How can i count the collisions in this hash function? - c++

This is a prefix hashing function. i want to count the number of collisions in this method but i am not sure how to do it. It seems like it might be simple but i just cant think of a great way to do it....
int HashTable_qp::preHash(string & key, int tableSize )
{
string pad = "AA";
//some words in the input are less than 3 letters
//I choose to pad the string with A because all padded characters
//have same ascii val, which is low, and will hopefully alter the results less
if (key.length() < 3)
{
key.append(pad);
}
return ( key[0] + 27 * key[1] + 729 * key[2] ) % tableSize;
}

If it's an array as the underlying data structure do:
int hash = preHash(&key, array.length);
if(array[hash] != null)
this.count++;
If it's an array of linked lists do:
if(array[hash] != null && *(array[hash]) != null)
this.count++
If you only have access to the stl library I believe just testing that element is null
before adding it would be enough after calling the hash function.

create a histogram:
unsigned histogram[tablesize] = {0};
generate some (all) possible strings and compute their hashval, and update the histogram accordingly:
for(iter=0; iter < somevalue; iter++) {
hashval = hashfunc( string.iterate(iter) ); // I don't know c++
histogram[hashval] +=1;
}
Now you have to analyze the hashtable for lumps / clusters. Rule of thumb is that for (tablesize==iter), you expect about 30 % cells with count =1, and about 30 % empty; the rest has two or more.
If you sum all the (count*(count+1))/2, and divide by the tablesize, you should expect around 1.5. A bad hashfunction gives higher values, a perfect hash would only have cells with count=1 (and thus: ratio=1) With linear probing you should of course never use tablesize=niter, but make tablesize bigger, say twice as big. You can use the same metric (number of probes / number of entries), to analyse its performance, though.
UPDATE: a great introduction on hashfunctions and their performance can be found at http://www.strchr.com/hash_functions .

You can create an array of integers, each representing one hash. When you're done making the hashes loop back through the array in a nested loop. If you had the following array,
[0] -> 13
[1] -> 5
[2] -> 12
[3] -> 7
[4] -> 5
For each item i in 0..n, check items i+1..n for matches. In English that would be: check if each element equals any of the elements after it.

Related

Minimum number of elements required to make two bags of at least k weight?

Suppose you are given a number k and an array of objects having some weight. Now your task is to find the minimum number of objects that you can put in two bags such that each bag weigh at least k.
You can only take the objects as whole no breaking is allowed. Also, if an object is put in one bag it cannot be put into the other bag.
This problem seems simple to me. I have done similar problems when you need to fill just one bag. The idea I use is that you visit each object ask yourself what if I put it in the bag and what if I don't? You do this recursively until your desired weight is reached or you have no more objects. Take minimum when calling your recursive function.
However, I am not able to understand how to keep track of all the objects used up in bag 1 so that I don't include in bag 2.
Few Test cases
Desired weight (k) = 4
Number of objects (N) = 1
[10]
Output: -1 (Not possible)
Desired weight (k) = 2
Number of objects (N) = 3
[2,2,2]
Output: 2
I will focus on what you point out as your actual core problem, how to keep track of objects you used in one bag, the other bag or not at all.
Make a list (array, vector, ... whatever container you prefer) and note for each of the objects where you used it - or not.
index
value
meaning
0
0
not used
1
0
not used
2
0
not used
3
1
used in one bag
4
2
used in other bag
From your question it is not clear to me whether all objects have the same weight or different weights given in the input. If the weights are different, then you most likely already have a container for keeping track of the weight of each object. Modifying that container or using a second, very similar one will help you to also store the "used where" information.
I am intentionally not going into detail, because of
How do I ask and answer homework questions?
I don't know if this answers your question or not, but still...
You can do one thing: Initially make two empty arrays, say Bag_1 and Bag_2. As you recurse through all elements one by one, pop that element out of the array and append it to Bag_1 or Bag_2 whichever gives you the optimal solution. If the process is to be done multiple times, then creating a copy of the original array might help, if the length of the array is reasonable.
Here is the pseudo code for the program without dynamic programing.
sort(a, a+n); // Sort the array of objects having weight
int sum = a[n-1], count = -1; //Initialise sum and count
unordered_set<int>log; // Create an unordered set to store logs (Unordered set will not add repetitive values in the log thus decreasing time complexity)
log.insert(a[n-1]); // insert last element int log initially
for(int i = n-2; i >=0; i--) {
sum += a[i]; //increment the sum
unordered_set<int>temp; //Create a temporary log that will be mapped to main log at the end.
temp.insert(a[i]); //insert the sum to temp log
for (auto it = log.begin(); it != log.end(); ++it) { //loop over all logs seen till now
temp.insert(*it + a[i]); // Add current sum to each of them and insert it to temp log thus creating all possible combinations.
if((a[i] + *it >= k) && (sum - a[i] - *it >= k)) { //Condition to check if bags have been filled with at least k weight.
count = n-i; // update the current count. This will be the ans.
break;
}
if(a[i] >= k && sum - a[i] >= k) {
count = n-i;
break;
}
}
if(count != -1) { //Condition to check if it's not possible to make such a combination.
break;
}
log.insert(temp.begin(), temp.end()); // add all temp to main log.
}
cout << count << endl; //print ans.

