C++ Implementation of Graph Algorithm - c++

I am trying to implement the Breadth-first search algorithm, in order to find the shortest distance between two vertices. I have developed a Queue object to hold and retrieve objects, and I have a two-dimensional array to hold the length of the edges between two given vertices. I am attempting to fill a two-dimensional array to hold the shortest distance between two vertices.
The problem I am having, however, is that no matter what two vertices I request the shortest distance of, 0 is returned. Here is my implementation of the algorithm; if you can set me on the right track and help me figure out my problem, that would be fantastic.
for (int i = 0; i < number_of_vertex; i++)
//For every vertex, so that we may fill the array
{
int[] dist = new int[number_of_vertex];
//Initialize a new array to hold the values for the distances
for (int j = 0; x < number_of_vertex; j++)
{
dist[j] = -1;
//All distance values will be set to -1 by default; this will be changed later on
}
dist[i] = 0; //The source node's distance is set to 0 (Pseudocode line 4)
myQueue.add(i); //Add the source node's number to the queue (Pseudocode line 3)
while (!myQueue.empty()) //Pseudocode line 5
{
int u = myQueue.eject(); //Pseudocode line 6
for (int y = 0; y < number_of_vertex; y++) //Pseudocode line 7
{
if (edge_distance(u,y) > 0)
{
if (dist[y] == -1)
{
myQueue.add(y);
dist[y] = dist[u] + 1;
shortest_distance[i][u] = dist[y];
}
}
}
}
}

Ok... i guess the problem is about the used algorithm and about used terms.
"In order to find the shortest distance between two vertices" you mean the shortest path between two vertices in a connected graph?
The algorithm you are trying to write is the Dijkstra's algorithm (this is the name).
http://www.cs.berkeley.edu/~vazirani/algorithms/chap4.pdf

Related

Shortest route modification

Is there a way to modify this to show the route of the shortest path? For example, if i had a list of numbers like (3,1),(3,0),(4,3),(2,1) the output for getting from 4 to 1 would be 4->3,3->1
// Prints shortest paths from src to all other vertices
void Graph::shortestPath(int src)
{
// Create a priority queue to store vertices that
// are being preprocessed. This is weird syntax in C++.
// Refer below link for details of this syntax
// http://geeksquiz.com/implement-min-heap-using-stl/
priority_queue< iPair, vector <iPair> , greater<iPair> > pq;
// Create a vector for distances and initialize all
// distances as infinite (INF)
vector<int> dist(V, INF);
// Insert source itself in priority queue and initialize
// its distance as 0.
pq.push(make_pair(0, src));
dist[src] = 0;
/* Looping till priority queue becomes empty (or all
distances are not finalized) */
while (!pq.empty())
{
// The first vertex in pair is the minimum distance
// vertex, extract it from priority queue.
// vertex label is stored in second of pair (it
// has to be done this way to keep the vertices
// sorted distance (distance must be first item
// in pair)
int u = pq.top().second;
pq.pop();
// 'i' is used to get all adjacent vertices of a vertex
list< pair<int, int> >::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
// Get vertex label and weight of current adjacent
// of u.
int v = (*i).first;
int weight = (*i).second;
// If there is shorted path to v through u.
if (dist[v] > dist[u] + weight)
{
// Updating distance of v
dist[v] = dist[u] + weight;
pq.push(make_pair(dist[v], v));
}
}
}
// Print shortest distances stored in dist[]
printf("Vertex Distance from Source\n");
for (int i = 0; i < V; ++i)
printf("%d \t\t %d\n", i, dist[i]);
}
Putting in an array that stores the numbers of the path like 4,3,3,1 (using above example) seems like the best idea but i don't know where to insert the array in this code to do that.
Just as you save the distances for each vertex in the dist vector, save the predecessor vertex that last updated it in a vector called predecessor.
vector<int> dist(V, INF);
vector<int> predecessor(V, 0);
Then whenever you update the distance, update the predecessor:
dist[v] = dist[u] + weight;
predecessor[v] = u;
Finally, you can trace for any vertex the shortest path (Backward) to the source:
printf("Vertex Distance from Source shortest path from source\n");
for (int i = 0; i < V; ++i)
{
printf("%d \t\t %d\t\t", i, dist[i]);
int j = i;
do
{
printf("%d,", j);
j = predecessor[j];
} while(j != src);
printf("\n");
}
Sounds like a homework problem.
Your idea to store the numbers of the path would be great, if this were a DFS. Unfortunately, Djikstra's algorithm doesn't naturally keep track of the path like a DFS does; it simply takes the next closest node and updates the distance values. It's probably more similar to a BFS in that regard.
What you could do is as you update the distances to each node, somehow store which node you're coming from (maybe in your iPair struct if you're allowed to, maybe in a map/array if you have a way to ID your nodes). I'll call it a "from" reference for the sake of this post. Then, each time you find a shorter path to a node, you can also update that from reference.
How do you find the path to a given node then? Simple: just start at the end node, and follow the "from" references back to the source.

