How to render Framebuffer Objects on multi-sampled textures? - opengl

I currently have a rendering engine using multiple passes in which various parts of the image are rendered on textures, and then combined using shaders. It works, and now I would like to activate multi-sampling.
I read here ( http://www.opengl.org/wiki/Framebuffer_Object_Examples#MSAA ) that, with OpenGL, you can't attach a GL_TEXTURE2D_MULTISAMPLE to a framebuffer object.
It seems one way to use multi-sampling and still have access to the result as texture is to use a multi-sampled render buffer, and then copy the result into a multisample texture.
My question is: what would be the best way to go forward?
Is it possible to render in a render buffer and use the output in my shader, without copying into a texture?
Should I indeed copy the content of the buffer into a texture, and then use it?
Is there another, better, solution?
Thanks.

I read here ( http://www.opengl.org/wiki/Framebuffer_Object_Examples#MSAA ) that, with OpenGL, you can't attach a GL_TEXTURE2D_MULTISAMPLE to a framebuffer object.
Read it again. It says nothing about GL_TEXTURE_2D_MULTISAMPLE textures. Actually, I take that back: don't read that page again. If you want good FBO info, read the page on Framebuffer Objects that explains 3.x behavior. The page you linked to is old.
Back in the EXT days, all you had were multisampled renderbuffers, because multisample textures didn't exist. You could create multisampled buffers, but you couldn't texture with them. You could only blit them.
In 3.3 OpenGL, you can create multisampled textures. And you can attach them just like any other texture to an FBO.

Related

How to render color and depth in multisample texture?

In order to implement "depth-peeling", I render my OpenGL scene in to a series of framebuffers each equipped with a rgba color texture and depth texture. This works fine if I don't care about anti-aliasing. If I do, then it seems the correct thing to do is enable GL_MULTISAMPLING and use a GL_TEXTURE_2D_MULTISAMPLE instead of GL_TEXTURE_2D. But I'm confused about which other calls need to be replaced.
In particular, how should I adapt my framebuffer construction to use glTexImage2DMultisample instead of glTexImage2D?
Do I need to change the calls to glFramebufferTexture2D beyond using GL_TEXTURE_2D_MULTISAMPLE instead of GL_TEXTURE_2D?
If I'm rendering both color and depth into textures, do I need to make a call to glRenderbufferStorageMultisample?
Finally, is there some glBlit* that I need to do in addition to setting up textures for the framebuffer to render into?
There are many related questions on this topic, but none of the solutions I found seem to point to a canonical tutorial or clear example putting all these together.
While I have only used multisampled FBO rendering with renderbuffers, not textures, the following is my understanding.
Do I need to change the calls to glFramebufferTexture2D beyond using GL_TEXTURE_2D_MULTISAMPLE instead of GL_TEXTURE_2D?
No, that's all you need. You create the texture with glTexImage2DMultisample(), and then attach it using GL_TEXTURE_2D_MULTISAMPLE as the 3rd argument to glFramebufferTexture2D(). The only constraint is that the level (5th argument) has to be 0.
If I'm rendering both color and depth into textures, do I need to make a call to glRenderbufferStorageMultisample?
Yes. If you attach a depth buffer to the same FBO, you need to use a multisampled renderbuffer, with the same number of samples as the color buffer. So you create your depth renderbuffer with glRenderbufferStorageMultisample(), passing in the same sample count you used for the color buffer.
Finally, is there some glBlit* that I need to do in addition to setting up textures for the framebuffer to render into?
Not for rendering into the framebuffer. Once you're done rendering, you have a couple of options:
You can downsample (resolve) the multisample texture to a regular texture, and then use the regular texture for your subsequent rendering. For resolving the multisample texture, you can use glBlitFramebuffer(), where the multisample texture is attached to the GL_READ_FRAMEBUFFER, and the regular texture to the GL_DRAW_FRAMEBUFFER.
You can use the multisample texture for your subsequent rendering. You will need to use the sampler2DMS type for the samplers in your shader code, with the corresponding sampling functions.
For option 1, I don't really see a good reason to use a multisample texture. You might just as well use a multisample renderbuffer, which is slightly easier to use, and should be at least as efficient. For this, you create a renderbuffer for the color attachment, and allocate it with glRenderbufferStorageMultisample(), very much like what you need for the depth buffer.

OpenGL: Post-Processing + Multisampling =?

I'm fairly new to OpenGL and trying to figure out how to add a post-processing stage to my scene rendering. What I believe I know so far is that I create an FBO, render the scene to that, and then I can render to the back buffer using my post-processing shader with the texture from the FBO as the input.
But where this goes beyond my knowledge is when multisampling gets thrown in. The FBO must be multisampled. That leaves two possibilities: 1. the post-process shader operates 1:1 on subsamples to generate the final multisampled screen output, or 2. the shader must resolve the multiple samples and output a single screen fragment for each screen pixel. How can these be done?
Well, option 1 is supported in the GL via the features braught in via GL_ARB_texture_multisample (in core since GL 3.2). Basically, this brings new multisample texture types, and the corresponding samplers like sampler2DMS, where you explicitely can fetch from a particular sample index. If this approach can be efficiently used to implement your post-processing effect, I don't know.
Option 2 is a little bit different than what you describe. Not the shader will do the multisample resolve. You can render into a multisample FBO (don't need a texture for that, a renderbuffer will do as well) and do the resolve explicitely using glBlitFramebuffer, into another, non-multisampled FBO (this time, with a texture). This non-multisamples texture can then be used as input for the post-processing. And neither the post-processing nor the default framebuffer need to be aware of multisampling at all.

