OpenGL VAO best practices - opengl

Im facing an issue which I believe to be VAO-dependant, but Im not sure..
I am not sure about the correct usage of a VAO, what I used to do during GL initialization was a simple
glGenVertexArrays(1,&vao)
followed by a
glBindVertexArray(vao)
and later, in my drawing pipeline, I just called glBindBuffer(), glVertexAttribPointer(), glEnableVertexAttribArray() and so on.. without caring about the initally bound VAO
is this a correct practice?

VAOs act similarly to VBOs and textures with regard to how they are bound. Having a single VAO bound for the entire length of your program will yield no performance benefits because you might as well just be rendering without VAOs at all. In fact it may be slower depending on how the implementation intercepts vertex attribute settings as they're being drawn.
The point of a VAO is to run all the methods necessary to draw an object once during initialization and cut out all the extra method call overhead during the main loop. The point is to have multiple VAOs and switch between them when drawing.
In terms of best practice, here's how you should organize your code:
initialization:
for each batch
generate, store, and bind a VAO
bind all the buffers needed for a draw call
unbind the VAO
main loop/whenever you render:
for each batch
bind VAO
glDrawArrays(...); or glDrawElements(...); etc.
unbind VAO
This avoids the mess of binding/unbinding buffers and passing all the settings for each vertex attribute and replaces it with just a single method call, binding a VAO.

No, that's not how you use VAO.
You should use VAO in same way how you are using VBO or textures, or shaders. First set it up. And during rendering only Bind them, without modifying it.
So with VAO you do following:
void Setup() {
glGenVertexArrays(..);
glBindVertexArray(..);
// now setup all your VertexAttribPointers that will be bound to this VAO
glBindBuffer(..);
glVertexAttribPointer(..);
glEnableVertexAttribArray(..);
}
void Render() {
glBindVertexArray(vao);
// that's it, now call one of glDraw... functions
// no need to set up vertex attrib pointers and buffers!
glDrawXYZ(..)
}
See also these links:
http://www.swiftless.com/tutorials/opengl4/4-opengl-4-vao.html
http://www.lastrayofhope.com/2011/07/30/using-vertex-array-objects/

is this a correct practice?
Yes, this is perfectly legal and valid. Is it good? Well...
There has been some informal performance testing on this sort of thing. And it seems, at least on NVIDIA hardware where this was tested, the "proper" use of VAOs (ie: what everyone else advocated) actually is slower in many cases. This is especially true if changing VAOs does not change which buffers are bound.
No similar performance testing has taken place on AMD hardware, to my knowledge. In general, unless something changes with them, this is an acceptable use of VAOs.

Robert's answer above worked for me when I tried it. For what it's worth here is the code, in Go, of using multiple Vertex Attribute Objects:
// VAO 1
vao1 := gl.GenVertexArray()
vao1.Bind()
vbo1 := gl.GenBuffer()
vbo1.Bind(gl.ARRAY_BUFFER)
verticies1 := []float32{0, 0, 0, 0, 1, 0, 1, 1, 0}
gl.BufferData(gl.ARRAY_BUFFER, len(verticies1)*4, verticies1, gl.STATIC_DRAW)
pa1 := program.GetAttribLocation("position")
pa1.AttribPointer(3, gl.FLOAT, false, 0, nil)
pa1.EnableArray()
defer pa1.DisableArray()
vao1.Unbind()
// VAO 2
vao2 := gl.GenVertexArray()
vao2.Bind()
vbo2 := gl.GenBuffer()
vbo2.Bind(gl.ARRAY_BUFFER)
verticies2 := []float32{-1, -1, 0, -1, 0, 0, 0, 0, 0}
gl.BufferData(gl.ARRAY_BUFFER, len(verticies2)*4, verticies2, gl.STATIC_DRAW)
pa2 := program.GetAttribLocation("position")
pa2.AttribPointer(3, gl.FLOAT, false, 0, nil)
pa2.EnableArray()
defer pa2.DisableArray()
vao2.Unbind()
Then in your main loop you can use them as such:
for !window.ShouldClose() {
gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT)
vao1.Bind()
gl.DrawArrays(gl.TRIANGLES, 0, 3)
vao1.Unbind()
vao2.Bind()
gl.DrawArrays(gl.TRIANGLES, 0, 3)
vao2.Unbind()
window.SwapBuffers()
glfw.PollEvents()
if window.GetKey(glfw.KeyEscape) == glfw.Press {
window.SetShouldClose(true)
}
}
If you want to see the full source, it is available as a Gist and derived from the examples in go-gl:
https://gist.github.com/mdmarek/0f73890ae2547cdba3a7
Thanks everyone for the original answers, I had the same question as ECrownofFire.

