I've been looking into this for the past few days, and so far I haven't really found anything convincing other than dogmatic arguments or appeals to tradition (i.e. "it's the C++ way!").
If I'm creating an array of objects, what is the compelling reason (other than ease) for using:
#define MY_ARRAY_SIZE 10
// ...
my_object * my_array=new my_object [MY_ARRAY_SIZE];
for (int i=0;i<MY_ARRAY_SIZE;++i) my_array[i]=my_object(i);
over
#define MEMORY_ERROR -1
#define MY_ARRAY_SIZE 10
// ...
my_object * my_array=(my_object *)malloc(sizeof(my_object)*MY_ARRAY_SIZE);
if (my_object==NULL) throw MEMORY_ERROR;
for (int i=0;i<MY_ARRAY_SIZE;++i) new (my_array+i) my_object (i);
As far as I can tell the latter is much more efficient than the former (since you don't initialize memory to some non-random value/call default constructors unnecessarily), and the only difference really is the fact that one you clean up with:
delete [] my_array;
and the other you clean up with:
for (int i=0;i<MY_ARRAY_SIZE;++i) my_array[i].~T();
free(my_array);
I'm out for a compelling reason. Appeals to the fact that it's C++ (not C) and therefore malloc and free shouldn't be used isn't -- as far as I can tell -- compelling as much as it is dogmatic. Is there something I'm missing that makes new [] superior to malloc?
I mean, as best I can tell, you can't even use new [] -- at all -- to make an array of things that don't have a default, parameterless constructor, whereas the malloc method can thusly be used.
I'm out for a compelling reason.
It depends on how you define "compelling". Many of the arguments you have thus far rejected are certainly compelling to most C++ programmers, as your suggestion is not the standard way to allocate naked arrays in C++.
The simple fact is this: yes, you absolutely can do things the way you describe. There is no reason that what you are describing will not function.
But then again, you can have virtual functions in C. You can implement classes and inheritance in plain C, if you put the time and effort into it. Those are entirely functional as well.
Therefore, what matters is not whether something can work. But more on what the costs are. It's much more error prone to implement inheritance and virtual functions in C than C++. There are multiple ways to implement it in C, which leads to incompatible implementations. Whereas, because they're first-class language features of C++, it's highly unlikely that someone would manually implement what the language offers. Thus, everyone's inheritance and virtual functions can cooperate with the rules of C++.
The same goes for this. So what are the gains and the losses from manual malloc/free array management?
I can't say that any of what I'm about to say constitutes a "compelling reason" for you. I rather doubt it will, since you seem to have made up your mind. But for the record:
Performance
You claim the following:
As far as I can tell the latter is much more efficient than the former (since you don't initialize memory to some non-random value/call default constructors unnecessarily), and the only difference really is the fact that one you clean up with:
This statement suggests that the efficiency gain is primarily in the construction of the objects in question. That is, which constructors are called. The statement presupposes that you don't want to call the default constructor; that you use a default constructor just to create the array, then use the real initialization function to put the actual data into the object.
Well... what if that's not what you want to do? What if what you want to do is create an empty array, one that is default constructed? In this case, this advantage disappears entirely.
Fragility
Let's assume that each object in the array needs to have a specialized constructor or something called on it, such that initializing the array requires this sort of thing. But consider your destruction code:
for (int i=0;i<MY_ARRAY_SIZE;++i) my_array[i].~T();
For a simple case, this is fine. You have a macro or const variable that says how many objects you have. And you loop over each element to destroy the data. That's great for a simple example.
Now consider a real application, not an example. How many different places will you be creating an array in? Dozens? Hundreds? Each and every one will need to have its own for loop for initializing the array. Each and every one will need to have its own for loop for destroying the array.
Mis-type this even once, and you can corrupt memory. Or not delete something. Or any number of other horrible things.
And here's an important question: for a given array, where do you keep the size? Do you know how many items you allocated for every array that you create? Each array will probably have its own way of knowing how many items it stores. So each destructor loop will need to fetch this data properly. If it gets it wrong... boom.
And then we have exception safety, which is a whole new can of worms. If one of the constructors throws an exception, the previously constructed objects need to be destructed. Your code doesn't do that; it's not exception-safe.
Now, consider the alternative:
delete[] my_array;
This can't fail. It will always destroy every element. It tracks the size of the array, and it's exception-safe. So it is guaranteed to work. It can't not work (as long as you allocated it with new[]).
Of course, you could say that you could wrap the array in an object. That makes sense. You might even template the object on the type elements of the array. That way, all the desturctor code is the same. The size is contained in the object. And maybe, just maybe, you realize that the user should have some control over the particular way the memory is allocated, so that it's not just malloc/free.
Congratulations: you just re-invented std::vector.
Which is why many C++ programmers don't even type new[] anymore.
Flexibility
Your code uses malloc/free. But let's say I'm doing some profiling. And I realize that malloc/free for certain frequently created types is just too expensive. I create a special memory manager for them. But how to hook all of the array allocations to them?
Well, I have to search the codebase for any location where you create/destroy arrays of these types. And then I have to change their memory allocators accordingly. And then I have to continuously watch the codebase so that someone else doesn't change those allocators back or introduce new array code that uses different allocators.
