I'm new to templates in C++, so here is my problem.
I've a generic class ProductItem that will do all the stuff I want, but I need to specialize a part in order to use pointers (for char*).
My code :
typedef unsigned char BYTE;
template<typename T>
class TProductTableItem
{
protected:
int Offset;
int DataLength;
T Value;
public:
virtual bool LoadFromBuffer(const BYTE* buffer, int count)
{
if(Offset + DataLength > count)
return false;
Value = buffer[Offset];
return true;
}
};
// Specialization (doesn't compile)
class TProductTableItemString : public TProductTableItem<char*>
{
bool LoadFromBuffer(const BYTE* buffer, int count)
{
if(Offset + DataLength > count)
return false;
memset(Value, 0, DataLength);
memcpy(Value, (void*)&buffer[Offset], DataLength);
return true;
}
};
When trying to compile this code, I've the following error message:
cannot convert from 'const BYTE' to 'char*'
What I'm doing wrong?
It look like that even for char* type, it tries to use the TProductTableItem::LoadFromBuffer function and not the TProductTableItemString::LoadFromBuffer one.
Thanks.
TProductTableItemString, by inheriting from it, causes an instantiation of TProductTableItem<char*>. In the implementation of TProductTableItem::LoadFromBuffer, this line:
Value = buffer[Offset];
cannot be compiled because buffer[Offset] is a byte, and Value is a char*.
By the way, TProductTableItemString is not a specialization, it is simply inheriting and then hiding LoadFromBuffer. If you really want to specialize, you should write:
template<>
class TProductTableItem<char*>
{
...
};
You are mixing two distinct concepts: inheritance and template specialization.
Your class is not a template specialization but it derives from a template instantiation. However that template cannot be instantiated because when T = char * the statement Value = buffer[offset]; has a type mismatch error.
If you want to write a template specialization then the syntax is
template<>
class ProductTableItem<char *> {
...
};
Note that two templates instantiations are in general unrelated types from an inheritance point of view...
May be a solution for what you are trying to do is something like
// Non-template base class
class ProducTableItemBase {
protected:
...
public:
virtual bool LoadFromBuffer(const BYTE* buffer, int count) = 0;
};
// Template class for all other types
template<typename T>
class ProductTableItem : public ProductTableItemBase {
T Value;
bool LoadFromBuffer(const BYTE* buffer, int count) {
...
}
};
// Template specialization for char*
template<>
class ProductTableItem<char *> : public ProductTableItemBase {
char * Value;
bool LoadFromBuffer(const BYTE* buffer, int count) {
...
}
};
I said may be because indeed it's not clear to me what you are trying to accomplish.
You are confusing the concepts of inheritance and specialisation. Firstly, in order to specialise a template, you don't derive from it - you use this syntax:
template <>
class TProductTableItem<char*>
{...}
The next confusion is that you are trying to use the non-specialised member variables in the specialisation. Template specialisations are are completely seperate to the non-specialised version. For this example, you have only declared the variables Offset, DataLength and Value inside the non-specialised template. You need to add these to the specialisation if you want to have them there:
template <>
class TProductTableItem<char*>
{
int Offset;
int DataLength;
char* Value;
...
}
You want your memcpy line to be more like this:
memcpy(Value, (void*)&buffer[Offset], DataLength);
And likewise when you assign Value:
Value = (T)&buffer[Offset];
Related
I'm implementing a Big Integer library where the user can choose between fixed precision or arbitrary precision integers. Since great part of the code is shared between the two entities I've decided to use the CRTP to implement the Integer operations just once.
In short there is a base class named UInteger and two derived classes named UIntegerFP (fixed precision) and UIntegerAP (arbitrary precision).
Follows a skeleton of the implementation:
template <typename Derived>
class UInteger
{
public:
UInteger<Derived> &operator +=(const UInteger<Derived> &rhs);
...
