What are some good methods to replace string names with integer hashes - c++

Usually, entities and components or other parts of the game code in data-driven design will have names that get checked if you want to find out which object you're dealing with exactly.
void Player::Interact(Entity *myEntity)
{
if(myEntity->isNearEnough(this) && myEntity->GetFamilyName() == "guard")
{
static_cast<Guard*>(myEntity)->Say("No mention of arrows and knees here");
}
}
If you ignore the possibility that this might be premature optimization, it's pretty clear that looking up entities would be a lot faster if their "name" was a simple 32 bit value instead of an actual string.
Computing hashes out of the string names is one possible option. I haven't actually tried it, but with a range of 32bit and a good hashing function the risk of collision should be minimal.
The question is this: Obviously we need some way to convert in-code (or in some kind of external file) string-names to those integers, since the person working on these named objects will still want to refer to the object as "guard" instead of "0x2315f21a".
Assuming we're using C++ and want to replace all strings that appear in the code, can this even be achieved with language-built in features or do we have to build an external tool that manually looks through all files and exchanges the values?

Jason Gregory wrote this on his book :
At Naughty Dog, we used a variant of the CRC-32 algorithm to hash our strings, and we didn't encounter a single collision in over two years of development on Uncharted: Drake's Fortune.
So you may want to look into that.
And about the build step you mentioned, he also talked about it. They basically encapsulate the strings that need to be hashed in something like:
_ID("string literal")
And use an external tool at build time to hash all the occurrences. This way you avoid any runtime costs.

This is what enums are for. I wouldn't dare to decide which resource is best for the topic, but there are plenty to choose from: https://www.google.com/search?q=c%2B%2B+enum

I'd say go with enums!
But if you already have a lot of code already using strings, well, either just keep it that way (simple and usually enough fast on a PC anyway) or hash it using some kind of CRC or MD5 into an integer.

This is basically solved by adding an indirection on top of a hash map.
Say you want to convert strings to integers:
Write a class wraps both an array and a hashmap. I call these classes dictionaries.
The array contains the strings.
The hash map's key is the string (shared pointers or stable arrays where raw pointers are safe work as well)
The hash map's value is the index into the array the string is located, which is also the opaque handle it returns to calling code.
When adding a new string to the system, it is searched for already existing in the hashmap, returns the handle if present.
If the handle is not present, add the string to the array, the index is the handle.
Set the string and the handle in the map, and return the handle.
Notes/Caveats:
This strategy makes getting the string back from the handle run in constant time (it is merely an array deference).
handle identifiers are first come first serve, but if you serialize the strings instead of the values it won't matter.
Operator[] overloads for both the key and the value are fairly simple (registering new strings, or getting the string back), but wrapping the handle with a user-defined class (wrapping an integer) adds a lot of much needed type safety, and also avoids ambiguity if you want the key and the values to be the same types (overloaded[]'s wont compile and etc)
You have to store the strings in RAM, which can be a problem.

Related

Storing named data, where the 'name' is larger than the 'data'?

I'm writing the logic portion of a game, and want to create, retrieve, and store values (integers) to keep track of progress. For instance, a door would create the pair ("location.room.doorlock", 0) in an std::map, and unlocking this door would set that value to 1. Anytime the player wants to go through this door, it would retrieve the value by that keyname to see if it's passable. (Just an example, but it's important that this information exist outside of the "door" object itself, as characters or other events might retrieve this data and act on it.)
The problem though is that the name (or map key) itself is far larger than the data it's referring to, which seems wasteful, and feels 'wrong' as a result.
Is there a commonly used or best approach for storing this type of data, one where the key isn't so much larger than the data itself?
It is possible to know how much space to allocate at compile time for the progress data itself, if it's important. It need not use std::map either, so long as I don't have to use raw array indices to get or store data.
It seems like you have two options, if you really want to diminish the size of the string (although the string length does not seem to be that bad at all).
You can either just change your naming conventions or implement hashing. Hashing can be implemented in the form of a hashmap (also known as an unordered map) or by hand (you can create a small program that hashes your names to an int, then use that as a pair). Hashmaps/unordered maps are probably your best bet, as there is a lot of support code out there for it and you don't run the risk of having to deal with bugs in your own programs.
http://www.cplusplus.com/reference/unordered_map/unordered_map/