If I were instead using new[]/delete[], I could use operator overloading. I simply provide an overload for operators new[] and delete[] for those types. No code has to change. It's much more difficult for someone to circumvent these overloads; they have to actively try to. And so forth.
So I get greater flexibility and reasonable assurance that my allocators will be used where they should be used.
Readability
Consider this:
my_object *my_array = new my_object[10];
for (int i=0; i<MY_ARRAY_SIZE; ++i)
my_array[i]=my_object(i);
//... Do stuff with the array
delete [] my_array;
Compare it to this:
my_object *my_array = (my_object *)malloc(sizeof(my_object) * MY_ARRAY_SIZE);
if(my_object==NULL)
throw MEMORY_ERROR;
int i;
try
{
for(i=0; i<MY_ARRAY_SIZE; ++i)
new(my_array+i) my_object(i);
}
catch(...) //Exception safety.
{
for(i; i>0; --i) //The i-th object was not successfully constructed
my_array[i-1].~T();
throw;
}
//... Do stuff with the array
for(int i=MY_ARRAY_SIZE; i>=0; --i)
my_array[i].~T();
free(my_array);
Objectively speaking, which one of these is easier to read and understand what's going on?
Just look at this statement: (my_object *)malloc(sizeof(my_object) * MY_ARRAY_SIZE). This is a very low level thing. You're not allocating an array of anything; you're allocating a hunk of memory. You have to manually compute the size of the hunk of memory to match the size of the object * the number of objects you want. It even features a cast.
By contrast, new my_object[10] tells the story. new is the C++ keyword for "create instances of types". my_object[10] is a 10 element array of my_object type. It's simple, obvious, and intuitive. There's no casting, no computing of byte sizes, nothing.
The malloc method requires learning how to use malloc idiomatically. The new method requires just understanding how new works. It's much less verbose and much more obvious what's going on.
Furthermore, after the malloc statement, you do not in fact have an array of objects. malloc simply returns a block of memory that you have told the C++ compiler to pretend is a pointer to an object (with a cast). It isn't an array of objects, because objects in C++ have lifetimes. And an object's lifetime does not begin until it is constructed. Nothing in that memory has had a constructor called on it yet, and therefore there are no living objects in it.
my_array at that point is not an array; it's just a block of memory. It doesn't become an array of my_objects until you construct them in the next step. This is incredibly unintuitive to a new programmer; it takes a seasoned C++ hand (one who probably learned from C) to know that those aren't live objects and should be treated with care. The pointer does not yet behave like a proper my_object*, because it doesn't point to any my_objects yet.
By contrast, you do have living objects in the new[] case. The objects have been constructed; they are live and fully-formed. You can use this pointer just like any other my_object*.
Fin
None of the above says that this mechanism isn't potentially useful in the right circumstances. But it's one thing to acknowledge the utility of something in certain circumstances. It's quite another to say that it should be the default way of doing things.
If you do not want to get your memory initialized by implicit constructor calls, and just need an assured memory allocation for placement new then it is perfectly fine to use malloc and free instead of new[] and delete[].
The compelling reasons of using new over malloc is that new provides implicit initialization through constructor calls, saving you additional memset or related function calls post an malloc And that for new you do not need to check for NULL after every allocation, just enclosing exception handlers will do the job saving you redundant error checking unlike malloc.
These both compelling reasons do not apply to your usage.
which one is performance efficient can only be determined by profiling, there is nothing wrong in the approach you have now. On a side note I don't see a compelling reason as to why use malloc over new[] either.
I would say neither.
The best way to do it would be:
std::vector<my_object> my_array;
my_array.reserve(MY_ARRAY_SIZE);
for (int i=0;i<MY_ARRAY_SIZE;++i)
{ my_array.push_back(my_object(i));
}
This is because internally vector is probably doing the placement new for you. It also managing all the other problems associated with memory management that you are not taking into account.
You've reimplemented new[]/delete[] here, and what you have written is pretty common in developing specialized allocators.
The overhead of calling simple constructors will take little time compared the allocation. It's not necessarily 'much more efficient' -- it depends on the complexity of the default constructor, and of operator=.
One nice thing that has not been mentioned yet is that the array's size is known by new[]/delete[]. delete[] just does the right and destructs all elements when asked. Dragging an additional variable (or three) around so you exactly how to destroy the array is a pain. A dedicated collection type would be a fine alternative, however.
new[]/delete[] are preferable for convenience. They introduce little overhead, and could save you from a lot of silly errors. Are you compelled enough to take away this functionality and use a collection/container everywhere to support your custom construction? I've implemented this allocator -- the real mess is creating functors for all the construction variations you need in practice. At any rate, you often have a more exact execution at the expense of a program which is often more difficult to maintain than the idioms everybody knows.
IMHO there both ugly, it's better to use vectors. Just make sure to allocate the space in advance for performance.