};
template <int blocks>
class UIntegerFP : public UInteger<UIntegerFP>
{
public:
int get_size() { return m_len; }
void set_size(int size) { m_len = len; }
private:
std::array<uint32_t, blocks> m_data;
int m_len;
};
class UIntegerAP : public UInteger<UIntegerAP>
{
public:
int get_size() { return m_data.size(); }
void set_size(int size) { m_data.resize(len); }
private:
std::vector<uint32_t> m_data;
};
The base class uses a couple of methods exposed by the derived classes to interact with implementation dependent aspects (ie like get_size/set_size).
My problem:
I want to implement a global binary operator+() that returns the result of the operation by value in the UInteger "generic" header file in this way:
template <typename Derived>
UInteger<Derived> operator+(const UInteger<Derived> &x0,
const UInteger<Derived> &x1)
{
Derived res = static_cast<Derived>(x0);
x0 += x1;
return x0;
}
The problem is that, since the result is returned by value, it is casted to the base class type loosing the implementation details (e.g. the m_data vector destructor is called).
Obviously I do not get this problem if I define the function to return a Derived type by value:
template <typename Derived>
Derived operator+(const UInteger<Derived> &x0,
const UInteger<Derived> &x1)
{
Derived res = static_cast<Derived>(x0);
x0 += x1;
return x0;
}
But I don't like too much this approach, epecially from a design point of view.
Is there a better solution to such problem? Maybe I should define such operators directly just for the derived classes?
Is there someone thinking that the CRTP is not very appropriate here and maybe is better to directly implement just one UInteger class in this way:
template <bool dynamic = true>
class UInteger
{
...
private:
std::array<uint32_t> m_data;
int m_len; <- how much of m_data array is actually in use
}
and if the bool "dynamic" value is false I never reallocate the vector obtaining something similar to the UIntegerFP template class. Maybe (if the compiler is smart enough) , since the boolean is a const template parameter, I also abtain something like conditional code compilation?!
Suggestions of any type are very welcome,
Thanks,
Davide
I don't quite understand why you want to use CRTP here in this way.
CRTP is the natural way to implement the actual details of the = and += operations, when only the memory management is done via the derived methods. Such design clearly separates the two task of arithmetic and memory management to different classes. The + (binary) operator is then best implemented as stand-alone function template.
Something like this:
namespace biginteger_details {
template<typename UInteger>
class UIntegerBase // CRTP base, implementing the arithmetics
{
using uint32_t = std::uint32_t;
using size_t = std::size_t;
// access to data: all functionality is implemented through these methods
uint32_t&block(size_t i) { return static_cast< UInteger*>(this)->m_data[i]; }
uint32_t block(size_t i) const { return static_cast<const UInteger*>(this)->m_data[i]; }
size_t size() const { return static_cast<const UInteger*>(this)->size(); }
void resize(size_t n) { static_cast<UInteger*>(this)->resize(n); }
public:
// assignment operator: allow assignment from any UInteger type
template<typename UI>
UInteger&operator=(UIntegerBase<UI> const&other)
{
resize(other.size());
for(size_t i=0; i!=size(); ++i)
block(i) = other.block(i);
return static_cast<UInteger&>(*this);
}
// add and assign: allow adding any UInteger type
template<typename UI>
UInteger&operator+=(UIntegerBase<UI> const&other)
{
// your code here using block(), size(), and resize()
return static_cast<UInteger&>(*this);
}
};
template<std::size_t nblock=8>
struct UIntegerFP
: UIntegerBase<UIntegerFP<nblock>>
{
static constexpr std::size_t max_blocks=nblock;
// 1 data
std::array<std::uint32_t,nblock> m_data;
std::size_t m_size=0;
// 2 interface to base
std::size_t size() const { return m_size; }
void resize(std::size_t n)
{
if(n>nblock) throw std::out_of_range("exceeding capacity");
m_size = n;
}
// 3 constructors
// copy constructor from any UInteger type