Iterating through all possible combinations

My objective is to iterate through all combinations of a given amount of 1's and 0's. Say, if I am given the number 5, what would be a sufficiently fast way to list
1110100100,
1011000101, etc.
(Each different combination of 5 1's and 5 0's)
I am attempting to avoid iterating through all possible permutations and checking if 5 1's exist as 2^n is much greater than (n choose n/2). Thanks.
UPDATE
The answer can be calculated efficiently (recurses 10 deep) with:
// call combo() to have calculate(b) called with every valid bitset combo exactly once
combo(int index = 0, int numones = 0) {
static bitset<10> b;
if( index == 10 ) {
calculate(b); // can't have too many zeroes or ones, it so must be 5 zero and 5 one
} else {
if( 10 - numones < 5 ) { // ignore paths with too many zeroes
b[index] = 0;
combo(b, index+1, numones);
}
if( numones < 5 ) { // ignore paths with too many ones
b[index] = 1;
combo(b, index+1, numones++);
}
}
}
(Above code is not tested)
You can transform the problem. If you fix the 1s (or vice versa) then it's simply a matter of where you put the 0s. For 5 1s, there are 5+1 bins, and you want to put 5 elements (0s) in the bins.
This can be solved with a recursion per bin and a loop for each bin (put 0...reaming elements in the bin - except for the last bin, where you have to put all the remaning elements).
Another way to think about it is as a variant of the the string permutation question - just build a vector of length 2n (e.g. 111000) and then use the same algorithm for string permutation to build the result.
Note that the naive algorithm will print duplicate results. However, the algorithm can be easily adapted to ignore such duplicates by keeping a bool array in the recursive function that keeps the values set for the specific bit.

