
movable(movable&&) = default;
movable& operator=(movable&&) = default;
Edit (2009-10-01): Looks like this is going to happen after all.
2. Override Type Deduction for Expression Templates
Expression templates often define types that should not be used directly, a case in point is the return value of std::vector<bool> operator[](size_type n), if auto or decltype are used on this kind of object unexpected behaviour may ensue.
Therefore a type should be able to say what type it should be deduced to be (or prevent deduction using = delete syntax).
Example for vector addition.
// lazy evaluation of vector addition
template<typename T, class V1, class V2>
class vector_add {
V1& lhs_;
V2& rhs_;
public:
T operator[](size_t n) const
{ return lhs_[n] + rhs_[n]; }
// If used by auto or decltype perform eager creation of vector
std::vector<T> operator auto() const
{
if (lhs_.size() != rhs_.size())
throw std::exception("Vectors aren't same size");
std::vector<T> vec;
vec.reserve(lhs_.size());
for (int i = 0; i < lhs_.size(); ++i)
vec.push_back(lhs_[i] + rhs_[i]);
return vec;
}
To me the problem is not what other features should be stripped away, but how complex will other features be after concepts have been removed. That and how much longer will it take for the rest of the features to be rephrased without concepts.
A lot of features assumed that concepts would be accepted into the language and the wording is expressed in terms of concepts. (I wonder if any proposed feature depends on concepts).
I also wonder how other libraries will evolve (think boost::type_traits) to take the niche left by concepts. Part of what concepts provided can be implemented (even if in a more cumbersome way) in terms of traits applied to the type arguments.
To me, the most important thing that concepts added to the language was an expressive formulation of compilation errors, which is nowadays one of the places where C++ is most criticized.
R.I.P. concepts.
Do whatever you want with concepts, but for god's sake keep threads and atomics, we absolutely need them. Perhaps add thread groups and support for cooperative threads a.k.a. fibers. IMO these are far more important than concepts, because everyone uses/will soon be using threads.
I'd like to remove =delete.
There's already a common and accepted idiom for acheiving the same effect (declare the function in question as private). I think this feature will just generate lots of 'I used =delete to remove a base class function from my derived class, but it can still be called using a base class pointer' questions.
Not to mention confusing people between the (now) two meanings of the delete keyword.
Strip away the pages of error messages on template code!
IIRC concepts should solve a big C++ coder problem: Human readable error messages for the STL. Its bad news that this issue isn't addressed.
The un-named function / lambda function stuff makes me nervous. Function objects are perfectly good and are explicit, thus easier to read and find.
On the other hand I kinda liked concepts, though I certainly would not have used them every day.

Why is the STL so heavily based on templates instead of inheritance?

I mean, aside from its name the Standard Template Library (which evolved into the C++ standard library).
C++ initially introduce OOP concepts into C. That is: you could tell what a specific entity could and couldn't do (regardless of how it does it) based on its class and class hierarchy. Some compositions of abilities are more difficult to describe in this manner due to the complexities of multiple inheritance, and the fact that C++ supports interface-only inheritance in a somewhat clumsy way (compared to java, etc), but it's there (and could be improved).
And then templates came into play, along with the STL. The STL seems to take the classical OOP concepts and flush them down the drain, using templates instead.
There should be a distinction between cases when templates are used to generalize types where the types themselves are irrelevant for the operation of the template (containers, for examples). Having a vector<int> makes perfect sense.
However, in many other cases (iterators and algorithms), templated types are supposed to follow a "concept" (Input Iterator, Forward Iterator, etc...) where the actual details of the concept are defined entirely by the implementation of the template function/class, and not by the class of the type used with the template, which is a somewhat anti-usage of OOP.
For example, you can tell the function:
void MyFunc(ForwardIterator<...> *I);
Update: As it was unclear in the original question, ForwardIterator is ok to be templated itself to allow any ForwardIterator type. The contrary is having ForwardIterator as a concept.
expects a Forward Iterator only by looking at its definition, where you'd need either to look at the implementation or the documentation for:
template <typename Type> void MyFunc(Type *I);
Two claims I can make in favor of using templates: 1. Compiled code can be made more efficient, by recompiling the template for each used type, instead of using dynamic dispatch (mostly via vtables). 2. And the fact that templates can be used with native types.
However, I am looking for a more profound reason for abandoning classic OOP in favor of templating for the STL?