template<typename UI>
UIntegerFP(UIntegerBase<UI> const&other)
{ this->operator=(other); }
};
struct UIntegerAP
: UIntegerBase<UIntegerAP>
{
static constexpr std::size_t max_blocks=~(std::size_t(0));
// 1 data,
std::vector<std::uint32_t> m_data;
// 2 interface to base
std::size_t size() const { return m_data.size(); }
void resize(std::size_t n)
{ m_data.resize(n); }
// 3 constructors
// copy constructor from any UInteger type
template<typename UI>
UIntegerAP(UIntegerBase<UI> const&other)
{ this->operator=(other); }
};
// functions best take UIntegerBase<UI> arguments, for example:
// operator + as stand alone function template
template<typename Ulhs, typename Urhs>
inline std::conditional_t<(Ulhs::max_blocks > Urhs::max_blocks), Ulhs, Urhs>
operator+(UIntegerBase<Ulhs> const&lhs, UIntegerBase<Urhs> const&rhs)
{
std::conditional_t<(Ulhs::max_blocks > Urhs::max_blocks), Ulhs, Urhs>
result=lhs;
return result+=rhs;
}
} // namespace biginteger_details;
using biginteger_details::UIntegerFP;
using biginteger_details::UIntegerAP;
// note: biginteger_details::operator+ will be found by ADL (argument dependent look-up)
In your operator+ implementation, in practice, you are setting the function return type as:
UIntegerAP if one of the template types is an UIntegerAP.
Ulhs, otherwise (here I suppose you intend UIntegerFP).
Is that right?
Now... what if the UIntegerAP is a template as well? For example defined like this:
template <typename block_type>
class UIntegerAP
{
....
private:
std::vector<block_type> m_data;
}
I cannot use UIntegerAP type in the operator+ declaration anymore.
I am trying to make a class that can have functions and members controlled by a template argument. I am thinking of something like this.
template<int control>
class ControlledDeclaration
{
public:
if(1 == control)
int Get() { return 0; }
else if(2 == control)
char* Get() { return "get"; }
else if (3 == control)
bool Get() { return true; }
};
void test_template()
{
ControlledDeclaration<1> c_int;
ControlledDeclaration<2> tx_int;
ControlledDeclaration<3> b_int;
}
If possible, how to do it?
The approach I would use is along the lines of specializing the details in a traits class and provide the interface using the template. In this trivial example there isn't much benefit of using traits rather than specializing the actual type but in general customizing the few points of variations is easier using traits than specializations.
template <int> struct ControlDeclarationTraits;
template <>
struct ControlDeclarationTraits<1> {
typedef int type;
static int value() { return 0; };
};
template <>
struct ControlDeclarationTraits<2> {
typedef char const* type;
static char const* value() { return "get"; }
};
template <>
struct ControlDeclarationTraits<3> {
typedef bool type;
static bool value() { return true; }
};
template<int control>
class ControlledDeclaration
{
public:
typename ControlDeclarationTraits<control>::type Get() {
return ControlDeclarationTraits<control>::value();
}
};
BTW, the type of string literals is char const[n] (for a suitable n) and not char[n], i.e., you can't really use a string literal to initialize a char*. It does work because it was deemed necessary to support existing code to assign string literals to char* but it is actually a lie: trying to assign a value to any of the values causes undefined behavior. Making the pointer const makes it obvious that the content isn't meant to be modified.
Have a look at boost::enable_if, that does exactly what you want.
I've got a list of types which can be send over the network, take this example:
enum types {
E_T1,
E_T2,
E_T3,
E_T4
};
Now I have a list of classes which correspond to each of the types, let's say each is declared as class E_T1 {...}, class E_T2 {...}, etc.
They are not derived from a common base class and it's not possible to do so. Each of the classes has a verification method I need to invoke with the data send over the network. The client sends the data D and a id correspointing to the message type. I need to get hold of the object corresponding to the type. I can use C++0x features if needed.