Simulate random iteration of array

I have an array of given size. I want to traverse it in pseudorandom order, keeping array intact and visiting each element once. It will be best if current state can be stored in a few integers.
I know you can't have full randomness without storing full array, but I don't need the order to be really random. I need it to be perceived as random by user. The solution should use sub-linear space.
One possible suggestion - using large prime number - is given here. The problem with this solution is that there is an obvious fixed step (taken module array size). I would prefer a solution which is not so obviously non-random. Is there a better solution?
How about this algorithm?
To pseudo-pseudo randomly traverse an array of size n.
Create a small array of size k
Use the large prime number method to fill the small array, i = 0
Randomly remove a position using a RNG from the small array, i += 1
if i < n - k then add a new position using the large prime number method
if i < n goto 3.
the higher k is the more randomness you get. This approach will allow you to delay generating numbers from the prime number method.
A similar approach can be done to generate a number earlier than expected in the sequence by creating another array, "skip-list". Randomly pick items later in the sequence, use them to traverse the next position, and then add them to the skip-list. When they naturally arrive they are searched for in the skip-list and suppressed and then removed from the skip-list at which point you can randomly add another item to the skip-list.
The idea of a random generator that simulates a shuffle is good if you can get one whose maximum period you can control.
A Linear Congruential Generator calculates a random number with the formula:
x[i + 1] = (a * x[i] + c) % m;
The maximum period is m and it is achieved when the following properties hold:
The parameters c and m are relatively prime.
For every prime number r dividing m, a - 1 is a multiple of r.
If m is a multiple of 4 then also a - 1 is multiple of 4.
My first darft involved making m the next multiple of 4 after the array length and then finding suitable a and c values. This was (a) a lot of work and (b) yielded very obvious results sometimes.
I've rethought this approach. We can make m the smallest power of two that the array length will fit in. The only prime factor of m is then 2, which will make every odd number relatively prime to it. With the exception of 1 and 2, m will be divisible by 4, which means that we must make a - 1 a multiple of 4.
Having a greater m than the array length means that we must discard all values that are illegal array indices. This will happen at most every other turn and should be negligible.
The following code yields pseudo random numbers with a period of exaclty m. I've avoided trivial values for a and c and on my (not too numerous) spot cheks, the results looked okay. At least there was no obvious cycling pattern.
So:
class RandomIndexer
{
public:
RandomIndexer(size_t length) : len(length)
{
m = 8;
while (m < length) m <<= 1;
c = m / 6 + uniform(5 * m / 6);
c |= 1;
a = m / 12 * uniform(m / 6);
a = 4*a + 1;
x = uniform(m);
}
size_t next()
{
do { x = (a*x + c) % m; } while (x >= len);
return x;
}
private:
static size_t uniform(size_t m)
{
double p = std::rand() / (1.0 + RAND_MAX);
return static_cast<int>(m * p);
}
size_t len;
size_t x;
size_t a;
size_t c;
size_t m;
};
You can then use the generator like this:
std::vector<int> list;
for (size_t i = 0; i < 3; i++) list.push_back(i);
RandomIndexer ix(list.size());
for (size_t i = 0; i < list.size(); i++) {
std::cout << list[ix.next()]<< std::endl;
}
I am aware that this still isn't a great random number generator, but it is reasonably fast, doesn't require a copy of the array and seems to work okay.
If the approach of picking a and c randomly yields bad results, it might be a good idea to restrict the generator to some powers of two and to hard-code literature values that have proven to be good.
As pointed out by others, you can create a sort of "flight plan" upfront by shuffling an array of array indices and then follow it. This violates the "it will be best if current state can be stored in a few integers" constraint but does it really matter? Are there tight performance constraints? After all, I believe that if you don't accept repetitions, than you need to store the items you already visited somewhere or somehow.
Alternatively, you can opt for an intrusive solution and store a bool inside each element of the array, telling you whether the element was already selected or not. This can be done in an almost clean way by employing inheritance (multiple as needed).
Many problems come with this solution, e.g. thread safety, and of course it violates the "keep the array intact" constraint.
Quadratic residues which you have mentioned ("using a large prime") are well-known, will work, and guarantee iterating each and every element exactly once (if that is required, but it seems that's not strictly the case?). Unluckily they are not "very random looking", and there are a few other requirements to the modulo in addition to being prime for it to work.
There is a page on Jeff Preshing's site which describes the technique in detail and suggests to feed the output of the residue generator into the generator again with a fixed offset.
However, since you said that you merely need "perceived as random by user", it seems that you might be able to do with feeding a hash function (say, cityhash or siphash) with consecutive integers. The output will be a "random" integer, and at least so far there will be a strict 1:1 mapping (since there are a lot more possible hash values than there are inputs).
Now the problem is that your array is most likely not that large, so you need to somehow reduce the range of these generated indices without generating duplicates (which is tough).
The obvious solution (taking the modulo) will not work, as it pretty much guarantees that you get a lot of duplicates.
Using a bitmask to limit the range to the next greater power of two should work without introducing bias, and discarding indices that are out of bounds (generating a new index) should work as well. Note that this needs non-deterministic time -- but the combination of these two should work reasonably well (a couple of tries at most) on the average.
Otherwise, the only solution that "really works" is shuffling an array of indices as pointed out by Kamil Kilolajczyk (though you don't want that).
Here is a java solution, which can be easily converted to C++ and similar to M Oehm's solution above, albeit with a different way of choosing LCG parameters.
import java.util.Enumeration;
import java.util.Random;
public class RandomPermuteIterator implements Enumeration<Long> {
int c = 1013904223, a = 1664525;
long seed, N, m, next;
boolean hasNext = true;
public RandomPermuteIterator(long N) throws Exception {
if (N <= 0 || N > Math.pow(2, 62)) throw new Exception("Unsupported size: " + N);
this.N = N;
m = (long) Math.pow(2, Math.ceil(Math.log(N) / Math.log(2)));
next = seed = new Random().nextInt((int) Math.min(N, Integer.MAX_VALUE));
}
public static void main(String[] args) throws Exception {
RandomPermuteIterator r = new RandomPermuteIterator(100);
while (r.hasMoreElements()) System.out.print(r.nextElement() + " ");
//output:50 52 3 6 45 40 26 49 92 11 80 2 4 19 86 61 65 44 27 62 5 32 82 9 84 35 38 77 72 7 ...
}
#Override
public boolean hasMoreElements() {
return hasNext;
}
#Override
public Long nextElement() {
next = (a * next + c) % m;
while (next >= N) next = (a * next + c) % m;
if (next == seed) hasNext = false;
return next;
}
}
maybe you could use this one: http://www.cplusplus.com/reference/algorithm/random_shuffle/ ?