Tallest tower with stacked boxes in the given order

Given N boxes. How can i find the tallest tower made with them in the given order ? (Given order means that the first box must be at the base of the tower and so on). All boxes must be used to make a valid tower.
It is possible to rotate the box on any axis in a way that any of its 6 faces gets parallel to the ground, however the perimeter of such face must be completely restrained inside the perimeter of the superior face of the box below it. In the case of the first box it is possible to choose any face, because the ground is big enough.
To solve this problem i've tried the following:
- Firstly the code generates the rotations for each rectangle (just a permutation of the dimensions)
- secondly constructing a dynamic programming solution for each box and each possible rotation
- finally search for the highest tower made (in the dp table)
But my algorithm is taking wrong answer in unknown test cases. What is wrong with it ? Dynamic programming is the best approach to solve this problem ?
Here is my code:
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cstdlib>
#include <cstring>
struct rectangle{
int coords[3];
rectangle(){ coords[0] = coords[1] = coords[2] = 0; }
rectangle(int a, int b, int c){coords[0] = a; coords[1] = b; coords[2] = c; }
};
bool canStack(rectangle &current_rectangle, rectangle &last_rectangle){
for (int i = 0; i < 2; ++i)
if(current_rectangle.coords[i] > last_rectangle.coords[i])
return false;
return true;
}
//six is the number of rotations for each rectangle
int dp(std::vector< std::vector<rectangle> > &v){
int memoization[6][v.size()];
memset(memoization, -1, sizeof(memoization));
//all rotations of the first rectangle can be used
for (int i = 0; i < 6; ++i) {
memoization[i][0] = v[0][i].coords[2];
}
//for each rectangle
for (int i = 1; i < v.size(); ++i) {
//for each possible permutation of the current rectangle
for (int j = 0; j < 6; ++j) {
//for each permutation of the previous rectangle
for (int k = 0; k < 6; ++k) {
rectangle &prev = v[i - 1][k];
rectangle &curr = v[i][j];
//is possible to put the current rectangle with the previous rectangle ?
if( canStack(curr, prev) ) {
memoization[j][i] = std::max(memoization[j][i], curr.coords[2] + memoization[k][i-1]);
}
}
}
}
//what is the best solution ?
int ret = -1;
for (int i = 0; i < 6; ++i) {
ret = std::max(memoization[i][v.size()-1], ret);
}
return ret;
}
int main ( void ) {
int n;
scanf("%d", &n);
std::vector< std::vector<rectangle> > v(n);
for (int i = 0; i < n; ++i) {
rectangle r;
scanf("%d %d %d", &r.coords[0], &r.coords[1], &r.coords[2]);
//generate all rotations with the given rectangle (all combinations of the coordinates)
for (int j = 0; j < 3; ++j)
for (int k = 0; k < 3; ++k)
if(j != k) //micro optimization disease
for (int l = 0; l < 3; ++l)
if(l != j && l != k)
v[i].push_back( rectangle(r.coords[j], r.coords[k], r.coords[l]) );
}
printf("%d\n", dp(v));
}
Input Description
A test case starts with an integer N, representing the number of boxes (1 ≤ N ≤ 10^5).
Following there will be N rows, each containing three integers, A, B and C, representing the dimensions of the boxes (1 ≤ A, B, C ≤ 10^4).
Output Description
Print one row containing one integer, representing the maximum height of the stack if it’s possible to pile all the N boxes, or -1 otherwise.
Sample Input
2
5 2 2
1 3 4
Sample Output
6
Sample image for the given input and output.
Usually you're given the test case that made you fail. Otherwise, finding the problem is a lot harder.
You can always approach it from a different angle! I'm going to leave out the boring parts that are easily replicated.
struct Box { unsigned int dim[3]; };
Box will store the dimensions of each... box. When it comes time to read the dimensions, it needs to be sorted so that dim[0] >= dim[1] >= dim[2].
The idea is to loop and read the next box each iteration. It then compares the second largest dimension of the new box with the second largest dimension of the last box, and same with the third largest. If in either case the newer box is larger, it adjusts the older box to compare the first largest and third largest dimension. If that fails too, then the first and second largest. This way, it always prefers using a larger dimension as the vertical one.
If it had to rotate a box, it goes to the next box down and checks that the rotation doesn't need to be adjusted there too. It continues until there are no more boxes or it didn't need to rotate the next box. If at any time, all three rotations for a box failed to make it large enough, it stops because there is no solution.
Once all the boxes are in place, it just sums up each one's vertical dimension.
int main()
{
unsigned int size; //num boxes
std::cin >> size;
std::vector<Box> boxes(size); //all boxes
std::vector<unsigned char> pos(size, 0); //index of vertical dimension