What I've tried so far is using specialized templates for the types, holding a typedef for the object related to it. This was obviously a stupid idea as templates parameters need to be compile time constant so doing something along getType<data.id()>::type is not possible.
Then I tried using Boost.Variant to get a common returnable type like this (used mpl vector to iterate over the registered types at runntime for debbuging):
template <typename C>
struct getType() {
typedef C type;
}
typedef boost::mpl::vector<
getType<E_T1>,
getType<E_T2>,
getType<E_TX>...
> _types;
typedef boost::make_variant_over<_types>::type _type;
//use a map to store each type <-> id
boost::unorderd_map<types, _type> m;
m[E_T1] = getType<E_T1>();
m[data.id()]::type x; //<- access type, can now call x.validate(data)
The problem with this is that it's limited to 20 entries per variant per default. This can be overwritten but from what I understood the overhead per type should be considered and we are talking about a few thousand types here.
Also tried boost.any but it doesn't hold any type information so that's out of the question again. Has anyone any good ideas how this can be solved elegantly?
Looking for something where I don't have to write a 1k switch statement anytime I handle a type.
All types are nown at compile type, same goes for their corresponding IDs.
Id -> Type resolving needs to happen at runtime though.
Thanks in advance,
Robin.
External Polymorphism (*)
It's a widely known idiom, however it's widely used: I first encountered it in the shared_ptr implementation and it's been quite useful in my toolbox.
The idea is to actually create a base class for all those types. But not having them derive from it directly.
class Holder {
public:
virtual ~Holder() {}
virtual void verify(unsigned char const* bytes, size_t size) const = 0;
}; // class Holder
template <typename T>
class HolderT: public Holder {
public:
HolderT(): _t() {}
virtual void verify(unsigned char const* bytes, size_t size) const {
_t.verify();
}
private:
T _t;
}; // class HolderT
template <typename T>
std::unique_ptr<Holder> make_holder() {
return std::unique_ptr<Holder>(new HolderT<T>());
}
So, it's the classic strategy of adding a new level of indirection.
Now, you obviously do need a switch to move from value to class. Or perhaps... a map ?
using maker = std::unique_ptr<Holder> (&)();
using maker_map = std::unordered_map<types, maker>;
std::unique_ptr<Holder> select(types const E) {
static maker_map mm;
if (mm.empty()) {
mm.insert(std::make_pair(E_T1, make_holder<EC_T1>));
// ...
}
maker_map::const_iterator it = mm.find(E);
if (it == mm.end()) { return std::unique_ptr<Holder>(); }
return (*it->second)();
}
And now you can handle them polymorphically:
void verify(types const E, unsigned char const* bytes, size_t size) {
std::unique_ptr<Holder> holder = select(E);
if (not holder) { std::cerr << "Unknown type " << (int)E << "\n"; return; }
holder->verify(bytes, size);
}
Of course, you're welcome to make the strategy vary according to your needs. For example moving the map out of select so that you can register your types dynamically (like for plugins).
(*) At least that's the name I have for it, I would quite happy to find out it's already been named.
I'll assume you have a generic way of handling a message, such as for example an overloaded function:
void handle_message(const E_T1& msg);
void handle_message(const E_T2& msg);
//...
Now, you do not really need to get the object's type. All you need is a way to handle a message of that type, given the undecoded message.
So, I recommend you populate a map of factory functions:
std::unordered_map<types, std::function<void (unsigned char const* bytes, size_t size)> handlers;
handlers[E_E1] = [](unsigned char const* bytes, size_t size) { handle_message(E_T1(bytes, size)); };
// ...
Then, once you've decoded the type, you can use handlers[type](bytes, size) to decode and handle a message.
Try variadic templates and your already defined getType class:
enum types { T1_ID, T2_ID, .... };
class T1; class T2; class T3; ....
template <types t> struct getType;
template <> struct getType<T1_ID> { typedef T1 type; };
template <> struct getType<T2_ID> { typedef T2 type; };
...