Weighted probability with long doubles

I am working with an array of roughly 2000 elements in C++.
Each element represents the probability of that element being selected randomly.
I then have convert this array into a cumulative array, with the intention of using this to work out which element to choose when a dice is rolled.
Example array:
{1,2,3,4,5}
Example cumulative array:
{1,3,6,10,15}
I want to be able to select 3 in the cumulative array when numbers 3, 4 or 5 are rolled.
The added complexity is that my array is made up of long doubles. Here's an example of a few consecutive elements:
0.96930161525189592646367317541056252139242133125662803649902343750
0.96941377254127855667142910078837303444743156433105468750000000000
0.96944321382974149711383993199831365927821025252342224121093750000
0.96946143938926617454089618153290075497352518141269683837890625000
0.96950069444055009509463721739663810694764833897352218627929687500
0.96951751803395748961766908990966840065084397792816162109375000000
This could be a terrible way of doing weighted probabilities with this data set, so I'm open to any suggestions of better ways of working this out.
You can use partial_sum:
unsigned int SIZE = 5;
int array[SIZE] = {1,2,3,4,5};
int partials[SIZE] = {0};
partial_sum(array, array+SIZE, partials);
// partials is now {1,3,6,10,15}
The value you want from the array is available from the partial sums:
12 == array[2] + array[3] + array[4];
12 == partials[4] - partials[1];
The total is obviously the last value in the partial sums:
15 == partial[4];
consider storing the information as an integer numerator and denominator so that there is no loss of precision until the final step.
You can actually do this using stream selection without having to compute an array of partial sums. Here's code I have for this in Java:
public static int selectRandomWeighted(double[] wts, Random rnd) {
int selected = 0;
double total = wts[0];
for( int i = 1; i < wts.length; i++ ) {
total += wts[i];
if( rnd.nextDouble() <= (wts[i] / total)) {
selected = i;
}
}
return selected;
}
The above could potentially be further improved using Kahan summation if you want to preserve as many digits of accuracy in the sum as possible.
However, if you want to draw from this array repeatedly, then pre-computing an array of partial sums and using binary search to find the right index will be faster.
Ok I think I've solved this one.
I just did a binary split search, but instead of just having
if (arr[middle] == value)
I added in an OR
if (arr[middle] == value || (arr[middle] < value && arr[middle+1] > value))
This seems to handle it in the way I was hoping for.

Fastest way to obtain the largest X numbers from a very large unsorted list?