Either:
std::vector<my_object> my_array(MY_ARRAY_SIZE);
If you want to initialize with a default value for all entries.
my_object basic;
std::vector<my_object> my_array(MY_ARRAY_SIZE, basic);
Or if you don't want to construct the objects but do want to reserve the space:
std::vector<my_object> my_array;
my_array.reserve(MY_ARRAY_SIZE);
Then if you need to access it as a C-Style pointer array just (just make sure you don't add stuff while keeping the old pointer but you couldn't do that with regular c-style arrays anyway.)
my_object* carray = &my_array[0];
my_object* carray = &my_array.front(); // Or the C++ way
Access individual elements:
my_object value = my_array[i]; // The non-safe c-like faster way
my_object value = my_array.at(i); // With bounds checking, throws range exception
Typedef for pretty:
typedef std::vector<my_object> object_vect;
Pass them around functions with references:
void some_function(const object_vect& my_array);
EDIT:
IN C++11 there is also std::array. The problem with it though is it's size is done via a template so you can't make different sized ones at runtime and you cant pass it into functions unless they are expecting that exact same size (or are template functions themselves). But it can be useful for things like buffers.
std::array<int, 1024> my_array;
EDIT2:
Also in C++11 there is a new emplace_back as an alternative to push_back. This basically allows you to 'move' your object (or construct your object directly in the vector) and saves you a copy.
std::vector<SomeClass> v;
SomeClass bob {"Bob", "Ross", 10.34f};
v.emplace_back(bob);
v.emplace_back("Another", "One", 111.0f); // <- Note this doesn't work with initialization lists ☹
Oh well, I was thinking that given the number of answers there would be no reason to step in... but I guess I am drawn in as the others. Let's go
Why your solution is broken
C++11 new facilities for handling raw memory
Simpler way to get this done
Advices
1. Why your solution is broken
First, the two snippets you presented are not equivalent. new[] just works, yours fails horribly in the presence of Exceptions.
What new[] does under the cover is that it keeps track of the number of objects that were constructed, so that if an exception occurs during say the 3rd constructor call it properly calls the destructor for the 2 already constructed objects.
Your solution however fails horribly:
either you don't handle exceptions at all (and leak horribly)
or you just try to call the destructors on the whole array even though it's half built (likely crashing, but who knows with undefined behavior)
So the two are clearly not equivalent. Yours is broken
2. C++11 new facilities for handling raw memory
In C++11, the comittee members have realized how much we liked fiddling with raw memory and they have introduced facilities to help us doing so more efficiently, and more safely.
Check cppreference's <memory> brief. This example shows off the new goodies (*):
#include <iostream>
#include <string>
#include <memory>
#include <algorithm>
int main()
{
const std::string s[] = {"This", "is", "a", "test", "."};
std::string* p = std::get_temporary_buffer<std::string>(5).first;
std::copy(std::begin(s), std::end(s),
std::raw_storage_iterator<std::string*, std::string>(p));
for(std::string* i = p; i!=p+5; ++i) {
std::cout << *i << '\n';
i->~basic_string<char>();
}
std::return_temporary_buffer(p);
}
Note that get_temporary_buffer is no-throw, it returns the number of elements for which memory has actually been allocated as a second member of the pair (thus the .first to get the pointer).
(*) Or perhaps not so new as MooingDuck remarked.
3. Simpler way to get this done
As far as I am concered, what you really seem to be asking for is a kind of typed memory pool, where some emplacements could not have been initialized.
Do you know about boost::optional ?
It is basically an area of raw memory that can fit one item of a given type (template parameter) but defaults with having nothing in instead. It has a similar interface to a pointer and let you query whether or not the memory is actually occupied. Finally, using the In-Place Factories you can safely use it without copying objects if it is a concern.
Well, your use case really looks like a std::vector< boost::optional<T> > to me (or perhaps a deque?)
4. Advices
Finally, in case you really want to do it on your own, whether for learning or because no STL container really suits you, I do suggest you wrap this up in an object to avoid the code sprawling all over the place.
Don't forget: Don't Repeat Yourself!
With an object (templated) you can capture the essence of your design in one single place, and then reuse it everywhere.
And of course, why not take advantage of the new C++11 facilities while doing so :) ?
You should use vectors.
Dogmatic or not, that is exactly what ALL the STL container do to allocate and initialize.
They use an allocator then allocates uninitialized space and initialize it by means of the container constructors.
If this (like many people use to say) "is not c++" how can be the standard library just be implemented like that?
If you just don't want to use malloc / free, you can allocate "bytes" with just new char[]
myobjet* pvext = reinterpret_cast<myobject*>(new char[sizeof(myobject)*vectsize]);
for(int i=0; i<vectsize; ++i) new(myobject+i)myobject(params);
...
for(int i=vectsize-1; i!=0u-1; --i) (myobject+i)->~myobject();
delete[] reinterpret_cast<char*>(myobject);
This lets you take advantage of the separation between initialization and allocation, still taking adwantage of the new allocation exception mechanism.
Note that, putting my first and last line into an myallocator<myobject> class and the second ands second-last into a myvector<myobject> class, we have ... just reimplemented std::vector<myobject, std::allocator<myobject> >
What you have shown here is actually the way to go when using a memory allocator different than the system general allocator - in that case you would allocate your memory using the allocator (alloc->malloc(sizeof(my_object))) and then use the placement new operator to initialize it. This has many advantages in efficient memory management and quite common in the standard template library.