Related

Is it necessary to bind all VBOs (and textures) each frame?

I'm following basic tutorial on OpenGL 3.0. What is not clear to me why/if I have to bind, enable and unbind/disable all vertex buffers and textures each frame.
To me it seems too much gl**** calls which I guess have some overhead. For example here you see each frame several blocks like:
// do this for each mesh in scene
// vertexes
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
glVertexAttribPointer( 0, 3, GL_FLOAT,GL_FALSE,0,(void*)0);
// normals
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, normal_buffer );
glVertexAttribPointer( 1, 3, GL_FLOAT,GL_FALSE,0,(void*)0);
// UVs
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, uv_buffer );
glVertexAttribPointer( 2, 2, GL_FLOAT,GL_FALSE,0,(void*)0);
// ...
glDrawArrays(GL_TRIANGLES, 0, nVerts );
// ...
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
imagine you have not just one but 100 different meshes each with it's own VBOs for vertexes,normas,UVs. Should I really do this procedure each frame for each of them? Sure I can encapsulate that complexity into some function/objects, but I worry about overheads of this gl**** function calls.
Is it not possible some part of this machinery to move from per frame loop into scene setup ?
Also I read that VAO is a way how to pack corresponding VBOs for one object together. And that binding VAO automatically binds corresponding VBOs. So I was thinking that maybe one VAO for each mesh (not instance) is how it should be done - but according to this answer it does not seems so?
First things first: Your concerns about GL call overhead have been addressed with the introduction of Vertex Array Objects (see #Criss answer). However the real problem with your train of thought is, that you equate VBOs with geometry meshes, i.e. give each geometry its own VBO.
That's not how you should see and use VBOs. VBOs are chunks of memory and you can put the data of several objects into a single VBO; you don't have to draw the whole thing, you can limit draw calls to subsets of a VBO. And you can coalesce geometries with similar or even identical drawing setup and draw them all at once with a single draw call. Either by having the right vertex index list, or by use of instancing.
When it comes to the binding state of textures… well, yeah, that's a bit more annoying. You really have to do the whole binding dance when switching textures. That's why in general you sort geometry by texture/shader before drawing, so that the amount of texture switches is minimized.
The last 3 or 4 generations of GPUs (as of late 2016) do support bindless textures though, where you can access textures through a 64 bit handle (effectively the address of the relevant data structure in some address space) in the shader. However bindless textures did not yet make it into the core OpenGL standard and you have to use vendor extensions to make use of it.
Another interesting approach (popularized by Id Tech 4) is virtual textures. You can allocate sparsely populated texture objects that are huge in their addressable size, but only part of them actually populated with data. During program execution you determine which areas of the texture are required and swap in the required data on demand.
You should use vertex array object (generated by glGenVertexArrays). Thanks to it you don't have to perform those calls everytime. Vertex buffer object stores:
Calls to glEnableVertexAttribArray or glDisableVertexAttribArray.
Vertex attribute configurations via glVertexAttribPointer.
Vertex buffer objects associated with vertex attributes by calls to
glVertexAttribPointer.
Maybe this will be better tutorial.
So that you can generate vao object, then bind it, perform the calls and unbind. Now in drawing loop you just have to bind vao.
Example:
glUseProgram(shaderId);
glBindVertexArray(vaoId);
glDrawArrays(GL_TRIANGLES, 0, 3);
glBindVertexArray(0);
glUseProgram(0);