I'm trying to obtain the top say, 100 scores from a list of scores being generated by my program. Unfortuatly the list is huge (on the order of millions to billions) so sorting is a time intensive portion of the program.
Whats the best way of doing the sorting to get the top 100 scores?
The only two methods i can think of so far is either first generating all the scores into a massive array and then sorting it and taking the top 100. Or second, generating X number of scores, sorting it and truncating the top 100 scores then continue generating more scores, adding them to the truncated list and then sorting it again.
Either way I do it, it still takes more time than i would like, any ideas on how to do it in an even more efficient way? (I've never taken programming courses before, maybe those of you with comp sci degrees know about efficient algorithms to do this, at least that's what I'm hoping).
Lastly, whats the sorting algorithm used by the standard sort() function in c++?
Thanks,
-Faken
Edit: Just for anyone who is curious...
I did a few time trials on the before and after and here are the results:
Old program (preforms sorting after each outer loop iteration):
top 100 scores: 147 seconds
top 10 scores: 147 seconds
top 1 scores: 146 seconds
Sorting disabled: 55 seconds
new program (implementing tracking of only top scores and using default sorting function):
top 100 scores: 350 seconds <-- hmm...worse than before
top 10 scores: 103 seconds
top 1 scores: 69 seconds
Sorting disabled: 51 seconds
new rewrite (optimizations in data stored, hand written sorting algorithm):
top 100 scores: 71 seconds <-- Very nice!
top 10 scores: 52 seconds
top 1 scores: 51 seconds
Sorting disabled: 50 seconds
Done on a core 2, 1.6 GHz...I can't wait till my core i7 860 arrives...
There's a lot of other even more aggressive optimizations for me to work out (mainly in the area of reducing the number of iterations i run), but as it stands right now, the speed is more than good enough, i might not even bother to work out those algorithm optimizations.
Thanks to eveyrone for their input!
take the first 100 scores, and sort them in an array.
take the next score, and insertion-sort it into the array (starting at the "small" end)
drop the 101st value
continue with the next value, at 2, until done
Over time, the list will resemble the 100 largest value more and more, so more often, you find that the insertion sort immediately aborts, finding that the new value is smaller than the smallest value of the candidates for the top 100.
You can do this in O(n) time, without any sorting, using a heap:
#!/usr/bin/python
import heapq
def top_n(l, n):
top_n = []
smallest = None
for elem in l:
if len(top_n) < n:
top_n.append(elem)
if len(top_n) == n:
heapq.heapify(top_n)
smallest = heapq.nsmallest(1, top_n)[0]
else:
if elem > smallest:
heapq.heapreplace(top_n, elem)
smallest = heapq.nsmallest(1, top_n)[0]
return sorted(top_n)
def random_ints(n):
import random
for i in range(0, n):
yield random.randint(0, 10000)
print top_n(random_ints(1000000), 100)
Times on my machine (Core2 Q6600, Linux, Python 2.6, measured with bash time builtin):
100000 elements: .29 seconds
1000000 elements: 2.8 seconds
10000000 elements: 25.2 seconds
Edit/addition: In C++, you can use std::priority_queue in much the same way as Python's heapq module is used here. You'll want to use the std::greater ordering instead of the default std::less, so that the top() member function returns the smallest element instead of the largest one. C++'s priority queue doesn't have the equivalent of heapreplace, which replaces the top element with a new one, so instead you'll want to pop the top (smallest) element and then push the newly seen value. Other than that the algorithm translates quite cleanly from Python to C++.
Here's the 'natural' C++ way to do this:
std::vector<Score> v;
// fill in v
std::partial_sort(v.begin(), v.begin() + 100, v.end(), std::greater<Score>());
std::sort(v.begin(), v.begin() + 100);
This is linear in the number of scores.
The algorithm used by std::sort isn't specified by the standard, but libstdc++ (used by g++) uses an "adaptive introsort", which is essentially a median-of-3 quicksort down to a certain level, followed by an insertion sort.
Declare an array where you can put the 100 best scores. Loop through the huge list and check for each item if it qualifies to be inserted in the top 100. Use a simple insert sort to add an item to the top list.
Something like this (C# code, but you get the idea):
Score[] toplist = new Score[100];
int size = 0;
foreach (Score score in hugeList) {
int pos = size;
while (pos > 0 && toplist[pos - 1] < score) {
pos--;
if (pos < 99) toplist[pos + 1] = toplist[pos];
}
if (size < 100) size++;
if (pos < size) toplist[pos] = score;
}
I tested it on my computer (Code 2 Duo 2.54 MHz Win 7 x64) and I can process 100.000.000 items in 369 ms.
Since speed is of the essence here, and 40.000 possible highscore values is totally maintainable by any of today's computers, I'd resort to bucket sort for simplicity. My guess is that it would outperform any of the algorithms proposed thus far. The downside is that you'd have to determine some upper limit for the highscore values.
So, let's assume your max highscore value is 40.000:
Make an array of 40.000 entries. Loop through your highscore values. Each time you encounter highscore x, increase your array[x] by one. After this, all you have to do is count the top entries in your array until you have reached 100 counted highscores.
You can do it in Haskell like this:
largest100 xs = take 100 $ sortBy (flip compare) xs