If you are writing a class that mimics functionality of std::vector or needs control over memory allocation/object creation (insertion in array / deletion etc.) - that's the way to go. In this case, it's not a question of "not calling default constructor". It becomes a question of being able to "allocate raw memory, memmove old objects there and then create new objects at the olds' addresses", question of being able to use some form of realloc and so on. Unquestionably, custom allocation + placement new are way more flexible... I know, I'm a bit drunk, but std::vector is for sissies... About efficiency - one can write their own version of std::vector that will be AT LEAST as fast ( and most likely smaller, in terms of sizeof() ) with most used 80% of std::vector functionality in, probably, less than 3 hours.
my_object * my_array=new my_object [10];
This will be an array with objects.
my_object * my_array=(my_object *)malloc(sizeof(my_object)*MY_ARRAY_SIZE);
This will be an array the size of your objects, but they may be "broken". If your class has virtual funcitons for instance, then you won't be able to call those. Note that it's not just your member data that may be inconsistent, but the entire object is actully "broken" (in lack of a better word)
I'm not saying it's wrong to do the second one, just as long as you know this.
Related
I am trying to write a simple game using C++ and SDL. My question is, what is the best practice to store class member variables.
MyObject obj;
MyObject* obj;
I read a lot about eliminating pointers as much as possible in similar questions, but I remember that few years back in some books I read they used it a lot (for all non trivial objects) . Another thing is that SDL returns pointers in many of its functions and therefor I would have to use "*" a lot when working with SDL objects.
Also am I right when I think the only way to initialize the first one using other than default constructor is through initializer list?
Generally, using value members is preferred over pointer members. However, there are some exceptions, e.g. (this list is probably incomplete and only contains reason I could come up with immediately):
When the members are huge (use sizeof(MyObject) to find out), the difference often doesn't matter for the access and stack size may be a concern.
When the objects come from another source, e.g., when there are factory function creating pointers, there is often no alternative to store the objects.
If the dynamic type of the object isn't known, using a pointer is generally the only alternative. However, this shouldn't be as common as it often is.
When there are more complicated relations than direct owner, e.g., if an object is shared between different objects, using a pointer is the most reasonable approach.
In all of these case you wouldn't use a pointer directly but rather a suitable smart pointer. For example, for 1. you might want to use a std::unique_ptr<MyObject> and for 4. a std::shared_ptr<MyObject> is the best alternative. For 2. you might need to use one of these smart pointer templates combined with a suitable deleter function to deal with the appropriate clean-up (e.g. for a FILE* obtained from fopen() you'd use fclose() as a deleter function; of course, this is a made up example as in C++ you would use I/O streams anyway).
In general, I normally initialize my objects entirely in the member initializer list, independent on how the members are represented exactly. However, yes, if you member objects require constructor arguments, these need to be passed from a member initializer list.
First I would like to say that I completely agree with Dietmar Kühl and Mats Petersson answer. However, you have also to take on account that SDL is a pure C library where the majority of the API functions expect C pointers of structs that can own big chunks of data. So you should not allocate them on stack (you shoud use new operator to allocate them on the heap). Furthermore, because C language does not contain smart pointers, you need to use std::unique_ptr::get() to recover the C pointer that std::unique_ptr owns before sending it to SDL API functions. This can be quite dangerous because you have to make sure that the std::unique_ptr does not get out of scope while SDL is using the C pointer (similar problem with std::share_ptr). Otherwise you will get seg fault because std::unique_ptr will delete the C pointer while SDL is using it.
Whenever you need to call pure C libraries inside a C++ program, I recommend the use of RAII. The main idea is that you create a small wrapper class that owns the C pointer and also calls the SDL API functions for you. Then you use the class destructor to delete all your C pointers.
Example:
class SDLAudioWrap {
public:
SDLAudioWrap() { // constructor
// allocate SDL_AudioSpec
}
~SDLAudioWrap() { // destructor
// free SDL_AudioSpec
}
// here you wrap all SDL API functions that involve
// SDL_AudioSpec and that you will use in your program
// It is quite simple
void SDL_do_some_stuff() {
SDL_do_some_stuff(ptr); // original C function
// SDL_do_some_stuff(SDL_AudioSpec* ptr)
}
private:
SDL_AudioSpec* ptr;
}
Now your program is exception safe and you don't have the possible issue of having smart pointers deleting your C pointer while SDL is using it.
UPDATE 1: I forget to mention that because SDL is a C library, you will need a custom deleter class in order to proper manage their C structs using smart pointers.
Concrete example: GSL GNU scientific library. Integration routine requires the allocation of a struct called "gsl_integration_workspace". In this case, you can use the following code to ensure that your code is exception safe
auto deleter= [](gsl_integration_workspace* ptr) {
gsl_integration_workspace_free(ptr);
};
std::unique_ptr<gsl_integration_workspace, decltype(deleter)> ptr4 (
gsl_integration_workspace_alloc (2000), deleter);
Another reason why I prefer wrapper classes
In case of initialization, it depends on what the options are, but yes, a common way is to use an initializer list.
The "don't use pointers unless you have to" is good advice in general. Of course, there are times when you have to - for example when an object is being returned by an API!
Also, using new will waste quite a bit of memory and CPU-time if MyObject is small. Each object created with new has an overhead of around 16-48 bytes in a typical modern OS, so if your object is only a couple of simple types, then you may well have more overhead than actual storage. In a largeer application, this can easily add up to a huge amount. And of course, a call to new or delete will most likely take some hundreds or thousands of cycles (above and beyond the time used in the constructor). So, you end up with code that runs slower and takes more memory - and of course, there's always some risk that you mess up and have memory leaks, causing your program to potentially crash due to out of memory, when it's not REALLY out of memory.