And the operation verify:
template <types...>
struct type_operation;
template <types t1, types... rest>
struct type_operation<t1, rest...>
{
void verify(types t)
{
if (t == t1)
{
typename getType<t1>::type a;
a.verify(); // read from network and verify the rest of data....
}
else type_operation<rest...>::verify(t, data);
}
};
template <>
struct type_operation<>
{
void verify(types t)
{
ostringstream log; log << "not suppoted: " << t;
throw std::runtime_error(log.str()); //
}
};
Usage:
typedef type_operation<T1_ID, T2_ID, T3_ID, ,,.., TN_ID> type_mapping;
types id;
readFromNetwork(id);
type_mapping::verify(id);
Here's the deal. I've looked on this forum and I didn't find the information I'm searching for or I'm probably not able to repeat it for my problem. I have a class Table which is generic and I have a class named MyString.
template <typename typeGen, int DIM>
class Table {
public:
TableauGenerique() : index_(0) { //On initialise courant à 0
}
void add(typeGen type);
private:
typeGen tableGen_[DIM];
int index_;
};
My problem is with the add function.
I sometimes have to do this in the main.cpp: (which works well)
Table <float,6> tabFloat;
tabFloat.add(1.6564);
and at one point, I need to do this which doesn't work because I need to specialize the add function to create an object of MyString, to pass it the string and then store the object in the array (tableGen) :
TableauGenerique <MyString,4> tabString;
So I tried this (after the class), without success.
template <typename typeGen, int DIM>
void Table<typeGen,DIM>::add(typeGen type){ //Which is the generic one for float or ints
if(index_ < DIM) {
tableGen_[courant_] = type;
index_++;
}
}
template <class typeGen, int DIM>
void Table<typeGen,DIM>::add<string>(typeGen type) { //(line 75) Which is the specific or specialized function for myString
MyString str(type);
if(index_ < DIM) {
tableGen_[courant_] = str;
index_++;
}
}
So, How can I make this work because it doesn't compile at all, saying: line75 : error: expected initializer before '<' token and in the main it says not matching function to call Table::add(const char[6]),
I hope everything is clear enough. Let me know if somethings is unclear.
Thank you very much for your help !
template <class typeGen, int DIM>
void Table<typeGen,DIM>::add<string>(typeGen type)
You're trying to specialize add() when in fact it is not a function template to begin with. How do you expect it to work?
You probably meant: (specialization of the class)
template <int DIM>
void Table<string,DIM>::add(string type)
But then this is allowed only if you specialize the class itself. Without specializing the class, the above code would give compilation error!
EDIT:
You can read these online tutorials:
Introduction to C++ Templates
14.5 — Class template specialization
Template Specialization and Partial Template Specialization
Explicit specialization (C++ only)
If you can control the code of the MyString class, you can provide constructors that act as implicit conversions from float to MyString. An example:
#include <string>
#include <sstream>
#include <iostream>
class MyString {
public:
MyString(float number) {
std::stringstream buffer;
buffer << number;
value = buffer.str();
}
void print() {
std::cout << value << std::endl;
}
private:
std::string value;
};
template <class T>
class Foo {
public:
void DoStuff(T item) {
item.print();
}
};
int main() {
Foo<MyString> foo;
foo.DoStuff(1.342); // implicitly converts float to MyString
return 0;
}
This way, you do not need any specialization of the add method. However, implicit conversions are tricky, and you have be careful not to invoke them accidentally, and they may create ambiguities.
EDIT: Upon a second thought, my suggestion below is basically equivalent to
Table<MyString,4> tabString;
tabString.add(MyString("whatever"));
and therefore excessive and/or does not solve the problem. Feel free to ignore :)
I would extend the class Table with a generic method to add something from which you can construct an object of the desired type:
template <typename typeGen, int DIM>
class Table {
public:
Table() : index_(0) {}
void add(typeGen type);
// The additional method
template<typename T> void add(const T& src);
private:
typeGen tableGen_[DIM];
int index_;
};
template<typename typeGen, int DIM>
template<typename T>
void Table<typeGen,DIM>::add(const T& src) {
if(index_ < DIM) {
tableGen_[courant_] = typeGen(src);
index_++;
}
}
Note construction of a temporary typeGen object before the assignment.