How to draw Renderbuffer as Texturebuffer in FBO?

I succeeded in render to texture with Texturebuffer, using VAO and shaders.
But FBO has another options for color buffer, it's Renderbuffer. I searched a lot on the internet, but cannot found any example related to draw Renderbuffer as Texturebuffer with shaders
If I ain't wrong, Renderbuffer is released in OpenGL 3.30, and it's faster than Texturebuffer.
Can I use Renderbuffer as Texturebuffer? (stupid question huh? I think it should be absolutely, isn't it?)
If yes, please lead me or give any example to draw render buffer as texture buffer.
My target is just for study, but I'd like to know is that a better way to draw textures? Should we use it frequently?
First of all, don't use the term "texture buffer" when you really just mean texture. A "buffer texture"/"texture buffer object" is a different conecpt, completely unrelated here.
If I ain't wrong, Renderbuffer is released in OpenGL 3.30, and it's faster than Texturebuffer.
No. Renderbuffers were there when FBOs were first invented. One being faster than the other is not generally true either, but these are implementation details. But it is also irrelevant.
Can I use Renderbuffer as Texturebuffer? (stupid question huh? I think it should be absolutely, isn't it?)
Nope. You cant use the contents of a renderbuffer directly as a source for texture mapping. Renderbuffesr are just abstract memory regions the GPU renders to, and they are not in the format required for texturing. You can read back the results to the CPU using glReadPixels, our you could copy the data into a texture object, e.g. via glCopyTexSubImage - but that would be much slower than directly rendering into textures.
So renderbuffers are good for a different set of use cases:
offscreen rendering (e.g. where the image results will be written to a file, or encoded to a video)
as helper buffers during rendering, like the depth buffer or stencil buffer, where you do not care anbout the final contents of these buffers anyway
as intermediate buffer when the image data can't be directly used by the follwoing steps, e.g. when using multisampling, and copying the result to a non-multisampled framebuffer or texture
It appears that you have your terminology mixed up.
You attach images to Framebuffer Objects. Those images can either be a Renderbuffer Object (this is an offscreen surface that has very few uses besides attaching and blitting) or they can be part of a Texture Object.
Use whichever makes sense. If you need to read the results of your drawing in a shader then obviously you should attach a texture. If you just need a depth buffer, but never need to read it back, a renderbuffer might be fine. Some older hardware does not support multisampled textures, so that is another situation where you might favor renderbuffers over textures.
Performance wise, do not make any assumptions. You might think that since renderbuffers have a lot fewer uses they would somehow be quicker, but that's not always the case. glBlitFramebuffer (...) can be slower than drawing a textured quad.

giving preexisting texture to fbo to draw on it

I wanted to know if it's possible to give a non NULL texture to a frame buffer to render on it. I mean just drawing on it so it will become the background of the final texture.
From what I have tried it just keep the texture I give and render it directly, there's no drawing on it ( as if the drawing part have been useless).
If i give a NULL texture the drawing is done.
So i wanted to know if it's possible, am i just doing it wrongly?
all example of use of fbo i've seen only show NULL texture sent.
What you're trying to do is not as common as the use case where content in an FBO attachment is rendered from scratch. That's why you won't find as many examples.
It's still perfectly legal, though, and should work. The only difference should really be that you don't call glClear() after attaching the texture to the FBO, and starting to render.
One case where you'll have to be careful is if you use depth buffering for the rendering you want to do on top of the original texture content. In this case, you will of course need a depth buffer attachment (which is typically a renderbuffer) in your FBO, as usual. In this case, you will need to clear your depth buffer, but not the color buffer, before starting to render:
glClear(GL_DEPTH_BUFFER_BIT);

Render to window framebuffer and FBO to save full scale texture image

I would like to save the output of my image processing OpenGL shader program to an image file and also display the result on the screen. I know how to save the window framebuffer using glReadPixels(). However, the resolution of the screen is smaller than the dimensions of the image.
If I render to an FBO, do I need to call glDrawArrays() again after saving and unbinding the FBO to see the results on the screen? Or is it possible to tell the window framebuffer to render from the FBO without having to run the shader program a second time?
To save the rendered image in the RBO, you can read the pixels directly by setting which buffer OpenGL will read the pixels from by calling glReadBuffer. In your particular case, setting the read buffer to GL_COLOR_ATTACHMENT<i> should do the trick. See the glDrawBuffer man page for details.
In order to display the image in the FBO: yes, you will need to make an additional rendering pass to copy the FBO's image into the default frame buffer. You an either bind the FBO as a texture, and render geometry, as you suggest, to get the image on the screen, or, you may be able to use glBlitFramebuffer to simplify the copying and image filtering.
If I render to an FBO, do I need to call glDrawArrays() again after saving and unbinding the FBO to see the results on the screen?
You should use glBlitFramebuffer (...), the purpose of this function is to copy one framebuffer (read buffer) to another (draw buffer). Provided you are not doing something unusual like drawing into an integer texture attachment then your FBO's draw buffer should be compatible with your default framebuffer (window).
There are some additional caveats related to the filter method and the type of image you are copying (e.g. depth buffers cannot use linearly interpolation), but since you are discussing "full scale" here, I imagine you are interested in GL_NEAREST anyway.