And as that famous "Murphy's law states", these things just have to happen at the worst possible and most annoying times - when you have just done some really good work, or when you've just succeeded at a level in a game, or something. So avoiding those risks whenever possible is definitely a good idea.
Well, creating the object is a lot better than using pointers because it's less error prone. Your code doesn't describe it well.
MyObj* foo;
foo = new MyObj;
foo->CanDoStuff(stuff);
//Later when foo is not needed
delete foo;
The other way is
MyObj foo;
foo.CanDoStuff(stuff);
less memory management but really it's up to you.
As the previous answers claimed the "don't use pointers unless you have to" is a good advise for general programming but then there are many issues that could finally make you select the pointers choice. Furthermore, in you initial question you are not considering the option of using references. So you can face three types of variable members in a class:
MyObject obj;
MyObject* obj;
MyObject& obj;
I use to always consider the reference option rather than the pointer one because you don't need to take care about if the pointer is NULL or not.
Also, as Dietmar Kühl pointed, a good reason for selecting pointers is:
If the dynamic type of the object isn't known, using a pointer is
generally the only alternative. However, this shouldn't be as common
as it often is.
I think this point is of particular importance when you are working on a big project. If you have many own classes, arranged in many source files and you use them in many parts of your code you will come up with long compilation times. If you use normal class instances (instead of pointers or references) a simple change in one of the header file of your classes will infer in the recompilation of all the classes that include this modified class. One possible solution for this issue is to use the concept of Forward declaration, which make use of pointers or references (you can find more info here).
I am relatively new to pointers and have written this merge function. Is this effective use of pointers? and secondly the *two variable, it should not be deleted when they are merged right? that would be the client´s task, not the implementer?
VectorPQueue *VectorPQueue::merge(VectorPQueue *one, VectorPQueue *two) {
int twoSize = two->size();
if (one->size() != 0) {
for (int i = 0; i < twoSize;i++)
{
one->enqueue(two->extractMin());
}
}
return one;
}
The swap function is called like this
one->merge(one, two);
Passing it the these two objects to merge
PQueue *one = PQueue::createPQueue(PQueue::UnsortedVector);
PQueue *two = PQueue::createPQueue(PQueue::UnsortedVector);
In your case pointers are completely unnecessary. You can simply use references.
It is also unnecessary to pass in the argument on which the member function is called. You can get the object on which a member function is called with the this pointer.
/// Merge this with other.
void VectorPQueue::merge(VectorPQueue& other) {
// impl
}
In general: Implementing containers with inheritance is not really the preferred style. Have a look at the standard library and how it implements abstractions over sequences (iterators).
At first sight, I cannot see any pointer-related problems. Although I'd prefer to use references instead, and make merge a member function of VectorPQueue so I don't have to pass the first argument (as others already pointed out). One more thing which confuses me is the check for one->size() != 0 - what would be the problem if one is empty? The code below would still correctly insert two into one, as it depends only on two's size.
Regarding deletion of two:
that would be the client´s task, not the implementer
Well, it's up to you how you want do design your interface. But since the function only adds two's elements to one, I'd say it should not delete it. Btw, I think a better name for this method would be addAllFrom() or something like this.
Regarding pointers in general:
I strongly suggest you take a look into smart pointers. These are a common technique in C++ to reduce memory management effort. Using bare pointers and managing them manually via new/delete is very error-prone, hard to make strongly exception-safe, will almost guarantee you memory leaks etc. Smart pointers on the other hand automatically delete their contained pointers as soon as they are not needed any more. For illustrative purposes, the C++ std lib has auto_ptr (unique_ptr and shared_ptr if your compiler supports C++ 11). It's used like this:
{ // Beginning of scope
std::auto_ptr<PQueue> one(PQueue::createPQueue(PQueue::UnsortedVector));
// Do some work with one...:
one->someFunction();
// ...
} // End of scope - one will automatically be deleted
My personal rules of thumb: Only use pointers wrapped in smart pointers. Only use heap allocated objects at all, if:
they have to live longer than the scope in which they are created, and a copy would be too expensive (C++ 11 luckily has move semantics, which eliminate a lot of such cases)
I have to call virtual functions on them
In all other cases, I try to use stack allocated objects and STL containers as much as possible.
All this might seem a lot at first if you're starting with C++, and it's totally ok (maybe even necessary) to try to fully understand pointers before you venture into smart pointers etc.. but it saves a lot of time spend debugging later on. I'd also recommend reading a few books on C++ - I was actually thinking I understood most of C++, until I read my first book :)
I'd like to use a std::vector to control a given piece of memory. First of all I'm pretty sure this isn't good practice, but curiosity has the better of me and I'd like to know how to do this anyway.
The problem I have is a method like this:
vector<float> getRow(unsigned long rowIndex)
{
float* row = _m->getRow(rowIndex); // row is now a piece of memory (of a known size) that I control
vector<float> returnValue(row, row+_m->cols()); // construct a new vec from this data
delete [] row; // delete the original memory
return returnValue; // return the new vector
}
_m is a DLL interface class which returns an array of float which is the callers responsibility to delete. So I'd like to wrap this in a vector and return that to the user.... but this implementation allocates new memory for the vector, copies it, and then deletes the returned memory, then returns the vector.