Process of setting up a VAO in OpenGL

Can I get a more overall/general description of this?
I've been trying to research these things all week, but I only come into super technical explanations or examples.
Could somebody explain the overall process or goal of these VAO's? Maybe outline a bit of a "step-by-step" flowchart for setting up a VAO in OpenGL?
I've never been someone who learns by examples... so all the things I've found online have been really unhelpful so far.
Your Vertex Buffer Objects (VBOs) contain the vertex data. You set up attribute pointers which specify how that data should be accessed and interpreted in order to draw a vertex - how many components are there to each vertex, how are they stored (GL_FLOAT for example) etc.
The Vertex Array Object (VAO) saves all these attributes. Their purpose is to allow you to set up these attributes once and then restore them with one state change whenever you need to use them.
The advantage of this is you can easily set up multiple states and restore them - if I want to draw a cube and a triangle these are two different states - I create a VAO for each and the VAO saves the state for each of them. When I want to draw the cube, I restore the state for the cube only.
Setup
Setup has four steps:
Create the VAO
Bind the VAO
Set up the state
Unbind the VAO
Creating a VAO is very simple:
GLuint vao_name;
glGenVertexArrays(1, &vao_name);
This will generate one vertex array, and store it's name in vao_name.
Once your VAO is created you need to bind it:
glBindVertexArray(vao_name);
Now, any changes you make to the attribute pointers or bindings to the element array buffer will be saved. This is a call to any of the following:
glVertexAttribPointer(...)
glEnableVertexAttribArray(...)
glDisableVertexAttribArray(...)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ...)
Whenever you make one of these calls, the corresponding state is saved in the currently bound VAO. And when you later bind the VAO again, the state is restored.
Once you have set up the state you can unbind the VAO. Do this by binding VAO 0:
glBindVertexArrays(0);
You could also bind a different VAO and set up a different state for that. When this happens it is safe to make changes to the attribute pointers without disrupting your previous state.
Drawing
When you want to draw something all you have to do is restore the VAO:
glBindVertexArray(cube_vao)
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(triangle_vao);
glDrawArrays(GL_TRIANGLES, 0, 3);
glBindVertexArray(0); //Unbind the VAO
Edit:
These are some answers that helped me when I was trying to understand VAOs:
glVertexAttribPointer overwrite, glVertexAttribPointer clarification, When should glVertexAttribPointer be called?
Also, the OpenGL specification explains it well once you've got your head around the basics: https://www.opengl.org/registry/
The VAO holds all information about how to read the attributes from the VBOs.
This includes for each attribute, which VBO it is in; the offset, the stride, how it is encoded (int, float, normalized or not), how many values per attribute. In other words the parameters of glVertexAttribPointer (and the bound GL_ARRAY_BUFFER at the time of the call.
It also holds the element array buffer that holds the indexes.
For what VAO's are, see #ratchet-freak's answer.
As for the goal of VAO's, it's a matter of improving performance by allowing one single state change to setup all vertex attributes bindings, which not only means fewer function calls but also more opportunity for the OpenGL implementation to optimize for this state as a whole.
For VAO, an understanding of VBOs and Shader is a pre-requisite. VAOs provide a way to “pre-define” vertex data and its attributes.
One way to understand is to draw with VBOs and then draw the same with VAOs. You will notice that it is similar to drawing with VBOs, except that it is first "saved" in a VAO for later use. Subsequently, the VAO is made active to actually draw the saved state.
See VBO, Shader, VAO for a fairly good example.

Can OpenGL be used to draw real valued triangles into buffer?