The short answer is "because C++ has moved on". Yes, back in the late 70's, Stroustrup intended to create an upgraded C with OOP capabilities, but that is a long time ago. By the time the language was standardized in 1998, it was no longer an OOP language. It was a multi-paradigm language. It certainly had some support for OOP code, but it also had a turing-complete template language overlaid, it allowed compile-time metaprogramming, and people had discovered generic programming. Suddenly, OOP just didn't seem all that important. Not when we can write simpler, more concise and more efficient code by using techniques available through templates and generic programming.
OOP is not the holy grail. It's a cute idea, and it was quite an improvement over procedural languages back in the 70's when it was invented. But it's honestly not all it's cracked up to be. In many cases it is clumsy and verbose and it doesn't really promote reusable code or modularity.
That is why the C++ community is today far more interested in generic programming, and why everyone is finally starting to realize that functional programming is quite clever as well. OOP on its own just isn't a pretty sight.
Try drawing a dependency graph of a hypothetical "OOP-ified" STL. How many classes would have to know about each other? There would be a lot of dependencies. Would you be able to include just the vector header, without also getting iterator or even iostream pulled in? The STL makes this easy. A vector knows about the iterator type it defines, and that's all. The STL algorithms know nothing. They don't even need to include an iterator header, even though they all accept iterators as parameters. Which is more modular then?
The STL may not follow the rules of OOP as Java defines it, but doesn't it achieve the goals of OOP? Doesn't it achieve reusability, low coupling, modularity and encapsulation?
And doesn't it achieve these goals better than an OOP-ified version would?
As for why the STL was adopted into the language, several things happened that led to the STL.
First, templates were added to C++. They were added for much the same reason that generics were added to .NET. It seemed a good idea to be able to write stuff like "containers of a type T" without throwing away type safety. Of course, the implementation they settled on was quite a lot more complex and powerful.
Then people discovered that the template mechanism they had added was even more powerful than expected. And someone started experimenting with using templates to write a more generic library. One inspired by functional programming, and one which used all the new capabilities of C++.
He presented it to the C++ language committee, who took quite a while to grow used to it because it looked so strange and different, but ultimately realized that it worked better than the traditional OOP equivalents they'd have to include otherwise. So they made a few adjustments to it, and adopted it into the standard library.
It wasn't an ideological choice, it wasn't a political choice of "do we want to be OOP or not", but a very pragmatic one. They evaluated the library, and saw that it worked very well.
In any case, both of the reasons you mention for favoring the STL are absolutely essential.
The C++ standard library has to be efficient. If it is less efficient than, say, the equivalent hand-rolled C code, then people would not use it. That would lower productivity, increase the likelihood of bugs, and overall just be a bad idea.
And the STL has to work with primitive types, because primitive types are all you have in C, and they're a major part of both languages. If the STL did not work with native arrays, it would be useless.
Your question has a strong assumption that OOP is "best". I'm curious to hear why. You ask why they "abandoned classical OOP". I'm wondering why they should have stuck with it. Which advantages would it have had?
The most direct answer to what I think you're asking/complaining about is this: The assumption that C++ is an OOP language is a false assumption.
C++ is a multi-paradigm language. It can be programmed using OOP principles, it can be programmed procedurally, it can be programmed generically (templates), and with C++11 (formerly known as C++0x) some things can even be programmed functionally.
The designers of C++ see this as an advantage, so they would argue that constraining C++ to act like a purely OOP language when generic programming solves the problem better and, well, more generically, would be a step backwards.
My understanding is that Stroustrup originally preferred an "OOP-styled" container design, and in fact didn't see any other way to do it. Alexander Stepanov is the one responsible for the STL, and his goals did not include "make it object oriented":
That is the fundamental point: algorithms are defined on algebraic structures. It took me another couple of years to realize that you have to extend the notion of structure by adding complexity requirements to regular axioms. ... I believe that iterator theories are as central to Computer Science as theories of rings or Banach spaces are central to Mathematics. Every time I would look at an algorithm I would try to find a structure on which it is defined. So what I wanted to do was to describe algorithms generically. That's what I like to do. I can spend a month working on a well known algorithm trying to find its generic representation. ...
STL, at least for me, represents the only way programming is possible. It is, indeed, quite different from C++ programming as it was presented and still is presented in most textbooks. But, you see, I was not trying to program in C++, I was trying to find the right way to deal with software. ...
I had many false starts. For example, I spent years trying to find some use for inheritance and virtuals, before I understood why that mechanism was fundamentally flawed and should not be used. I am very happy that nobody could see all the intermediate steps - most of them were very silly.
(He does explain why inheritance and virtuals -- a.k.a. object oriented design "was fundamentally flawed and should not be used" in the rest of the interview).