//gets the index of dimension that isn't vertical
//largest indicates if it should pick the larger or smaller one
auto get = [](unsigned char x, bool largest) { if (largest) return x == 0 ? 1 : 0; return x == 2 ? 1 : 2; };
//check will compare the dimensions of two boxes and return true if the smaller one is under the larger one
auto check = [&boxes, &pos, &get](unsigned int x, bool largest) { return boxes[x - 1].dim[get(pos[x - 1], largest)] < boxes[x].dim[get(pos[x], largest)]; };
unsigned int x = 0, y; //indexing variables
unsigned char change; //detects box rotation change
bool fail = false; //if it cannot be solved
for (x = 0; x < size && !fail; ++x)
{
//read in the next three dimensions
//make sure dim[0] >= dim[1] >= dim[2]
//simple enough to write
//mine was too ugly and I didn't want to be embarrassed
y = x;
while (y && !fail) //when y == 0, no more boxes to check
{
change = pos[y - 1];
while (check(y, true) || check(y, false)) //while invalid rotation
{
if (++pos[y - 1] == 3) //rotate, when pos == 3, no solution
{
fail = true;
break;
}
}
if (change != pos[y - 1]) //if rotated box
--y;
else
break;
}
}
if (fail)
{
std::cout << -1;
}
else
{
unsigned long long max = 0;
for (x = 0; x < size; ++x)
max += boxes[x].dim[pos[x]];
std::cout << max;
}
return 0;
}
It works for the test cases I've written, but given that I don't know what caused yours to fail, I can't tell you what mine does differently (assuming it also doesn't fail your test conditions).
If you are allowed, this problem might benefit from a tree data structure.
First, define the three possible cases of block:
1) Cube - there is only one possible option for orientation, since every orientation results in the same height (applied toward total height) and the same footprint (applied to the restriction that the footprint of each block is completely contained by the block below it).
2) Square Rectangle - there are three possible orientations for this rectangle with two equal dimensions (for examples, a 4x4x1 or a 4x4x7 would both fit this).
3) All Different Dimensions - there are six possible orientations for this shape, where each side is different from the rest.
For the first box, choose how many orientations its shape allows, and create corresponding nodes at the first level (a root node with zero height will allow using simple binary trees, rather than requiring a more complicated type of tree that allows multiple elements within each node). Then, for each orientation, choose how many orientations the next box allows but only create nodes for those that are valid for the given orientation of the current box. If no orientations are possible given the orientation of the current box, remove that entire unique branch of orientations (the first parent node with multiple valid orientations will have one orientation removed by this pruning, but that parent node and all of its ancestors will be preserved otherwise).
By doing this, you can check for sets of boxes that have no solution by checking whether there are any elements below the root node, since an empty tree indicates that all possible orientations have been pruned away by invalid combinations.
If the tree is not empty, then just walk the tree to find the highest sum of heights within each branch of the tree, recursively up the tree to the root - the sum value is your maximum height, such as the following pseudocode:
std::size_t maximum_height() const{
if(leftnode == nullptr || rightnode == nullptr)
return this_node_box_height;
else{
auto leftheight = leftnode->maximum_height() + this_node_box_height;
auto rightheight = rightnode->maximum_height() + this_node_box_height;
if(leftheight >= rightheight)
return leftheight;
else
return rightheight;
}
}
The benefits of using a tree data structure are
1) You will greatly reduce the number of possible combinations you have to store and check, because in a tree, the invalid orientations will be eliminated at the earliest possible point - for example, using your 2x2x5 first box, with three possible orientations (as a Square Rectangle), only two orientations are possible because there is no possible way to orient it on its 2x2 end and still fit the 4x3x1 block on it. If on average only two orientations are possible for each block, you will need a much smaller number of nodes than if you compute every possible orientation and then filter them as a second step.
2) Detecting sets of blocks where there is no solution is much easier, because the data structure will only contain valid combinations.
3) Working with the finished tree will be much easier - for example, to find the sequence of orientations of the highest, rather than just the actual height, you could pass an empty std::vector to a modified highest() implementation, and let it append the actual orientation of each highest node as it walks the tree, in addition to returning the height.