I need to implement an image reconstruction which involves drawing triangles in a buffer representing the pixels in an image. These triangles are assigned some floating point value to be filled with. If triangles are drawn such that they overlap, the values of the overlapping regions must be added together.
Is it possible to accomplish this with OpenGL? I would like to take advantage of the fact that rasterizing triangles is a basic graphics task that can be accelerated on the graphics card. I have a cpu-only implementation of this algorithm already but it is not fast enough for my purposes. This is due to the huge number of triangles that need to be drawn.
Specifically my questions are:
Can I draw triangles with a real value using openGL? (Or can I come up with a hack using color etc?)
Can OpenGL add the values where triangles overlap? (Once again I could deal with a hack, like color mixing)
Can I recover the real values for the pixels as an array of floats or similar to be further processed?
Do I have misconceptions about the idea that drawing in OpenGL -> using GPU to draw -> likely faster execution?
Additionally, I would like to run this code on a virtual machine so getting acceleration to work with OpenGL is more feasible than rolling my own implementation in something like Cuda as far as I understand. Is this true?
EDIT: Is an accumulation buffer an option here?
If 32-bit floats are sufficient then it looks like the answer is yes: http://www.opengl.org/wiki/Image_Format#Required_formats
Even under the old fixed pipeline you could use a blending mode with the function GL_FUNC_ADD, though I'm sure fragment shaders can do it more easily now.
glReadPixels() will get you the data back out of the buffer after drawing.
There are software implementations of OpenGL, but you get to choose when you set up the context. Using the GPU should be much faster than the CPU.
No idea. I've never used OpenGL or CUDA on a VM. I've never used CUDA at all.
I guess giving pieces of code as an answer wouldn't be appropriate here as your question is extremely broad. So I'll simply answer your questions individually with bits of hints.
Yes, drawing triangles with openGL is a piece of cake. You provide 3 vertice per triangle and with the proper shaders your can draw triangles, with filling or just edges, whatever you want. You seem to require a large set (bigger than [0, 255]) since a lot of triangles may overlap, and the value of each may be bigger than one. This is not a problem. You can fill a 32bit precision one channel frame buffer. In your case only one channel may suffice.
Yes, the blending exists since forever on openGL. So whatever the version of openGL you choose to use, there will be a way to add up the value of the trianlges overlapping.
Yes, depending on you implement it you may have to use glGetSubData() or glReadPixels or something else. However, depending on the size of the matrix you're filling, it may be a bit long to download the full buffer (2000x1000 pixels for a one channel at 32bit would be around 4-5ms). It may be more efficient to do all your processing on the GPU and extract only few valuable information instead of continuing the processing on the CPU.
The execution will be undoubtedly faster. However, the download of data from the GPU memory is often not optimized (upload is). So the time you will win on the processing may be lost on the download. I've never worked with openGL on VM so the additional loss of performance is unknown to me.
//Struct definition
struct Triangle {
float[2] position;
float intensity;
};
//Init
glGenBuffers(1, &m_buffer);
glBindBuffer(GL_ARRAY_BUFFER, 0, m_buffer);
glBufferData(GL_ARRAY_BUFFER,
triangleVector.data() * sizeof(Triangle),
triangleVector.size(),
GL_DYNAMIC_DRAW);
glBindBufferBase(GL_ARRAY_BUFFER, 0, 0);
glGenVertexArrays(1, &m_vao);
glBindVertexArray(m_vao);
glBindBuffer(GL_ARRAY_BUFFER, m_buffer);
glVertexAttribPointer(
POSITION,
2,
GL_FLOAT,
GL_FALSE,
sizeof(Triangle),
0);
glVertexAttribPointer(
INTENSITY,
1,
GL_FLOAT,
GL_FALSE,
sizeof(Triangle),
sizeof(float)*2);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
glGenTextures(1, &m_texture);
glBindTexture(GL_TEXTURE_2D, m_texture);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_R32F,
width,
height,
0,
GL_RED,
GL_FLOAT,
NULL);
glBindTexture(GL_FRAMEBUFFER, 0);
glGenFrameBuffers(1, &m_frameBuffer);
glBindFrameBuffer(GL_FRAMEBUFFER, m_frameBuffer);
glFramebufferTexture(
GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
m_texture,
0);
glBindFrameBuffer(GL_FRAMEBUFFER, 0);
After you just need to write your render function. A simple glDraw*() should be enough. Just remember to bind your buffers correctly. To enable the blending with the proper function. You might also want to disable the anti aliasing for your case. At first I'd say you need an ortho projection but I don't have all the element of your problem so it's up to you.
Long story short, if you never worked with openGL, the piece of code above will be relevant only after you read few documentation/tutorials on openGL/GLSL.

When should glVertexAttribPointer be called?