Find substring in many objects containing multiple strings

I am dealing with a collection of objects where the reasonable size of it could be anywhere between 1 and 50K (but there's no set upper limit). Each object contains a handful of strings.
I want to implement to a search function that can partially, exactly, or RegEx match any of one these strings and subsequently return a list of objects.
If each object only contained a single string then I could simply lexicographically sort them, and pull out ranges fairly easily - but I am reluctant to implement a map-like structure for each of the contained strings due to speed/memory concerns.
Is there a data structure well suited to this kind of operation for speed and memory efficiency? I'm sensing a database maybe on the horizon, but I know little about them, so I want to hold off researching until someone more knowledgeable can nudge me in the right direction!
a map-like collection is probably your best bet, the key will be the string, and the value is a reference to the containing object. If your strings are held inside the objects as a stl string, then you could store a reference to the data in the key part of the map instead (alternatively use a shared_ptr for the strings and reference them in both the object and the map)
Searching, sorting just becomes a matter of implementing a custom search functor that uses the dereferenced data. The size of the map will be 2 references plus the map overhead which isn't going to be that bad if you consider the alternatives will be as large, if not larger.
partially, exactly, or RegEx match any of one these strings and subsequently return a list of objects
Well, for exact matches, you could have a std::map<std::string, std::vector<object*> >. The key would be the exact string, and the vector holds pointers to matching objects, many of these pointers may point to a single object instance.
You could have a front-end map from partial strings to full strings: say the string is "dogged", you'd sadly have to put entries in for "dogged", "ogged", "gged", "ged", "ed" and "d" (stop wherever you like if you want a minimum match size)... then use lower_bound to search. That way, say you search on "dog" you could still see that there was a match for "dogged" (doesn't matter if it matches say "dogfood" instead. This would be a simple std::map<string, string>. While you increment forwards from the lower_bound position and the string still matches (i.e. from dogfood to dogged to ... until it doesn't start with dog), you can search for that in the "exact match" map and aggregate results.
For regular expressions, I have no good suggestion... I'd start with a brute force search through all the full strings. If it really isn't good enough, then you do some rough optimisations like checking for a constant substring to filter by before doing the brute force matching, but it's beyond me to imagine how to do this very thoroughly and fast.
(substitute your favourite smart pointers for object*s if useful)
Thanks for all the replies, but following on from techniques mentioned in this post, I've decided to use an enhanced suffix array from the header-only SeqAn project.

Mapping vectors of arbitrary type

I need to store a list vectors of different types, each to be referenced by a string identifier. For now, I'm using std::map with std::string as the key and boost::any as it's value (example implementation posted here).
I've come unstuck when trying to run a method on all the stored vector, e.g.:
std::map<std::string, boost::any>::iterator it;
for (it = map_.begin(); it != map_.end(); ++it) {
it->second.reserve(100); // FAIL: refers to boost::any not std::vector
}
My questions:
Is it possible to cast boost::any to an arbitrary vector type so I can execute its methods?
Is there a better way to map vectors of arbitrary types and retrieve then later on with the correct type?
At present, I'm toying with an alternative implementation which replaces boost::any with a pointer to a base container class as suggested in this answer. This opens up a whole new can of worms with other issues I need to work out. I'm happy to go down this route if necessary but I'm still interested to know if I can make it work with boost::any, of if there are other better solutions.
P.S. I'm a C++ n00b novice (and have been spoilt silly by Python's dynamic typing for far too long), so I may well be going about this the wrong way. Harsh criticism (ideally followed by suggestions) is very welcome.
The big picture:
As pointed out in comments, this may well be an XY problem so here's an overview of what I'm trying to achieve.
I'm writing a task scheduler for a simulation framework that manages the execution of tasks; each task is an elemental operation on a set of data vectors. For example, if task_A is defined in the model to be an operation on "x"(double), "y"(double), "scale"(int) then what we're effectively trying to emulate is the execution of task_A(double x[i], double y[i], int scale[i]) for all values of i.
Every task (function) operate on different subsets of data so these functions share a common function signature and only have access to data via specific APIs e.g. get_int("scale") and set_double("x", 0.2).
In a previous incarnation of the framework (written in C), tasks were scheduled statically and the framework generated code based on a given model to run the simulation. The ordering of tasks is based on a dependency graph extracted from the model definition.
We're now attempting to create a common runtime for all models with a run-time scheduler that executes tasks as their dependencies are met. The move from generating model-specific code to a generic one has brought about all sorts of pain. Essentially, I need to be able to generically handle heterogenous vectors and access them by "name" (and perhaps type_info), hence the above question.
I'm open to suggestions. Any suggestion.
Looking through the added detail, my immediate reaction would be to separate the data out into a number of separate maps, with the type as a template parameter. For example, you'd replace get_int("scale") with get<int>("scale") and set_double("x", 0.2) with set<double>("x", 0.2);
Alternatively, using std::map, you could pretty easily change that (for one example) to something like doubles["x"] = 0.2; or int scale_factor = ints["scale"]; (though you may need to be a bit wary with the latter -- if you try to retrieve a nonexistent value, it'll create it with default initialization rather than signaling an error).
Either way, you end up with a number of separate collections, each of which is homogeneous, instead of trying to put a number of collections of different types together into one big collection.
If you really do need to put those together into a single overall collection, I'd think hard about just using a struct, so it would become something like vals.doubles["x"] = 0.2; or int scale_factor = vals.ints["scale"];
At least offhand, I don't see this losing much of anything, and by retaining static typing throughout, it certainly seems to fit better with how C++ is intended to work.