Assuming that MyString object can be constructed from a string literal, i.e. from const char*, you can then use it as following:
Table<MyString,4> tabString;
tabString.add("whatever");
or if the above assumption is wrong, the following should probably work (because you constructed a MyString instance from a string instance):
tabString.add(string("whatever"));
Suppose i have a function template StrCompare
template<typename T=NonCaseSenCompare>//NonCaseSenCompare is a user defined class look at the detailed code below.
int StrCompare(char* str1, char* str2)
{
...
}
now in the main function i write a line
char* str1="Zia";
char* str2="zia";
int result=StrCompare(str1,str2);
it should work because we have provided a default template argument, but it does'nt compiler gives the following error
no matching function for call to `StrCompare(char*&, char*&)'
Now the detailed code is given by
#include<iostream.h>
class CaseSenCompare
{
public:
static int isEqual(char x, char y)
{
return x==y;
}
};
class NonCaseSenCompare
{
public:
static int isEqual(char x,char y)
{
char char1=toupper(x);
char char2=toupper(y);
return char1==char2;
}
};
template<typename T=NonCaseSenCompare>
int StrCompare(char* str1, char* str2)
{
for(int i=0;i < strlen(str1)&& strlen(str2);i++)
{
if(!T::isEqual(str1[i],str2[i]))
return str1[i]-str2[i];
}
return strlen(str1)-strlen(str2);
}
main()
{
char* ptr1="Zia ur Rahman";
char* ptr2="zia ur Rahman";
int result=StrCompare(ptr1,ptr2);//compiler gives error on this line
cout<<result<<endl;
system("pause");
}
If I write
int result=StrCompare<>(ptr1,ptr2);
compiler gives the same error message.
As gf and AndreyT already wrote, you can't have default template arguments with function templates. However, if you turn your comparators into function objects, you can still use default function arguments:
template<typename Comp>
int StrCompare(char* str1, char* str2, Comp = NonCaseSenCompare())
{
...
}
You can now call StrCompare() like this
StrCompare("abc","aBc",CaseSenCompare());
or like this:
StrCompare("abc","aBc"); // uses NonCaseSenCompare
A comparator would then have to look like this:
struct CaseSenCompare {
bool operator()(char x, char y) const {return x==y;}
};
Adjust StrCompare() accordingly.
§14.1/9:
A default template-argument shall not
be specified in a function template
declaration or a function template
definition, nor in the
template-parameter-list of the
definition of a member of a class
template.
A simple work-around would be to move it into a class:
template<typename T=NonCaseSenCompare>
struct StrCompare {
static int compare(char* str1, char* str2) { /* ... */ }
};
Firstly, function templates do not support default template arguments, only class templates do.
Secondly, even when all class template parameters have default arguments, you still have to specify an empty <> to refer to that class template.
What i use is next trick;
lets say you want to have function like this
template <typename E, typename ARR_E = MyArray_t<E> > void doStuff(ARR_E array)
{
E one(1);
array.add( one );
}
you will not be allowed, but i do next way:
template <typename E, typename ARR_E = MyArray_t<E> >
class worker {
public:
/*static - as you wish */ ARR_E* parr_;
void doStuff(); /* do not make this one static also, MSVC complains */
};
template <typename E, typename ARR_E>
void worker::doStuff<E, ARR_E>::getChunks()
{
E one(1);
parr_->add( one );
}
so this way you may use it like this.
MyArray_t my_array;
worker<int> w;
w.parr_ = &arr;
w.doStuff();
as we can see no need to explicitly set second parameter.
maybe it will be useful for someone.