It's not obvious from the documentation when glVertexAttribPointer should be called. It looks like it's part of VBO initialisation, but I notice example code calling it during rendering.
glVertexAttribPointer(vertexAttributeId, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex2D), reinterpret_cast<const GLvoid*>(offsetof(Vertex2D, m_x)));
Should glVertexAttribPointer be called during initialisation of a GL_ARRAY_BUFFER or should it be called during rendering (after a call to glBindBuffer)?
The function glVertexAttribPointer specifies the format and source buffer (ignoring the deprecated usage of client arrays) of a vertex attribute that is used when rendering something (i.e. the next glDraw... call).
Now there are two scenarios. You either use vertex array objects (VAOs) or you don't (though not using VAOs is deprecated and discouraged/prohibited in modern OpenGL). If you're not using VAOs, then you would usually call glVertexAttribPointer (and the corresponding glEnableVertexAttribArray) right before rendering to setup the state properly. If using VAOs though, you actually call it (and the enable function) inside the VAO creation code (which is usually part of some initialization or object creation), since its settings are stored inside the VAO and all you need to do when rendering is bind the VAO and call a draw function.
But no matter when you call glVertexAttribPointer, you should bind the corresponding buffer right before (no matter when that was actually created and filled), since the glVertexAttribPointer function sets the currently bound GL_ARRAY_BUFFER as source buffer for this attribute (and stores this setting, so afterwards you can freely bind another VBO).
So in modern OpenGL using VAOs (which is recommended), it's usually similar to this workflow:
//initialization
glGenVertexArrays
glBindVertexArray
glGenBuffers
glBindBuffer
glBufferData
glVertexAttribPointer
glEnableVertexAttribArray
glBindVertexArray(0)
glDeleteBuffers //you can already delete it after the VAO is unbound, since the
//VAO still references it, keeping it alive (see comments below).
...
//rendering
glBindVertexArray
glDrawWhatever
When not using VAOs it would be something like that:
//initialization
glGenBuffers
glBindBuffer
glBufferData
...
//rendering
glBindBuffer
glVertexAttribPointer
glEnableVertexAttribArray
glDrawWhatever
glVertexAttribPointer is something that does not really belong to the Buffer nor to the Program it is - let's say - the glue between them. (The functionality of this is splitten in Opengl 4.3 in different functions VertexAttrib*Format, VertexAttribBinding and BindVertexBuffer aviable through the ARB_vertex_attrib_binding )
But if you want to say that it is part of something i would say it is part of the VAO that stores the state of which Buffer objects are bound, which attribs are enabled and how the Buffer data has to be passed to the Program.
So it belongs to part where you setup your VAOs.
EDIT
Simple setup that illustrates the order:
creating/setup of Buffers and creating programs
create VAO define which attribs are enabled, which buffers should be bound when the VAO is used and how that data is passed to the program (glVertexAttribPointer)
The association of buffer, generic vertex attribute and shader attribute variable are quite subtle. glVertexAttribPointer establishes this association. See OpenGL-Terminology for a detailed explanation.
Also, the link OpenGL-VBO,shader,VAO shows a working example with the necessary sequence of API calls.
glVertexAttribPointer has to be called (in most cases) when the appropriate (i.e. the one you want to use) VBO is bound. Then last parameter to it is offset in said buffer.
The last parameter is defined particularly nice in the reference manual:
Specifies a offset of the first component of the first generic vertex
attribute in the array in the data store of the buffer currently bound
to the GL_ARRAY_BUFFER target. The initial value is 0.
Appropriate Vertex Pointer Bindings with VBO sources are stored inside VAO, and you should use that if possible.
Short example (excuse my pseudocode):
// Setup
CreateVAO(); BindVAO();
CreateVBO(); BindVBO();
VertexAttribPointer(/*id*/ 0, 3, GL_FLOAT, /*starting at offset*/ 0);
// We have specified Vertex attribute bound to location 0,
// with size of 3 floats, starting at offset 0 of VBO we've just created.
//Draw
BindVAO();
Draw();