non STL hash table type structure

Is there a way to write simple hashtable with the key as "strings" and value as the frequency, so that there are NO collisons? There will no be removal from the hashtable, and if the object already exists in the hashtable, then just update its frequency(add them together).
I was thinking there might be a algorithm that can compute a unique number from the string which will be used as the index.
Yes, i am avoiding the use of all STL construct including unordered_map.
You can use any perfect hash generator like gperf
See here for a list: http://en.wikipedia.org/wiki/Perfect_hash_function
PS. You'd still possibly want to use a map instead of flat array/vector in case the mapped domain gets too big/sparse
It really depends on what you mean by 'simple'.
The std::map is a fairly simple class. Still, it uses a red-black tree with all of the insertion, deletion, and balancing nicely hidden away, and it is templated to handle any orderable type as a key and any type as the value. Most map classes use a similar implementation, and avoid any sort of hashing functionality.
Hashing without collisions is not a trivial matter whatsoever. Perhaps the simplest method is Pearson Hashing.
It seems like you have 3 choices:
Implement your own perfect hashing class. This would be a pretty good sized class with a lot of functionality and some decently complex algorithms. I don't think this is simple.
Download and use a perfect hashing library that is already out there. Of course, you have to worry about deployability.
Use STL's map class. It's embedded, well-documented, easy to use, type-flexible, and completely cross-platform. This seems like the 'simplest' solution.
If I may ask, Why are you avoiding STL?
If the set of possible strings is known beforehand, you can use a perfect hash function generator to do this. But otherwise, what you ask is impossible.
Now, it IS possible to make the likelihood of collisions extremely low by using a good hash function and making sure your table is huge. You basically need a big enough table to make the likelihood of invoking the Birthday Paradox low enough to suit you. Then you just use n bits of output from SHA-1, and 2^n will be your table size.
I'm also wondering if maybe you could use a Bloom filter and have an actual counter instead of bits. Keep a list of all the words you've stuffed into the bloom filter and what entries they've incremented (which will be the same each time) and you have yourself a gigantic linear function that you might be able to solve to get all the individual counts back out again.

How fast is the code

I'm developing game. I store my game-objects in this map:
std::map<std::string, Object*> mObjects;
std::string is a key/name of object to find further in code. It's very easy to point some objects, like: mObjects["Player"] = .... But I'm afraid it's to slow due to allocation of std::string in each searching in that map. So I decided to use int as key in that map.
The first question: is that really would be faster?
And the second, I don't want to remove my current type of objects accesing, so I found the way: store crc string calculating as key. For example:
Object *getObject(std::string &key)
{
int checksum = GetCrc32(key);
return mObjects[checksum];
}
Object *temp = getOject("Player");
Or this is bad idea? For calculating crc I would use boost::crc. Or this is bad idea and calculating of checksum is much slower than searching in map with key type std::string?
Calculating a CRC is sure to be slower than any single comparison of strings, but you can expect to do about log2N comparisons before finding the key (e.g. 10 comparisons for 1000 keys), so it depends on the size of your map. CRC can also result in collisions, so it's error prone (you could detect collisions relatively easily detect, and possibly even handle them to get correct results anyway, but you'd have to be very careful to get it right).
You could try an unordered_map<> (possibly called hash_map) if your C++ environment provides one - it may or may not be faster but won't be sorted if you iterate. Hash maps are yet another compromise:
the time to hash is probably similar to the time for your CRC, but
afterwards they can often seek directly to the value instead of having to do the binary-tree walk in a normal map
they prebundle a bit of logic to handle collisions.
(Silly point, but if you can continue to use ints and they can be contiguous, then do remember that you can replace the lookup with an array which is much faster. If the integers aren't actually contiguous, but aren't particularly sparse, you could use a sparse index e.g. array of 10000 short ints that are indices into 1000 packed records).
Bottom line is if you care enough to ask, you should implement these alternatives and benchmark them to see which really works best with your particular application, and if they really make any tangible difference. Any of them can be best in certain circumstances, and if you don't care enough to seriously compare them then it clearly means any of them will do.
For the actual performance you need to profile the code and see it. But I would be tempted to use hash_map. Although its not part of the C++ standard library most of the popular implentations provide it. It provides very fast lookup.
The first question: is that really would be faster?
yes - you're comparing an int several times, vs comparing a potentially large map of strings of arbitrary length several times.
checksum: Or this is bad idea?
it's definitely not guaranteed to be unique. it's a bug waiting to bite.
what i'd do:
use multiple collections and embrace type safety:
// perhaps this simplifies things enough that t_player_id can be an int?
std::map<t_player_id, t_player> d_players;
std::map<t_ghoul_id, t_ghoul> d_ghouls;
std::map<t_carrot_id, t_carrot> d_carrots;
faster searches, more type safety. smaller collections. smaller allocations/resizes.... and on and on... if your app is very trivial, then this won't matter. use this approach going forward, and adjust after profiling/as needed for existing programs.
good luck
If you really want to know you have to profile your code and see how long does the function getObject take. Personally I use valgrind and KCachegrind to profile and render data on UNIX system.
I think using id would be faster. It's faster to compare int than string so...