Once Stepanov presented his library to Stroustrup, Stroustrup and others went through herculean efforts to get it into the ISO C++ standard (same interview):
The support of Bjarne Stroustrup was crucial. Bjarne really wanted STL in the standard and if Bjarne wants something, he gets it. ... He even forced me to make changes in STL that I would never make for anybody else ... he is the most single minded person I know. He gets things done. It took him a while to understand what STL was all about, but when he did, he was prepared to push it through. He also contributed to STL by standing up for the view that more than one way of programming was valid - against no end of flak and hype for more than a decade, and pursuing a combination of flexibility, efficiency, overloading, and type-safety in templates that made STL possible. I would like to state quite clearly that Bjarne is the preeminent language designer of my generation.
The answer is found in this interview with Stepanov, the author of the STL:
Yes. STL is not object oriented. I
think that object orientedness is
almost as much of a hoax as Artificial
Intelligence. I have yet to see an
interesting piece of code that comes
from these OO people.
Why a pure OOP design to a Data Structure & Algorithms Library would be better ?!
OOP is not the solution for every thing.
IMHO, STL is the most elegant library I have seen ever :)
for your question,
you don't need runtime polymorphism, it is an advantage for STL actually to implement the Library using static polymorphism, that means efficiency.
Try to write a generic Sort or Distance or what ever algorithm that applies to ALL containers!
your Sort in Java would call functions that are dynamic through n-levels to be executed!
You need stupid thing like Boxing and Unboxing to hide nasty assumptions of the so called Pure OOP languages.
The only problem I see with STL, and templates in general is the awful error messages.
Which will be solved using Concepts in C++0X.
Comparing STL to Collections in Java is Like comparing Taj Mahal to my house :)
templated types are supposed to follow
a "concept" (Input Iterator, Forward
Iterator, etc...) where the actual
details of the concept are defined
entirely by the implementation of the
template function/class, and not by
the class of the type used with the
template, which is a somewhat
anti-usage of OOP.
I think you misunderstand the intended use of concepts by templates. Forward Iterator, for example, is a very well-defined concept. To find the expressions which must be valid in order for a class to be a Forward Iterator, and their semantics including computational complexity, you look at the standard or at http://www.sgi.com/tech/stl/ForwardIterator.html (you have to follow the links to Input, Output, and Trivial Iterator to see it all).
That document is a perfectly good interface, and "the actual details of the concept" are defined right there. They are not defined by the implementations of Forward Iterators, and neither are they defined by the algorithms which use Forward Iterators.
The differences in how interfaces are handled between STL and Java are three-fold:
1) STL defines valid expressions using the object, whereas Java defines methods which must be callable on the object. Of course a valid expression might be a method (member function) call, but it doesn't have to be.
2) Java interfaces are runtime objects, whereas STL concepts are not visible at runtime even with RTTI.
3) If you fail to make valid the required valid expressions for an STL concept, you get an unspecified compilation error when you instantiate some template with the type. If you fail to implement a required method of a Java interface, you get a specific compilation error saying so.
This third part is if you like a kind of (compile-time) "duck typing": interfaces can be implicit. In Java, interfaces are somewhat explicit: a class "is" Iterable if and only if it says it implements Iterable. The compiler can check that the signatures of its methods are all present and correct, but the semantics are still implicit (i.e. they're either documented or not, but only more code (unit tests) can tell you whether the implementation is correct).
In C++, like in Python, both semantics and syntax are implicit, although in C++ (and in Python if you get the strong-typing preprocessor) you do get some help from the compiler. If a programmer requires Java-like explicit declaration of interfaces by the implementing class, then the standard approach is to use type traits (and multiple inheritance can prevent this being too verbose). What's lacking, compared with Java, is a single template which I can instantiate with my type, and which will compile if and only if all the required expressions are valid for my type. This would tell me whether I've implemented all the required bits, "before I use it". That's a convenience, but it's not the core of OOP (and it still doesn't test semantics, and code to test semantics would naturally also test the validity of the expressions in question).
STL may or may not be sufficiently OO for your taste, but it certainly separates interface cleanly from implementation. It does lack Java's ability to do reflection over interfaces, and it reports breaches of interface requirements differently.
you can tell the function ... expects a Forward Iterator only by
looking at its definition, where you'd need either to look at the
implementation or the documentation for ...
Personally I think that implicit types are a strength, when used appropriately. The algorithm says what it does with its template parameters, and the implementer makes sure those things work: it's exactly the common denominator of what "interfaces" should do. Furthermore with STL, you're unlikely to be using, say, std::copy based on finding its forward declaration in a header file. Programmers should be working out what a function takes based on its documentation, not just on the function signature. This is true in C++, Python, or Java. There are limitations on what can be achieved with typing in any language, and trying to use typing to do something it doesn't do (check semantics) would be an error.