This looks like it sorts all the numbers into descending order (the "flip compare" bit reverses the arguments to the standard comparison function) and then returns the first 100 entries from the list. But Haskell is lazily evaluated, so the sortBy function does just enough sorting to find the first 100 numbers in the list, and then stops.
Purists will note that you could also write the function as
largest100 = take 100 . sortBy (flip compare)
This means just the same thing, but illustrates the Haskell style of composing a new function out of the building blocks of other functions rather than handing variables around the place.
You want the absolute largest X numbers, so I'm guessing you don't want some sort of heuristic. How unsorted is the list? If it's pretty random, your best bet really is just to do a quick sort on the whole list and grab the top X results.
If you can filter scores during the list generation, that's way way better. Only ever store X values, and every time you get a new value, compare it to those X values. If it's less than all of them, throw it out. If it's bigger than one of them, throw out the new smallest value.
If X is small enough you can even keep your list of X values sorted so that you are comparing your new number to a sorted list of values, you can make an O(1) check to see if the new value is smaller than all of the rest and thus throw it out. Otherwise, a quick binary search can find where the new value goes in the list and then you can throw away the first value of the array (assuming the first element is the smallest element).
Place the data into a balanced Tree structure (probably Red-Black tree) that does the sorting in place. Insertions should be O(lg n). Grabbing the highest x scores should be O(lg n) as well.
You can prune the tree every once in awhile if you find you need optimizations at some point.
If you only need to report the value of top 100 scores (and not any associated data), and if you know that the scores will all be in a finite range such as [0,100], then an easy way to do it is with "counting sort"...
Basically, create an array representing all possible values (e.g. an array of size 101 if scores can range from 0 to 100 inclusive), and initialize all the elements of the array with a value of 0. Then, iterate through the list of scores, incrementing the corresponding entry in the list of achieved scores. That is, compile the number of times each score in the range has been achieved. Then, working from the end of the array to the beginning of the array, you can pick out the top X score. Here is some pseudo-code:
let type Score be an integer ranging from 0 to 100, inclusive.
let scores be an array of Score objects
let scorerange be an array of integers of size 101.
for i in [0,100]
set scorerange[i] = 0
for each score in scores
set scorerange[score] = scorerange[score] + 1
let top be the number of top scores to report
let idx be an integer initialized to the end of scorerange (i.e. 100)
while (top > 0) and (idx>=0):
if scorerange[idx] > 0:
report "There are " scorerange[idx] " scores with value " idx
top = top - scorerange[idx]
idx = idx - 1;
I answered this question in response to an interview question in 2008. I implemented a templatized priority queue in C#.
using System;
using System.Collections.Generic;
using System.Text;
namespace CompanyTest
{
// Based on pre-generics C# implementation at
// http://www.boyet.com/Articles/WritingapriorityqueueinC.html
// and wikipedia article
// http://en.wikipedia.org/wiki/Binary_heap
class PriorityQueue<T>
{
struct Pair
{
T val;
int priority;
public Pair(T v, int p)
{
this.val = v;
this.priority = p;
}
public T Val { get { return this.val; } }
public int Priority { get { return this.priority; } }
}
#region Private members
private System.Collections.Generic.List<Pair> array = new System.Collections.Generic.List<Pair>();
#endregion
#region Constructor
public PriorityQueue()
{
}
#endregion
#region Public methods
public void Enqueue(T val, int priority)
{
Pair p = new Pair(val, priority);
array.Add(p);
bubbleUp(array.Count - 1);
}
public T Dequeue()
{
if (array.Count <= 0)
throw new System.InvalidOperationException("Queue is empty");
else
{
Pair result = array[0];
array[0] = array[array.Count - 1];
array.RemoveAt(array.Count - 1);
if (array.Count > 0)
trickleDown(0);
return result.Val;
}
}
#endregion
#region Private methods
private static int ParentOf(int index)
{
return (index - 1) / 2;
}
private static int LeftChildOf(int index)
{
return (index * 2) + 1;
}
private static bool ParentIsLowerPriority(Pair parent, Pair item)
{
return (parent.Priority < item.Priority);
}
// Move high priority items from bottom up the heap
private void bubbleUp(int index)
{
Pair item = array[index];
int parent = ParentOf(index);
while ((index > 0) && ParentIsLowerPriority(array[parent], item))
{
// Parent is lower priority -- move it down
array[index] = array[parent];
index = parent;
parent = ParentOf(index);
}
// Write the item once in its correct place
array[index] = item;
}
// Push low priority items from the top of the down
private void trickleDown(int index)
{
Pair item = array[index];
int child = LeftChildOf(index);
while (child < array.Count)
{
bool rightChildExists = ((child + 1) < array.Count);
if (rightChildExists)
{
bool rightChildIsHigherPriority = (array[child].Priority < array[child + 1].Priority);
if (rightChildIsHigherPriority)
child++;
}
// array[child] points at higher priority sibling -- move it up
array[index] = array[child];
index = child;
child = LeftChildOf(index);
}
// Put the former root in its correct place
array[index] = item;
bubbleUp(index);
}
#endregion
}
}
Median of medians algorithm.