What I'd like to do is to straight up tell the new vector that it has full control over this block of memory so when it gets deleted that memory gets cleaned up.
UPDATE: The original motivation for this (memory returned from a DLL) has been fairly firmly squashed by a number of responders :) However, I'd love to know the answer to the question anyway... Is there a way to construct a std::vector using a given chunk of pre-allocated memory T* array, and the size of this memory?
The obvious answer is to use a custom allocator, however you might find that is really quite a heavyweight solution for what you need. If you want to do it, the simplest way is to take the allocator defined (as the default scond template argument to vector<>) by the implementation, copy that and make it work as required.
Another solution might be to define a template specialisation of vector, define as much of the interface as you actually need and implement the memory customisation.
Finally, how about defining your own container with a conforming STL interface, defining random access iterators etc. This might be quite easy given that underlying array will map nicely to vector<>, and pointers into it will map to iterators.
Comment on UPDATE: "Is there a way to construct a std::vector using a given chunk of pre-allocated memory T* array, and the size of this memory?"
Surely the simple answer here is "No". Provided you want the result to be a vector<>, then it has to support growing as required, such as through the reserve() method, and that will not be possible for a given fixed allocation. So the real question is really: what exactly do you want to achieve? Something that can be used like vector<>, or something that really does have to in some sense be a vector, and if so, what is that sense?
Vector's default allocator doesn't provide this type of access to its internals. You could do it with your own allocator (vector's second template parameter), but that would change the type of the vector.
It would be much easier if you could write directly into the vector:
vector<float> getRow(unsigned long rowIndex) {
vector<float> row (_m->cols());
_m->getRow(rowIndex, &row[0]); // writes _m->cols() values into &row[0]
return row;
}
Note that &row[0] is a float* and it is guaranteed for vector to store items contiguously.
The most important thing to know here is that different DLL/Modules have different Heaps. This means that any memory that is allocated from a DLL needs to be deleted from that DLL (it's not just a matter of compiler version or delete vs delete[] or whatever). DO NOT PASS MEMORY MANAGEMENT RESPONSIBILITY ACROSS A DLL BOUNDARY. This includes creating a std::vector in a dll and returning it. But it also includes passing a std::vector to the DLL to be filled by the DLL; such an operation is unsafe since you don't know for sure that the std::vector will not try a resize of some kind while it is being filled with values.
There are two options:
Define your own allocator for the std::vector class that uses an allocation function that is guaranteed to reside in the DLL/Module from which the vector was created. This can easily be done with dynamic binding (that is, make the allocator class call some virtual function). Since dynamic binding will look-up in the vtable for the function call, it is guaranteed that it will fall in the code from the DLL/Module that originally created it.
Don't pass the vector object to or from the DLL. You can use, for example, a function getRowBegin() and getRowEnd() that return iterators (i.e. pointers) in the row array (if it is contiguous), and let the user std::copy that into its own, local std::vector object. You could also do it the other way around, pass the iterators begin() and end() to a function like fillRowInto(begin, end).
This problem is very real, although many people neglect it without knowing. Don't underestimate it. I have personally suffered silent bugs related to this issue and it wasn't pretty! It took me months to resolve it.
I have checked in the source code, and boost::shared_ptr and boost::shared_array use dynamic binding (first option above) to deal with this.. however, they are not guaranteed to be binary compatible. Still, this could be a slightly better option (usually binary compatibility is a much lesser problem than memory management across modules).
Your best bet is probably a std::vector<shared_ptr<MatrixCelType>>.
Lots more details in this thread.
If you're trying to change where/how the vector allocates/reallocates/deallocates memory, the allocator template parameter of the vector class is what you're looking for.
If you're simply trying to avoid the overhead of construction, copy construction, assignment, and destruction, then allow the user to instantiate the vector, then pass it to your function by reference. The user is then responsible for construction and destruction.
It sounds like what you're looking for is a form of smart pointer. One that deletes what it points to when it's destroyed. Look into the Boost libraries or roll your own in that case.
The Boost.SmartPtr library contains a whole lot of interesting classes, some of which are dedicated to handle arrays.
For example, behold scoped_array:
int main(int argc, char* argv[])
{
boost::scoped_array<float> array(_m->getRow(atoi(argv[1])));
return 0;
}
The issue, of course, is that scoped_array cannot be copied, so if you really want a std::vector<float>, #Fred Nurk's is probably the best you can get.
In the ideal case you'd want the equivalent to unique_ptr but in array form, however I don't think it's part of the standard.
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Common Uses For Pointers?
I am still learning the basics of C++ but I already know enough to do useful little programs.
I understand the concept of pointers and the examples I see in tutorials make sense to me. However, on the practical level, and being a (former) PHP developer, I am not yet confident to actually use them in my programs.
In fact, so far I have not felt the need to use any pointer. I have my classes and functions and I seem to be doing perfectly fine without using any pointer (let alone pointers to pointers). And I can't help feeling a bit proud of my little programs.
Still, I am aware that I am missing on one of C++'s most important feature, a double edged one: pointers and memory management can create havoc, seemingly random crashes, hard to find bugs and security holes... but at the same time, properly used, they must allow for clever and efficient programming.
So: do tell me what I am missing by not using pointers.
What are good scenarios where using pointers is a must?
What do they allow you to do that you couldn't do otherwise?
In which way to they make your programs more efficient?