Dijkstra's Algorithm - Initializing Node Distances

I have an assignment to use Dijkstra's shortest path algorithm for a simple network simulation. There's one part of the coding implementation that I don't understand and it's giving me grief.
I searched around on stack overflow and found many helpful questions about Dijkstra's, but none with my specific question. I apologize if I didn't research thoroughly enough.
I'm using this pseudocode from Mark Allen Weiss's Data Structures and Algorithm Analysis in C++:
void Graph::dijkstra( Vertex s)
{
for each Vertex v
{
v.dist = INFINITY;
v.known = false;
}
s.dist = 0;
while( there is an unknown distance vertex )
{
Vertex v = smallest unknown distance vertex;
v.known = true;
for each Vertex w adjacent to v
{
if (!w.known)
{
int cvw = cost of edge from v to w;
if(v.dist + cvw < w.dist)
{
//update w
decrease(w.dist to v.dist + cvw);
w.path = v;
}
}
}
}
and my implementation seems to work aside from the last if statement.
if(v.dist + cvw < w.dist)
My code will never go into what's underneath because the distance for every node is initialized to (essentially) infinity and the algorithm never seems to change the distance. Therefore the left side of the comparison is never smaller than the right side. How am I misunderstanding this?
Here is my (messy) code:
class Vertex
{
private:
int id;
unordered_map < Vertex*, int > edges;
int load_factor;
int distance;
bool known;
public:
//getters and setters
};
void dijkstra(Vertex starting_vertex)
{
for (int i = 0; i < vertices.size(); i++)
{
//my program initially stores vertices in the vertex in spot (id - 1).
if (vertices[i].get_id() == starting_vertex.get_id())
{
vertices[i].set_distance(0);
vertices[i].set_known(true);
}
else
{
vertices[i].set_distance(10000000);
vertices[i].set_known(false);
}
}
for (int i = 0; i < vertices.size(); i++)
{
//while there is an unknown distance vertex
if (vertices[i].is_known() == false)
{
vertices[i].set_known(true);
//for every vertex adjacent to this vertex
for (pair<Vertex*, int> edge : vertices[i].get_edges())
{
//if the vertex isn't known
if (edge.first->is_known() == false)
{
//calculate the weight using Adam's note on dijkstra's algorithm
int weight = edge.second * edge.first->get_load_factor();
if (vertices[i].get_distance() + weight < edge.first->get_distance())
//this is my problem line. The left side is never smaller than the right.
{
edge.first->set_distance(vertices[i].get_distance() + weight);
path.add_vertex(edge.first);
}
}
}
}
}
}
Thank you!
You are missing out this step:
Vertex v = smallest unknown distance vertex;
and instead looping through all vertices.
The distance to the starting vertex is initialized to 0 so if you implement this part of the algorithm and pick the v with the smallest distance that is not "known" you will start with the starting vertex and the if should work.
Replace:
for (int i = 0; i < vertices.size(); i++)
{
//while there is an unknown distance vertex
if (vertices[i].is_known() == false)
{
...
}
}
With something like:
while(countNumberOfUnknownVertices(vertices) > 0)
{
Vertex& v = findUnknownVertexWithSmallestDistance(vertices);
...
}
You missed two important parts of Dijkstra's Algorithm.
In implementing
while( there is an unknown distance vertex )
{
Vertex v = smallest unknown distance vertex;
you set v to the first unknown vertex you come to. It's supposed to be, of all the unknown vertices, the one whose distance is least.
The other misstep is that, instead of making one pass over the vertices and doing some work on each unknown one you find, you need to search again after doing the work.
For example, if on one iteration you expand outward from vertex 5, that may make vertex 3 the new unknown vertex with least distance. You can't just continue the search from 5.
The search for the least-distance unknown vertex is going to be slow unless you develop some data structure (a Heap, perhaps) to make that search fast. Go ahead and do a linear search for now. Dijkstra's Algorithm will still work, but it'll take time O(N^2). You should be able to get it down to at least O(N log N).