That said, STL algorithms usually name their template parameters in a way which makes it clear what concept is required. However this is to provide useful extra information in the first line of the documentation, not to make forward declarations more informative. There are more things you need to know than can be encapsulated in the types of the parameters, so you have to read the docs. (For example in algorithms which take an input range and an output iterator, chances are the output iterator needs enough "space" for a certain number of outputs based on the size of the input range and maybe the values therein. Try strongly typing that.)
Here's Bjarne on explicitly-declared interfaces: http://www.artima.com/cppsource/cpp0xP.html
In generics, an argument must be of a
class derived from an interface (the
C++ equivalent to interface is
abstract class) specified in the
definition of the generic. That means
that all generic argument types must
fit into a hierarchy. That imposes
unnecessary constraints on designs
requires unreasonable foresight on the
part of developers. For example, if
you write a generic and I define a
class, people can't use my class as an
argument to your generic unless I knew
about the interface you specified and
had derived my class from it. That's
rigid.
Looking at it the other way around, with duck typing you can implement an interface without knowing that the interface exists. Or someone can write an interface deliberately such that your class implements it, having consulted your docs to see that they don't ask for anything you don't already do. That's flexible.
"OOP to me means only messaging, local retention and protection and hiding of state-process, and extreme late-binding of all things. It can be done in Smalltalk and in LISP. There are possibly other systems in which this is possible, but I'm not aware of them." - Alan Kay, creator of Smalltalk.
C++, Java, and most other languages are all pretty far from classical OOP. That said, arguing for ideologies is not terribly productive. C++ is not pure in any sense, so it implements functionality that seems to make pragmatic sense at the time.
STL started off with the intention of provide a large library covering most commonly used algorithm -- with the target of consitent behavior and performance. Template came as a key factor to make that implementation and target feasible.
Just to provide another reference:
Al Stevens Interviews Alex Stepanov, in March 1995 of DDJ:
http://www.sgi.com/tech/stl/drdobbs-interview.html
Stepanov explained his work experience and choice made towards a large library of algorithm, which eventually evolved into STL.
Tell us something about your long-term interest in generic programming
.....Then I was offered a job at Bell Laboratories working in the C++ group on C++ libraries. They asked me whether I could do it in C++. Of course, I didn't know C++ and, of course, I said I could. But I couldn't do it in C++, because in 1987 C++ didn't have templates, which are essential for enabling this style of programming. Inheritance was the only mechanism to obtain genericity and it was not sufficient.
Even now C++ inheritance is not of much use for generic programming. Let's discuss why. Many people have attempted to use inheritance to implement data structures and container classes. As we know now, there were few if any successful attempts. C++ inheritance, and the programming style associated with it are dramatically limited. It is impossible to implement a design which includes as trivial a thing as equality using it. If you start with a base class X at the root of your hierarchy and define a virtual equality operator on this class which takes an argument of the type X, then derive class Y from class X. What is the interface of the equality? It has equality which compares Y with X. Using animals as an example (OO people love animals), define mammal and derive giraffe from mammal. Then define a member function mate, where animal mates with animal and returns an animal. Then you derive giraffe from animal and, of course, it has a function mate where giraffe mates with animal and returns an animal. It's definitely not what you want. While mating may not be very important for C++ programmers, equality is. I do not know a single algorithm where equality of some kind is not used.
The basic problem with
void MyFunc(ForwardIterator *I);
is how do you safely get the type of the thing the iterator returns? With templates, this is done for you at compile time.
For a moment, let's think of the standard library as basically a database of collections and algorithms.
If you've studied the history of databases, you undoubtedly know that back in the beginning, databases were mostly "hierarchical". Hierarchical databases corresponded very closely to classical OOP--specifically, the single-inheritance variety, such as used by Smalltalk.
Over time, it became apparent that hierarchical databases could be used to model almost anything, but in some cases the single-inheritance model was fairly limiting. If you had a wooden door, it was handy to be able to look at it either as a door, or as a piece of some raw material (steel, wood, etc.)
So, they invented network model databases. Network model databases correspond very closely to multiple inheritance. C++ supports multiple inheritance completely, while Java supports a limited form (you can inherit from only one class, but can also implement as many interfaces as you like).
Both hierarchical model and network model databases have mostly faded from general purpose use (though a few remain in fairly specific niches). For most purposes, they've been replaced by relational databases.
Much of the reason relational databases took over was versatility. The relational model is functionally a superset of the network model (which is, in turn, a superset of the hierarchical model).