And what about pointers to pointers???
[Edit: All the various answers are useful. One problem at SO is that we cannot "accept" more than one answer. I often wish I could. Actually, it's all the answers combined that help to understand better the whole picture. Thanks.]
I use pointers when I want to give a class access to an object, without giving it ownership of that object. Even then, I can use a reference, unless I need to be able to change which object I am accessing and/or I need the option of no object, in which case the pointer would be NULL.
This question has been asked on SO before. My answer from there:
I use pointers about once every six lines in the C++ code that I write. Off the top of my head, these are the most common uses:
When I need to dynamically create an object whose lifetime exceeds the scope in which it was created.
When I need to allocate an object whose size is unknown at compile time.
When I need to transfer ownership of an object from one thing to another without actually copying it (like in a linked list/heap/whatever of really big, expensive structs)
When I need to refer to the same object from two different places.
When I need to slice an array without copying it.
When I need to use compiler intrinsics to generate CPU-specific instructions, or work around situations where the compiler emits suboptimal or naive code.
When I need to write directly to a specific region of memory (because it has memory-mapped IO).
Pointers are commonly used in C++. Becoming comfortable with them, will help you understand a broader range of code. That said if you can avoid them that is great, however, in time as your programs become more complex, you will likely need them even if only to interface with other libraries.
Primarily pointers are used to refer to dynamically allocated memory (returned by new).
They allow functions to take arguments that cannot be copied onto the stack either because they are too big or cannot be copied, such as an object returned by a system call. (I think also stack alignment, can be an issue, but too hazy to be confident.)
In embedded programing they are used to refer to things like hardware registers, which require that the code write to a very specific address in memory.
Pointers are also used to access objects through their base class interfaces. That is if I have a class B that is derived from class A class B : public A {}. That is an instance of the object B could be accessed as if it where class A by providing its address to a pointer to class A, ie: A *a = &b_obj;
It is a C idiom to use pointers as iterators on arrays. This may still be common in older C++ code, but is probably considered a poor cousin to the STL iterator objects.
If you need to interface with C code, you will invariable need to handle pointers which are used to refer to dynamically allocated objects, as there are no references. C strings are just pointers to an array of characters terminated by the nul '\0' character.
Once you feel comfortable with pointers, pointers to pointers won't seem so awful. The most obvious example is the argument list to main(). This is typically declared as char *argv[], but I have seen it declared (legally I believe) as char **argv.
The declaration is C style, but it says that I have array of pointers to pointers to char. Which is interpreted as a arbitrary sized array (the size is carried by argc) of C style strings (character arrays terminated by the nul '\0' character).
If you haven't felt a need for pointers, I wouldn't spend a lot of time worrying about them until a need arises.
That said, one of the primary ways pointers can contribute to more efficient programming is by avoiding copies of actual data. For example, let's assume you were writing a network stack. You receive an Ethernet packet to be processed. You successively pass that data up the stack from the "raw" Ethernet driver to the IP driver to the TCP driver to, say, the HTTP driver to something that processes the HTML it contains.
If you're making a new copy of the contents for each of those, you end up making at least four copies of the data before you actually get around to rendering it at all.
Using pointers can avoid a lot of that -- instead of copying the data itself, you just pass around a pointer to the data. Each successive layer of the network stack looks at its own header, and passes a pointer to what it considers the "payload" up to the next higher layer in the stack. That next layer looks at its own header, modifies the pointer to show what it considers the payload, and passes it on up the stack. Instead of four copies of the data, all four layers work with one copy of the real data.
A big use for pointers is dynamic sizing of arrays. When you don't know the size of the array at compile time, you will need to allocate it at run-time.
int *array = new int[dynamicSize];
If your solution to this problem is to use std::vector from the STL, they use dynamic memory allocation behind the scenes.
There are several scenarios where pointers are required:
If you are using Abstract Base Classes with virtual methods. You can hold a std::vector and loop through all these objects and call a virtual method. This REQUIRES pointers.
You can pass a pointer to a buffer to a method reading from a file etc.
You need a lot of memory allocated on the heap.
It's a good thing to care about memory problems right from the start. So if you start using pointers, you might as well take a look at smart pointers, like boost's shared_ptr for example.
What are good scenarios where using pointers is a must?
Interviews. Implement strcpy.
What do they allow you to do that you couldn't do otherwise?
Use of inheritance hierarchy. Data structures like Binary trees.
In which way to they make your programs more efficient?
They give more control to the programmer, for creating and deleting resources at run time.
And what about pointers to pointers???
A frequently asked interview question. How will you create two dimensional array on heap.
A pointer has a special value, NULL, that reference's won't. I use pointers wherever NULL is a valid and useful value.
I just want to say that i rarely use pointers. I use references and stl objects (deque, list, map, etc).
A good idea is when you need to return an object where the calling function should free or when you dont want to return by value.
List<char*>* fileToList(char*filename) { //dont want to pass list by value
ClassName* DataToMyClass(DbConnectionOrSomeType& data) {
//alternatively you can do the below which doesnt require pointers
void DataToMyClass(DbConnectionOrSomeType& data, ClassName& myClass) {
Thats pretty much the only situation i use but i am not thinking that hard. Also if i want a function to modify a variable and cant use the return value (say i need more then one)
bool SetToFiveIfPositive(int**v) {
You can use them for linked lists, trees, etc.