Create Minimum Spanning Tree from Adjacency Matrix using Prims Algorithm

I want to implement Prims algorithm to find the minimal spanning tree of a graph. I have written some code to start with what I think is the way to do it, but Im kind of stuck on how to complete this.
Right now, I have a matrix stored in matrix[i][j], which is stored as a vector>. I have also a list of IP address stored in the variable ip. (This becomes the labels of each column/row in the graph)
int n = 0;
for(int i = 0; i<ip.size();i++) // column
{
for(int j = ip.size()-1; j>n;j--)
{
if(matrix[i][j] > 0)
{
edgef test;
test.ip1 = ip[i];
test.ip2 = ip[j];
test.w = matrix[i][j];
add(test);
}
}
n++;
}
At the moment, this code will look into one column, and add all the weights associated with that column to a binary min heap. What I want to do is, dequeue an item from the heap and store it somewhere if it is the minimum edge weight.
void entry::add(edgef x)
{
int current, temp;
current = heap.size();
heap.push_back(x);
if(heap.size() > 1)
{
while(heap[current].w < heap[current/2].w) // if child is less than parent, min heap style
{
edgef temp = heap[current/2]; // swap
heap[current/2] = heap[current];
heap[current] = temp;
current = current/2;
}
}
}

Creating random undirected graph in C++

The issue is I need to create a random undirected graph to test the benchmark of Dijkstra's algorithm using an array and heap to store vertices. AFAIK a heap implementation shall be faster than an array when running on sparse and average graphs, however when it comes to dense graphs, the heap should became less efficient than an array.
I tried to write code that will produce a graph based on the input - number of vertices and total number of edges (maximum number of edges in undirected graph is n(n-1)/2).
On the entrance I divide the total number of edges by the number of vertices so that I have a const number of edges coming out from every single vertex. The graph is represented by an adjacency list. Here is what I came up with:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <list>
#include <set>
#define MAX 1000
#define MIN 1
class Vertex
{
public:
int Number;
int Distance;
Vertex(void);
Vertex(int, int);
~Vertex(void);
};
Vertex::Vertex(void)
{
Number = 0;
Distance = 0;
}
Vertex::Vertex(int C, int D)
{
Number = C;
Distance = D;
}
Vertex::~Vertex(void)
{
}
int main()
{
int VertexNumber, EdgeNumber;
while(scanf("%d %d", &VertexNumber, &EdgeNumber) > 0)
{
int EdgesFromVertex = (EdgeNumber/VertexNumber);
std::list<Vertex>* Graph = new std::list<Vertex> [VertexNumber];
srand(time(NULL));
int Distance, Neighbour;
bool Exist, First;
std::set<std::pair<int, int>> Added;
for(int i = 0; i < VertexNumber; i++)
{
for(int j = 0; j < EdgesFromVertex; j++)
{
First = true;
Exist = true;
while(First || Exist)
{
Neighbour = rand() % (VertexNumber - 1) + 0;
if(!Added.count(std::pair<int, int>(i, Neighbour)))
{
Added.insert(std::pair<int, int>(i, Neighbour));
Exist = false;
}
First = false;
}
}
First = true;
std::set<std::pair<int, int>>::iterator next = Added.begin();
for(std::set<std::pair<int, int>>::iterator it = Added.begin(); it != Added.end();)
{
if(!First)
Added.erase(next);
Distance = rand() % MAX + MIN;
Graph[it->first].push_back(Vertex(it->second, Distance));
Graph[it->second].push_back(Vertex(it->first, Distance));
std::set<std::pair<int, int>>::iterator next = it;
First = false;
}
}
// Dijkstra's implementation
}
return 0;
}
I get an error:
set iterator not dereferencable" when trying to create graph from set data.
I know it has something to do with erasing set elements on the fly, however I need to erase them asap to diminish memory usage.
Maybe there's a better way to create some undirectioned graph? Mine is pretty raw, but that's the best I came up with. I was thinking about making a directed graph which is easier task, but it doesn't ensure that every two vertices will be connected.
I would be grateful for any tips and solutions!
Piotry had basically the same idea I did, but he left off a step.
Only read half the matrix, and ignore you diagonal for writing values to. If you always want a node to have an edge to itself, add a one at the diagonal. If you always do not want a node to have an edge to itself, leave it as a zero.
You can read the other half of your matrix for a second graph for testing your implementation.
Look at the description of std::set::erase :
Iterator validity
Iterators, pointers and references referring to elements removed by
the function are invalidated.
All other iterators, pointers and
references keep their validity.
In your code, if next is equal to it, and you erase element of std::set by next, you can't use it. In this case you must (at least) change it and only after this keep using of it.