C++ has largely followed the same path. The correspondence between single inheritance and the hierarchical model and between multiple inheritance and the network model are fairly obvious. The correspondence between C++ templates and the hierarchical model may be less obvious, but it's a pretty close fit anyway.
I haven't seen a formal proof of it, but I believe the capabilities of templates are a superset of those provided by multiple inheritance (which is clearly a superset of single inerhitance). The one tricky part is that templates are mostly statically bound--that is, all the binding happens at compile time, not run time. As such, a formal proof that inheritance provides a superset of the capabilities of inheritance may well be somewhat difficult and complex (or may even be impossible).
In any case, I think that's most of the real reason C++ doesn't use inheritance for its containers--there's no real reason to do so, because inheritance provides only a subset of the capabilities provided by templates. Since templates are basically a necessity in some cases, they might as well be used nearly everywhere.
This question has many great answers. It should also be mentioned that templates supports an open design. With the current state of object oriented programming languages, one has to use the visitor pattern when dealing with such problems, and true OOP should support multiple dynamic binding. See Open Multi-Methods for C++, P. Pirkelbauer, et.al. for very intersting reading.
Another interesting point of templates are that they can be used on for runtime polymorphism as well. For example
template<class Value,class T>
Value euler_fwd(size_t N,double t_0,double t_end,Value y_0,const T& func)
{
auto dt=(t_end-t_0)/N;
for(size_t k=0;k<N;++k)
{y_0+=func(t_0 + k*dt,y_0)*dt;}
return y_0;
}
Notice that this function will also work if Value is a vector of some kind (not std::vector, which should be called std::dynamic_array to avoid confusion)
If func is small, this function will gain a lot from inlining. Example usage
auto result=euler_fwd(10000,0.0,1.0,1.0,[](double x,double y)
{return y;});
In this case, you should know the exact answer (2.718...), but it is easy to construct a simple ODE without elementary solution (Hint: use a polynomial in y).
Now, you have a large expression in func, and you use the ODE solver in many places, so your executable gets polluted with template instantiations everywhere. What to do? First thing to notice is that a regular function pointer works. Then you want to add currying so you write an interface and an explicit instantiation
class OdeFunction
{
public:
virtual double operator()(double t,double y) const=0;
};
template
double euler_fwd(size_t N,double t_0,double t_end,double y_0,const OdeFunction& func);
But the above instantiation only works for double, why not write the interface as template:
template<class Value=double>
class OdeFunction
{
public:
virtual Value operator()(double t,const Value& y) const=0;
};
and specialize for some common value types:
template double euler_fwd(size_t N,double t_0,double t_end,double y_0,const OdeFunction<double>& func);
template vec4_t<double> euler_fwd(size_t N,double t_0,double t_end,vec4_t<double> y_0,const OdeFunction< vec4_t<double> >& func); // (Native AVX vector with four components)
template vec8_t<float> euler_fwd(size_t N,double t_0,double t_end,vec8_t<float> y_0,const OdeFunction< vec8_t<float> >& func); // (Native AVX vector with 8 components)
template Vector<double> euler_fwd(size_t N,double t_0,double t_end,Vector<double> y_0,const OdeFunction< Vector<double> >& func); // (A N-dimensional real vector, *not* `std::vector`, see above)
If the function had been designed around an interface first, then you would have been forced to inherit from that ABC. Now you have this option, as well as function pointer, lambda, or any other function object. The key here is that we must have operator()(), and we must be able to do use some arithmetic operators on its return type. Thus, the template machinery would break in this case if C++ did not have operator overloading.
How do you do comparisons with ForwardIterator*'s? That is, how do you check if the item you have is what you're looking for, or you've passed it by?
Most of the time, I would use something like this:
void MyFunc(ForwardIterator<MyType>& i)
which means I know that i is pointing to MyType's, and I know how to compare those. Though it looks like a template, it isn't really (no "template" keyword).
The concept of separating interface from interface and being able to swap out the implementations is not intrinsic to Object-Oriented Programming. I believe it's an idea that was hatched in Component-Based Development like Microsoft COM. (See my answer on What is Component-Driven Development?) Growing up and learning C++, people were hyped out inheritance and polymorphism. It wasn't until 90s people started to say "Program to an 'interface', not an 'implementation'" and "Favor 'object composition' over 'class inheritance'." (both of which quoted from GoF by the way).
Then Java came along with built-in garbage collector and interface keyword, and all of a sudden it became practical to actually separate interface and implementation. Before you know it the idea became part of the OO. C++, templates, and STL predates all of this.