glVertexAttribPointer clarification

Just want to make sure I understand this correctly (I'd ask on SO Chat, but it's dead in there!):
We've got a Vertex Array, which we make "current" by binding it
then we've got a Buffer, which we bind to a Target
then we fill that Target via glBufferData
which essentially populates whatever was bound to that target, i.e. our Buffer
and then we call glVertexAttribPointer which describes how the data is laid out -- the data being whatever is bound to GL_ARRAY_BUFFER
and this descriptor is saved to our original Vertex Array
(1) Is my understanding correct?
The documentation is a little sparse about how everything correlates.
(2) Is there some kind of default Vertex Array? Because I forgot/omitted glGenVertexArrays and glBindVertexArray and my program worked fine without it.
Edit: I missed a step... glEnableVertexAttribArray.
(3) Is the Vertex Attrib tied to the Vertex Array at the time glVertexAttribPointer is called, and then we can enable/disable that attrib via glEnableVertexAttribArray at any time, regardless of which Vertex Array is currently bound?
Or (3b) Is the Vertex Attrib tied to the Vertex Array at the time glEnableVertexAttribArray is called, and thus we can add the same Vertex Attrib to multiple Vertex Arrays by calling glEnableVertexAttribArray at different times, when different Vertex Arrays are bound?
Some of the terminology is a bit off:
A Vertex Array is just an array (typically a float[]) that contains vertex data. It doesn't need to be bound to anything. Not to be confused with a Vertex Array Object or VAO, which I will go over later
A Buffer Object, commonly referred to as a Vertex Buffer Object when storing vertices, or VBO for short, is what you're calling just a Buffer.
Nothing gets saved back to the vertex array, glVertexAttribPointer works exactly like glVertexPointer or glTexCoordPointer work, just instead of named attributes, you get to provide a number that specifies your own attribute. You pass this value as index. All your glVertexAttribPointer calls get queued up for the next time you call glDrawArrays or glDrawElements. If you have a VAO bound, the VAO will store the settings for all your attributes.
The main issue here is that you're confusing vertex attributes with VAOs. Vertex attributes are just the new way of defining vertices, texcoords, normals, etc. for drawing. VAOs store state. I'm first going to explain how drawing works with vertex attributes, then explain how you can cut down the number of method calls with VAOs:
You must enable an attribute before you can use it in a shader. For example, if you want to send vertices over to a shader, you're most likely going to send it as the first attribute, 0. So before you render, you need to enable it with glEnableVertexAttribArray(0);.
Now that an attribute is enabled, you need to define the data it's going to use. In order to do so you need to bind your VBO - glBindBuffer(GL_ARRAY_BUFFER, myBuffer);.
And now we can define the attribute - glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);. In order of parameter: 0 is the attribute you're defining, 3 is the size of each vertex, GL_FLOAT is the type, GL_FALSE means to not normalize each vertex, the last 2 zeros mean that there's no stride or offset on the vertices.
Draw something with it - glDrawArrays(GL_TRIANGLES, 0, 6);
The next thing you draw may not use attribute 0 (realistically it will, but this is an example), so we can disable it - glDisableVertexAttribArray(0);
Wrap that in glUseProgram() calls and you have a rendering system that works with shaders properly. But let's say you have 5 different attributes, vertices, texcoords, normals, color, and lightmap coordinates. First of all, you would be making a single glVertexAttribPointer call for each of these attributes, and you'd have to enable all the attributes beforehand. Let's say you define the attributes 0-4 as I have them listed. You would enable all of them like so:
for (int i = 0; i < 5; i++)
glEnableVertexAttribArray(i);
And then you would have to bind different VBOs for each attribute (unless you store them all in one VBO and use offsets/stride), then you need to make 5 different glVertexAttribPointer calls, from glVertexAttribPointer(0,...); to glVertexAttribPointer(4,...); for vertices to lightmap coordinates respectively.
Hopefully that system alone makes sense. Now I'm going to move on to VAOs to explain how to use them to cut down on the number of method calls when doing this type of rendering. Note that using a VAO is not necessary.
A Vertex Array Object or VAO is used to store the state of all the glVertexAttribPointer calls and the VBOs that were targeted when each of the glVertexAttribPointer calls were made.
You generate one with a call to glGenVertexArrays. To store everything you need in a VAO, bind it with glBindVertexArray, then do a full draw call. All the draw bind calls get intercepted and stored by the VAO. You can unbind the VAO with glBindVertexArray(0);
Now when you want to draw the object, you don't need to re-call all the VBO binds or the glVertexAttribPointer calls, you just need to bind the VAO with glBindVertexArray then call glDrawArrays or glDrawElements and you'll be drawing the exact same thing as though you were making all those method calls. You probably want to unbind the VAO afterwards too.
Once you unbind the VAO, all the state returns to how it was before you bound the VAO. I'm not sure if any changes you make while the VAO is bound is kept, but that can easily be figured out with a test program. I guess you can think of glBindVertexArray(0); as binding to the "default" VAO...
Update: Someone brought to my attention the need for the actual draw call. As it turns out, you don't actually need to do a FULL draw call when setting up the VAO, just all the binding stuff. Don't know why I thought it was necessary earlier, but it's fixed now.
The terminology and sequence of APIs to be called is quite confusing indeed. What's even more confusing is how the various aspects - buffer, generic vertex attribute and shader attribute variable get associated. See OpenGL-Terminology for a pretty good explanation.
Further, the link OpenGL-VBO,shader,VAO shows a simple example with the necessary API calls. It's particularly good for those transitioning from immediate mode to the programmable pipeline.
Hope it helps.
Edit: As you can see from the comments below, people can make assumptions and jump to conclusions. The reality is that it's quite confusing for beginners.