They're very important data structures.
In general, pointers are useful as they can hold the address of a chunk of memory. They are especially useful in some low level drivers where they are efficiently used to operate on a piece of memory byte by byte. They are most powerful invention that C++ inherits from C.
As to pointer to pointer, here is a "hello-world" example showing you how to use it.
#include <iostream>
void main()
{
int i = 1;
int j = 2;
int *pInt = &i; // "pInt" points to "i"
std::cout<<*pInt<<std::endl; // prints: 1
*pInt = 6; // modify i, i = 6
std::cout<<i<<std::endl; // prints: 6
int **ppInt = &pInt; // "ppInt" points to "pInt"
std::cout<<**ppInt<<std::endl; // prints: 6
**ppInt = 8; // modify i, i = 8
std::cout<<i<<std::endl; // prints: 8
*ppInt = &j; // now pInt points to j
*pInt = 10; // modify j, j = 10
std::cout<<j<<std::endl; // prints: 10
}
As we see, "pInt" is a pointer to integer which points to "i" at the beginning. With it, you can modify "i". "ppInt" is a pointer to pointer which points to "pInt". With it, you can modify "pInt" which happens to be an address. As a result, "*ppInt = &j" makes "pInt" points to "j" now. So we have all the results above.
There was an article i found long ago (i cant find it ATM) which states reasons why the new keyword in C++ is bad. I cant remember all of the reasons but the two i remember most is you must match new with delete, new[] with delete[] and you cannot use #define with new as you could with malloc.
I am designing a language so i like to ask how would you change the C++ language so new is more friendly. Feel free to state problems with new and articles. I wish i can find the article link but i remember it was long and was written by a professor at (IIRC) a known school.
I cannot see any reason to replace the new keyword with something else (and seems to be that C++ committee agree with me). It is clear and makes what it should. You could override operator new in your class, no need to use defines.
To eliminate new[]/delete[] problem you could use std::vector.
If you want to use smart pointer you could use it, but I want to control when smart pointer will be used. That's why I like how it works in C++ — high level behavior with ability to control low level details.
Problem match new, delete, new[], delete[]
Not really a big deal.
You should be wrapping memory allocation inside a class so this does not really affect normal users. A single obejct can be wrapped with a smart pointer. While an array can be represented by std::Vector<>
cannot use #define with new as you could with malloc.
The reason to mess with malloc like this was to introduce your own memory management layer between your app and the standard memory management layer. This is because in C you were not allowed to write your own version of malloc. In C++ it is quite legal to write your own version of the new which makes this trick unnecessary.
I'd give it the semantics of new in C# (more or less):
Allocates memory for the object.
Initializes the memory by setting the member variables to their default values (generally 0 for values, null for references).
Initializes the object's dynamic binding mechanism (vtables in C++, type def tables for managed VMs).
Calls the constructor, at which point virtual calls work as expected.
For a language without garbage collection (eww for a new language at this point), return a smart_ptr or similar from the call.
Also, make all objects either value types or reference types, so you don't have to keep an explicit smart_ptr. Only allow new to heap-allocate for reference types, and make sure it contains information to properly call the destructor. For value types, new calls the constructor on memory from the stack.
Use Garbage Collection so that you never need to match new with anything.
By using the STL container classes and the various boost:smart_ptrs, there's little need to ever explicitly call new or delete in your C++ code.
The few places you might need to call new (e.g, to initialize a smart pointer) use the Named Constructor Idiom to return your class type pointer wrapped in, e.g., a boost:shared_ptr.
But C++ and the STL work very very hard to allow you to treat most objects as value objects, so you can construct objects rather than pointers and just use them.
Given all this, there's little need to replace the new operator -- and doing so would introduce a host of problems, whether by requiring a garbage collector, or by reducing the fine low-level control C++ offers programmers.
If your new language is garbage collected, you can avoid the new keyword. Thats what Python did (and Lisp did almost 5 decades ago!). Also see an answer provided by Peter Norvig for a similar question here. (Is no "news" good news?)
Sometimes you want to replace the constructor with a factory. This is a well known refactoring. Replace Constructor With Factory Method. So perhaps this is what the article meant?
Incidentally you will often see straight calls to new being replaced with a Factory Method.
DI frameworks such as Unity take this concept to another level. As you can see in the following C# code, there is no "new" applied to create the IMyClass interface:
IUnityContainer myContainer = new UnityContainer();
myContainer.RegisterType<IMyClass, SomeClass>();
IMyClass thing = myContainer.Resolve<IMyClass>();
The reason that C++ has a separate new operator ( or C malloc ) is primarily so that objects can be created whose lifetimes exceed the scope of the function which creates them.
If you had tail call elimination and continuations, you wouldn't care - the objects could all be created on the stack and have unlimited extent - an object can exist until you call the continuation that corresponds to the object going out of scope and being destructed. You might then need something to garbage collect or otherwise compress the stack so it doesn't become full of no-longer required objects ( Chicken Scheme and TinyOS 2 are two different examples for giving the effect of dynamic memory without dynamic memory at either runtime or compile time; Chicken Scheme doesn't allow for RAII and TinyOS doesn't allow for true dynamic allocation ), though for a large amount of code such a scheme wouldn't be vastly different to RAII with the facility to chose to change the order the objects are destructed.